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Abstract
Background: DNA damage repair (DDR) plays a role in the tumorigenesis and pro-
gression of lung squamous cell carcinoma (LUSC), but the predictive value of DDR in
LUSC has not been fully elucidated.
Methods: The LUSC datasets were retrieved from the Cancer Genome Atlas data-
bases. Univariate Cox regression and least absolute shrinkage and selection operator
regression were integrated to identify critical genes and construct a DDR gene signa-
ture. We performed Kaplan–Meier (KM) curve to compare the overall survival
(OS) between the two groups based on DDR signature and used the CIBERSORT tool
to compare the immune cell composition. Further gene set enrichment analysis
(GSEA) was performed on the differential expressed genes.
Result: We established the DDR-related gene signature on LUSC. KM curve showed
the low-risk group had a better prognosis than the high-risk group in the training set
(p = 0.022673) and the complete set (p = 0.003201). The area under receiver operat-
ing characteristic curve for OS was 0.98, 0.96, and 0.97 in the training dataset, testing
dataset, and the complete dataset, respectively. The composition of immune cells was
different between the high- and low-risk group. The GSEA result suggests that genes
of the patients in low-risk group were mainly enriched in the DNA adducts; drug
metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450.
Conclusion: This study identified DDR-associated potential biomarkers related to
overall survival of LUSC and establishes the DDR-associated gene signature.
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INTRODUCTION

Lung cancer remains the precedent cause of cancer death,
with �1.8 million deaths in 2020.1 Around 85% of lung can-
cer cases correspond to non–small-cell lung cancer
(NSCLC),2 including lung adenocarcinomas (LUAD) and
lung squamous cell carcinoma (LUSC). More than 60% of
LUAD can be identified by driving mutations, epidermal
growth factor receptor (EGFR), ALK, and other driver gene
mutations, which significantly improved survival in patients
with LUAD; however, for LUSC, accounting for one-third of

NSCLC, the driver genes such as EGFR mutations and ALK
gene rearrangements are rarely detected.3 However, increased
EGFR gene copy and protein overexpression are more com-
mon in LUSC than in LUAD,4 and LUSC has a high total
mutation rate and significant genetic complexity.5 LUSC has
some apparent driver gene mutations, including PIK3CA,
AKT, FGFR1,6 but there is no related effective treatment.

Widespread intratumor heterogeneity can be detected in
lung cancer for both somatic mutations and copy-number
alterations.7 Driver mutations that occurred later in evolu-
tion were almost always clonal or subclone and involved in
chromatin modification and DNA damage response and
repair.
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DNA damage response is crucial to prevent the accumula-
tion of DNA lesions and mutations that may promote carcino-
genesis. It can repair the damaged DNA by one or several
pathways: base excision repair (BER); homologous recombina-
tion (HR); direct repair (DR); nucleotide excision repair (NER);
mismatch repair (MMR) or non-homologous end joining
(NHEJ).8 When DNA damage repair (DDR) pathway is
impaired, cytoplasmic DNA gathers, and DNA replication
pressure increases, which not only leads to genomic instability,
but also induces the release of validation-related factors and
activates the innate immune response by activating the cyclic
GMP-AMP synthase-stimulator of interferon genes (cGAS-
STING) and/or nuclear factor-κB (NF-κB) pathway.9

In this study, the Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/) database was involved in investigating
the relationship between DDR genes and the LUSC prognosis
and finally to establish DDR-associated prognostic signature.
Here, we screened specific DDR genes that related to the
prognosis of LUSC and classified the LUSC patients into
high- and low-risk groups based on the DDR-related genes
expression. We confirmed the classification with Kaplan–
Meier (KM) curve analysis and tSNE cluster and verified the
prognostic signature with multiple receiver operating charac-
teristic (ROC) curve. In addition, we explored the distribution
and composition of immune cells in the tumor microenviron-
ment and performed Gene Ontology (GO) enrichment, and
gene set enrichment analysis (GSEA) with differential
expressed DDR genes between high- and low-risk groups.
Based on the above analysis, we demonstrate the critical role
of specific DDR gene in LUSC prognosis, indicating the
potential use of this signature.

