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Cell-cell interactions mediated by ligand-receptor complexes are critical to coordinating organismal
development and functions. Majority of studies focus on the key time point, the mediator cell types or
the critical genes during organismal development or diseases. However, most existing methods are
specifically designed for stationary paired samples, there hasn’t been a repository to deal with inferring
cell–cell communications in developmental series RNA-seq data, which usually contains multiple devel-
opmental stages. Here we present a cell–cell interaction networks inference method and its application
for developmental series RNA-seq data (termed dsCellNet) from the developing and aging brain.
dsCellNet is implemented as an open-access R package on GitHub. It identifies interactions according
to protein localizations and reinforces them via dynamic time warping within each time point and
between adjacent time points, respectively. Then, fuzzy clustering of those interactions helps us refine
key time points and connections. Compared to other published methods, our methods display high accu-
racy and high tolerance based on both simulated data and real data. Moreover, our methods can help
identify the most active cell type and genes, which may provide a powerful tool to uncover the mecha-
nisms underlying the organismal development and disease.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cell-cell communication across multiple cell types is critical to
coordinating organismal development, differentiation and physio-
logical function [1]. Diseases or homeostasis disorders occur when
cells can’t interact with each other properly. Hence, more and more
studies on development or diseases increasingly require consider-
ation of cell–cell interactions in neuroscience field. Cell-cell com-
munication is mediated by ligand-receptor (L-R) complexes,
which encompass extracellular or membrane-ligand and receptor
interactions. Through communication, receiver cells perceive the
signaling then trigger downstream signaling generally altering
transcription factor activity and gene expression in receiver cells
[2]. Then those receiver cells finally work on the coordination of
cellular activities through communication with other cells. Data-
base of protein–protein interactions (PPIs) increasingly relies on
techniques including yeast two-hybrid screening, co-
immunoprecipitation and so on. These techniques have identified
many interactions between proteins that are membrane or
secreted/displayed extracellularly to mediate intercellular commu-
nication [1,3]. Mapping these L-R interactions can help us to under-
stand intercellular communication.

The increasing amount of single-cell RNA sequencing (scRNA-
seq) further reinforces us to identify and characterize rare cell
types within complex tissues which are limited in traditional tech-
niques, and help in understanding their highly specialized func-
tions [4–7]. scRNA-seq can not only easily discover the hidden
cell types and effectively measure their function, but also be used
to infer potential interactions between two cell populations by
mapping L-R interactions [6,7]. In contrast to just focusing on the
diseases, elucidating dynamic transcriptomic changes of cell com-
positions and cell interactions during the development of disease
can decipher mediator genes in each stage which are inevitable
in discovering how molecular processes underlie disease. Recent
studies tried to capture continuous molecular processes over time,
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which are important for understanding disease or tissue develop-
ment [8–11]. But a single map of cell–cell interactions can’t pro-
vide a global picture of the dynamic interaction changes during
development. Overall, with the exponential growth of studies
focusing on the development of tissue or disease, the computa-
tional methods that decipher the dynamic interaction changes
are lacking.

Recent studies used novel methods to infer potential interac-
tions between two cell populations by mapping L-R interactions
from scRNA-seq data [1,12–17]. There are four main types of meth-
ods. The first one infers interactions by a hypothetical test based on
random cell-type label permutation. Only the interaction pairs that
pass a certain threshold for expression level in respective cell pop-
ulations are selected for the downstream analysis [12]. The second
one identifies connections by calculating the product of receptor
and ligand expression in the corresponding cell types and used a
one-sided Wilcoxon rank-sum test to estimate the statistical sig-
nificance of each interaction [13,14]. The third one constructs
interactions between cell populations by identifying significantly
co-expressed ligand and receptor genes. The fourth one infers com-
munications based on a tensor decomposition algorithm [15]. Nev-
ertheless, compared with these published methods, there are still
many problems to be solved. First, given the different expression
profiles of membrane or secreted ligand and membrane receptor
interactions, published methods cannot distinguish these two con-
ditions. Second, published methods construct the cell–cell commu-
nications based on the expression of L-R genes in a stationary
condition, without deciphering the communication changes during
the process of development at the temporal scales. Hence, it is nec-
essary to construct a novel computational method using develop-
mental series scRNA-seq data to infer cell–cell interactions,
which can not only filter false positive interactions but also iden-
tify key time points and mediatory interactions associated with
the process of development or aging.

In this study, we developed a new computational method ter-
med dsCellNet. We used known L-R pairs and public protein local-
ization information to generate a multi-species supported
membrane or secreted L-R database. Then, we constructed a more
robust interaction network, via respectively calculating the signif-
icance of membrane or secreted L-R genes. We chose dynamic time
warping (DTW) to calculate the correlation of those interactions to
highlight the importance of the developmental series information.
Finally, fuzzy clustering divided those candidate interactions into
several clusters, which help us identify the key time point and
the mediator cell types. Taken together, compared to the existing
approaches, dsCellNet elucidates the dynamic interactions during
the process of development and aging processes, which sheds light
on understanding mechanisms underlying brain development and
aging disorders.
2. Material and methods

2.1. Ligand-receptor interaction database

To expand upon the default L-R pair list, we incorporated pairs
from published methods including: Ramilowski et al., 2015 [1]
(2,557 pairs), CellPhoneDB [12], NATMI [13], and SingleCellSignalR
[14]. However, users can also provide their own custom L-R pair
list for further analysis.