METHOD

Data collection from TCGA and GSEA

Lung squamous cell carcinoma RNA transcriptome dataset
and their relevant clinical information were retrieved from

the TCGA database. Genes were grouped into protein-
coding genes based on the human genome annotation data.
The list of DDR-associated gene set was obtained from the
Molecular Signatures Database (https://www.gsea-msigdb.
org/gsea/msigdb).

Identification of differentially expressed DDR
genes in LUSC

We used R software (https://www.r-project.org/) for statisti-
cal analyses and data visualization. The limma program was
used to examine the differential expression genes (DEGs) of
the DDR gene sets between LUSC and normal tissue at
p < 0.05 with a two-fold change. The heatmap figure was
visualized with “pheatmap” package.

Risk model construction and validation

Univariate cox regression analysis and least absolute shrink-
age and selection operator (LASSO)-penalized Cox regres-
sion analysis (quantile cut-off = 0.25) were used to identify
the DDR-related prognostic signature. A p-value <0.05 in
univariate Cox regression analysis was considered statisti-
cally significant, whereas DDR genes were considered eligi-
ble for LASSO regression analysis only if they showed
significance in the Cox regression analysis. Functional analy-
sis of those genes was performed, and their coefficients were
determined through the minimum standard. We stratified
LUSC patients into high-risk and low-risk groups with DDR
associated gene-based risk score prediction model. The for-
mula for calculating the risk score of each LUSC patient was
as follows: risk score = (coefficient mRNA1 � expression of
messenger RNA1 [mRNA1]) + (coefficient mRNA2 �
expression of mRNA2) + …… + (coefficient mRNAn �
expression mRNAn). mRNA indicates the FPKM value of
specific gene in TCGA. Patients were then grouped into two
datasets, the training dataset and the testing dataset, with

F I G U R E 1 Differentially expressed DDR genes (DDR DEGs) between LUSC and normal tissue. (a) Volcano plots of DDR DEGs. X–axis represents the
fold change of gene expression and y-axis stands for adjusted p value. (b) Heatmap of DDR DEGs
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the ratio of 7:3. The ROC curve analysis was performed,
respectively, in training dataset, testing dataset, and the
complete dataset to value the accuracy of the DDR signa-
ture. Differences between the high- and low-risk groups
were evaluated by the KM curve and log-rank test. p-Value
<0.05 was considered statistically different.

Functional and pathway enrichment analysis

GO enrichment analysis includes enrichment in cellular
components (CC), molecular function (MF), and biological
processes (BP).10 GO enrichment analysis and enrichment
map of differential expressed DDR genes was performed by

“clusterProfiler” package. GSEA was performed with GSEA
with FDR q-value < 0.05. Differential regulated genes were
analyzed for high-risk group compared to low-risk group.

Relationship between DDR signature and
immune infiltration

CIBERSORT was used for appraising the percentage of dif-
ferent types of tumor-infiltrating immune cells. LM22 signa-
ture file was used to analyze the integrated immune cell
types.11 We used “ggplot2” package in R Studio to visualize
the immune infiltration differential between high-risk and
low-risk groups based on the prediction model.

F I G U R E 2 Characterization of DDR related 10 gene signatures. (a) The ten DDR genes filtered with univariance Cox regression. (b) tSNE plot for the
cluster 1 (high-risk group) and cluster 2 (low-risk group). (c) The LASSO regression analysis, lambda. Min = 0.001684919. (d) Selecting the best parameters
for LUSC on the basis of LASSO model
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RESULT

DDR gene expression is different in LUSC and
normal tissue

DEGs between LUSC and normal tissue were analyzed on
150 DDR genes. In the TCGA database, including 502 LUSC
samples and 49 normal lung samples, 28 upregulated DDR
genes and 10 downregulated DDR genes of LUSC were iden-
tified relative to normal tissue (Figure 1(a); Table S1).

Heatmaps show the levels of the differentially expressed
genes in detail (Figure 1(b)).

Construction of DDR-related gene signature

All the DDR genes were screened with univariate Cox
regression analysis on only LUSC samples. Ten genes
(CLP1, NCBP2, POLB, POLR2H, UPF3B, BRF2, RBX1,
GPX4, TK2, and CANT1) were significantly correlated with

T A B L E 1 Baseline data for patients after grouping by DDR-related signature

Level High-risk Low-risk p

No. 382 120

Group (%) High-risk 382 (100.0) 0 (0.0) <0.001

Low-risk 0 (0.0) 120 (100.0)

Time, median [IQR] 618.00 [239.00, 1168.50] 925.00 [418.50, 1568.50] 0.011

Vital status (%) Alive 210 (55.0) 75 (62.5) 0.17

Dead 172 (45.0) 45 (37.5)

Gender (%) Female 99 (25.9) 32 (26.7) 0.965

Male 283 (74.1) 88 (73.3)

Age, mean (SD) 67.30 (8.67) 66.80 (8.36) 0.582

Intermediate dimension, median [IQR] 0.80 [0.60, 1.00] 0.70 [0.60, 1.00] 0.461

TNM stage (%) No. 3 (0.8) 1 (0.8) 0.097

Stage I 186 (48.7) 59 (49.2)

Stage II 131 (34.3) 31 (25.8)

Stage III 59 (15.4) 25 (20.8)

Stage IV 3 (0.8) 4 (3.3)

T (%) T1 90 (23.6) 24 (20.0) 0.123

T2 219 (57.3) 75 (62.5)

T3 59 (15.4) 12 (10.0)

T4 14 (3.7) 9 (7.5)

N (%) N0 242 (63.4) 78 (65.0) 0.399

N1 103 (27.0) 28 (23.3)

N2 27 (7.1) 13 (10.8)

N3 4 (1.0) 1 (0.8)

NX 6 (1.6) 0 (0.0)

M (%) M0 306 (81.0) 106 (88.3) 0.01

M1 2 (0.5) 3 (2.5)

M1a 0 (0.0) 1 (0.8)

M1b 1 (0.3) 0 (0.0)

MX 69 (18.3) 10 (8.3)

Pack, years smoked (%) 64 (16.8) 14 (11.7) 0.376

≤30 81 (21.2) 25 (20.8)

>30 237 (62.0) 81 (67.5)

Race (%) Asian 7 (2.3) 2 (2.3) 0.447

Black or African American 26 (8.6) 4 (4.5)

White 268 (89.0) 82 (93.2)

Ethnicity (%) Hispanic or Latino 5 (2.0) 3 (4.2) 0.53

Non-Hispanic or Latino 248 (98.0) 69 (95.8)
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F I G U R E 4 The multiple ROC curve for the DDR-related gene signature. (a) The training dataset; (b) testing dataset; (c) complete dataset

F I G U R E 3 Kaplan–Meier curve analysis of overall survival between high- and low-risk groups. (a) The training dataset; (b) testing dataset; (c) complete
dataset

F I G U R E 5 Kaplan–Meier survival curves for the high-risk and low-risk groups stratified by age. For both age = 70 (B) groups, patients in the high risk
group tended to have a worse overall survival rate compared to the low risk group
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overall survival (OS) of LUSC (p < 0.05) (Figure 2(a);
Table S2). We clustered 502 LUSC samples into two groups
(cluster 1 and cluster 2, 382 cases and 120 cases, respec-
tively) based on the expression of these 10 DDR genes in
TCGA. tSNE plot showed that the two clusters could be
classified distinctively (Figure 2(b)).

Further, these 10 DDR genes were measured as predictive
genes for LASSO analysis. The optimal value of the lambda
penalty parameter defined by performing 10 times-validations
in the training set was selected to obtain the final risk score.
All the 10 DDR genes went through the LASSO algorithm
were qualified for constructing a risk signature (Figure 2c, d).
The risk score formula to predict OS was developed as follows:
risk score = 0.31980348* CLP1 + 0.39994951* NCBP2
+ 2.38617579* POLB +2.91812372 * POLR2H + 0.03078
582* UPF3B + 2.83727830* BRF2 + (�0.20658477)* RBX1

+ 1.19580540* GPX4 + (�0.14460181)*TK2 + (�0.5494
7184)* CANT1. The seven high risk genes CLP1, NCBP2,
POLB, POLR2H, UPF3B, BRF2, and GPX4 and three low risk
genes RBX1, TK2, and CANT1 have their matched coefficient
number.

Prognostic value of DDR-related gene signature

A worse prognosis of LUSC patients was observed with clus-
ter 1 (high-risk group) than patients with cluster 2 (low-risk
group). The patients’ background data of the two risk
groups were listed in Table 1. The KM curve analysis
showed that the low-risk group had a better prognosis than
the high-risk group in the training set (p = 0.022673)
(Figure 3(a)) and complete set (p = 0.003201) (Figure 3(c)).

F I G U R E 6 Barplot of 22 immune cells content in the high-risk and low-risk group
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However, because of the small numbers in one cluster, the
KM curve of testing set did not meet the significance level
(Figure 3(b)). Further, the AUC, which is defined as the area
under ROC curve, was 0.98, 0.96, and 0.97 in the training
dataset, the testing dataset, and the complete dataset, respec-
tively, implying that the DDR-related 10-genes signature has
good accuracy in the prognostic prediction of LUSC
(Figure 4(a)–(c)). We also inspected the prognostic value of
the DDR model stratified by age. For both age <70 and
age ≥70 groups, patients in the high-risk group tended to
have a worse OS (Figure 5(a),(b).

Relationship between the gene signature and
immune cell

LUSC samples in the TCGA database showed a difference for
all the 22 immune cell types between the high- and low-risk
groups (Figure 6). Cell types, of which compositions were
slightly higher in high-risk group, were naive B cells, plasma
cells, memory-resting CD4+ T cells, nd T cells, activated natual
killer (NK) cells, monocytes, M1 macrophages, resting dendritic
cells, activated dendritic cells, and neutrophils. The tumor
microenvironment in the low-risk group was infiltrated with
more memory B cells, CD8+ T cells, memory-activated CD4+

T cells, follicular helper T cells, regulatory T cells, resting NK,
M0 macrophages, M2 macrophages, and resting mast cells.

Enrichment analyses of DEGs based on the
clustering

Based on the results of DDR signature clustering, there are
58 downregulated genes and eight upregulated genes with
fold change >2 in the high-risk group (Figure 7(a);
Table S3). GO term enrichment analysis demonstrated that
the DEGs were principally enriched in NADP+

1-oxidoreductase activity in molecular function (Figure 7
(b)). Cell component analysis indicated that genes were sig-
nificantly enriched in cornified envelope (Figure 7(c)). Bio-
logical process analysis demonstrated that the genes were
principally involved in the cellular hormone metabolic pro-
cess (Figure 7(d)).

The potential pathways or functions of DDR-related
genes signature were explored by performing a GSEA. As
shown in Figure 8(a)–(d), we discovered that patients in the
high-risk group relative to low-risk group were mainly
involved in DNA adducts, drug metabolism-cytochrome
P450, metabolism of xenobiotics by cytochrome P450, and
pentose and glucuronate interconversions.

F I G U R E 7 The DEGs based on the clustering with DDR genes signature. (a) Volcano plots of DEGs. (b) GO enrichment of DEGs in molecular
function; (c) GO enrichment of DEGs in cell component; (d) GO enrichment of DEGs in biological process
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DISCUSSION

DNA damage occurs through exogenous and endogenous
processes. Carcinogens can reduce the DNA damage
through myriad mechanisms. As a pivotal mechanism to
preserve genome stability and repair DNA lesions, defi-
ciency in the DNA repair pathway might give rise to hyper-
sensitivity to carcinogens and the accumulation of DNA
lesions influencing tumor development, metastasis, and
prognosis.12

In this study, we systematically investigate the role of the
DDR gene in the prognosis of LUSC. By conducting a uni-
variate Cox regression screen and performing LASSO-
penalized regression analysis, we successfully formed a
10 DDR genes signature. The KM curve showed that this
DDR signature could stratify patients’ OS efficiently. ROC
analysis results verified that the DDR signature had a high
accuracy in predicting the OS of LUSC and had a good
prognostic value.

Previous studies suggested that germline mutations in
DNA repair genes increase the predisposition to lung

cancer.13 Supporting this, it has been shown that in �2.5%
of all cancer, a germline mutation in a DNA repair gene was
associated with cancer development, including LUSC.14 The
other way round, LUSC generally exhibits relatively a higher
somatic mutation frequency in contrast with different tumor
types.15 A high proportion occurred in genes that are
involved in the maintenance of genome integrity through
chromatin modification and DNA damage response and
repair and specific DDR gene alterations tend to associate
with worse progression-free survival to initial chemother-
apy.16 For diagnosis and treatment, it is necessary to investi-
gate further the predictive value resulting in the
development of LUSC.

Among these 10 DDR genes in the predictive model,
POLB, POLR2H, and BRF2 exhibit the highest coefficient
(coefficient >2/<�2). POLB is one of the components of
BER. PARP1 has been a popular target for targeted therapies
in the past few years, of which role in BER is detecting
single-strand breaks. PARP1 works as a signal for the repair
machinery, recruiting the scaffold protein XRCC1, LIG3,
and POLB,17 to complete repair. The carrier status for the

F I G U R E 8 GSEA analysis of the enrichment pathways for DEGs between high- and low-risk groups. In ascending order of enrichment score, the top
4 potential pathways are (a) chemical carcinogenesis-DNA adducts, (b) drug metabolism cytochrome P450, (c) metabolism of xenobiotics by cytochrome
P450 and (d) pentose and glucuronate interconversions
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POLB rs3136797 germline mutation is associated with a
worse prognosis for lung cancer and demonstrates poor sen-
sitivity to cisplatin treatment.18 POLR2H, the necessary sub-
unit of RNA polymerase II, was essential for the
transcription of DNA.19 Du et al.20 indicated that POLR2H
expression correlates with the occurrence and progression of
prostate cancer. TFIIIB is a known target of regulation by
oncogenes and tumor suppressors. TFIIIB-mediated tran-
scription is downregulated in a variety of cancers. BRF2, a
component of TFIIIB required for gene external RNA pol
III transcriptions, was identified as an oncogene in LUSC
through integrative genomic analysis.21 The related study of
BRF2 was extremely rare. One study used the Oncomine
database to study the expression of BF2 in tumors in a sub-
set of the patient samples and showed that BRF2 is both
over- and under-expressed in lung cancer.

We also investigated the correlation between DDR signa-
ture and the clinical factors in present study. In our study,
DDR signature independently predict the OS of LUSC without
the need to consider whether it is advanced age. In addition,
the GSEA result revealed that patients in the high-risk group
were negatively enriched in DNA adducts, drug metabolism-
cytochrome P450, metabolism of xenobiotics by cytochrome
P450, and pentose and glucuronate interconversions.

It is reported that carcinogens may fall into two catego-
ries22: activation-dependent (e.g., polycyclic aromatic hydro-
carbons) and activation-independent (e.g., ultraviolet and
ionizing radiation).23,24 Activation-dependent carcinogens
require metabolic activation or molecular modification in
host cells to transform them into reactive intermediates or
carcinogenic metabolites. The reactions, including oxidation,
reduction, or hydrolysis, mainly involve cytochrome P450
(CYP) mixed function oxidase isoforms. Bulky chemical
adducts are commonly formed as a result of the interaction
between activated carcinogens and DNA. Accordingly, our
prognostic signature classified by 10 DDR genes showed that
compared to low-risk group, the DEGs of high-risk group
enrich in chemical adduct and P450 related pathway, impli-
cating relatively an indirect DNA damage correlation.

CONCLUSION

In conclusion, our study identified DDR-related signature
that could be involved in the prognosis of LUSC. To our
knowledge, this is the first study that developed a DDR-
associated risk model in LUSC. In addition, our study also
investigated the potential relationship between DDR and
clinical data, and DNA damage repair and immune cells.
The findings of this study provide new insights to under-
standing the role of DNA damage repair in LUSC and the
prediction obtained from the bioinformatics analysis can be
verified by future experimental studies.
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