The default L-R database is based on pairs between human/-
mouse ligands and receptors. To run dsCellNet on other organisms,
the homologs interacting pairs can be automatically inferred based
on the input gene data using homologene package (version 1.4.68).

To discriminate the secreted and plasma membrane ligand-
mediated signaling, we required GO Cellular Compartment annota-
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tion ‘‘extracellular region” (GO:0005576), ‘‘extracellular space”
(GO:0005615), ‘‘cell surface” (GO:0009986), and ‘‘plasma mem-
brane” (GO:0005886) for ligands and receptors [18]. And just keep-
ing those secreted or plasma membrane ligands and plasma
membrane receptors used for further analysis.

2.2. dsCellNet implementation

dsCellNet was implemented in R. It requires users to provide
three files: a gene expression file with columns corresponding to
cells and rows corresponding to genes, a cell type file with the
mapping between every single cell and its’ cell type, and a time
point file with mapping between every single cell and its’ time
point. Input file examples are provided in Fig. 1 and the package
documentation. For the gene expression file, users can just submit
a raw count matrix but can also submit the preprocessed count
matrix. The default data preprocessing includes: cells with less
than 5,000 detected reads were excluded; the total number of
reads in each single-cell was normalized by the total number of
reads and then rescaled by multiplying 1,000,000; genes were
retained with detected expression in more than 5 cells; cells with
less than 500 detected genes were excluded.

To infer cell–cell crosstalk between different cell types, we
firstly construct a communication network for each time point.
Given the different expression profiles of membrane or secreted
ligands and membrane receptor interactions, we construct the
communication network by firstly splitting the ligand-receptor
(L-R) genes into membrane-ligand, secreted-ligand and
membrane-receptor. Let W Ci ! Cj

� �
Lm : Rm be the weight of

membrane-ligands and membrane-receptors mediated interac-
tions between cell type i and cell type j. Let Ei;k be the expression
of L-R gene k in cell type i. Let Ej;k be the expression of gene k in cell
type j. Then the weight is defined as.

W Ci ! Cj
� �

Lm : Rm ¼ Mean Ei;k

� ��Mean Ej;k

� � ð1Þ
The weight of secreted-ligand and membrane-receptor medi-

ated interaction between cell type i and cell type k is defined as.

W Ci ! Cj
� �

Ls : Rm ¼ Sum Ei;k
� ��Mean Ej;k

� � ð2Þ
Finally, we calculated the p value of enrichment of the interac-

tions between two cell types based on random shuffling the cell
type labels 100 times. Only the significant interactions (p < 0.05)
were kept for constructing communication network. The direction
of each interaction is defined as from the cell type expressing the
ligand to the cell type expressing the receptor. The width of each
edge connecting two cell types represents the number of interac-
tions. The cell–cell communication network was visualized by
Cytoscape (version 3.7.1).

Then, to identify cell–cell interactions during development, we
calculated the correlation of those significant L-R genes’ develop-
mental series expression using DTW [19]. Let D(X, Y) be the mini-
mum DTW distance between time series X and Y. Let d£ðX; YÞ be
distance of the optimal alignment between time series X and Y.
So the minimum DTW distance is defined as.

D X;Yð Þ ¼ £mind£ X;Yð Þ ð3Þ
Compared with using common methods like Euclidean distance

to infer the correlation of developmental series expression
between ligand and receptor genes, DTW can be used to dynami-
cally compare them when the time indices between comparison
data points do not sync up perfectly which is very useful for
scRNA-seq data. As is well known, there is a vast proportion of
zeros in scRNA-seq data which may be one of the inherent noises
contributed to the lower correlation. So we used tseries package
(version 0.10–48) to infer the correlation of developmental series



Fig. 1. dsCellNet workflow. dsCellNet requires three files (a single-cell expression file, a cell type file and a time points file), then respectively infers significant L-R links
between cell types based on the subcellular localization of ligands and receptors, finally fuzzing clustering helps users to identify key time point, mediator cell types and key
L-R pairs.
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expression between ligand and receptor genes. Only L-R pairs sig-
nificantly correlated between two developmental series were kept
for constructing developmental cell–cell communication networks.

To visualize the feature pattern of developmental cell–cell
interactions, we performed fuzzy clustering [20,21] to maximize
the ligand or receptor genes’ developmental series expression
between cluster distances which can classify those retained genes
into different clusters using Mfuzz packages (version 2.50.0). Fuzzy
clustering is to compute membership values to minimize the
within-cluster distances and maximize the between-cluster dis-
tances. Let lij be the degree to which xj belongs to cluster ci. Let
ai is the center of cluster i. Let m 2 ½1;1� be the degree of fuzziness.
So the fuzzy clustering correlation [22] is defined as.
F U; að Þ ¼
Xn

j¼1

Xc

i¼1

lm
ij ðxj � aiÞ2 ð4Þ

Besides, in contrast to commonly used hard clustering such as
k-means clustering, fuzzy clustering has the advantage of obtain-
ing gradual membership values which allows us to find co-
expressed genes and more noise robustness. For this study, we
chose eight as the default cluster number. After filtering the mem-
bership values less than 0.6 and L-R genes clustered in different
clusters, we get the final clusters. Based on the retained genes’ fea-
ture pattern, we then obtain the expression trend during develop-
ment, so that we can find the key time point or genes.

To evaluate the role of each cell type in interaction networks,
we used incoming, outgoing and total edge numbers for each cell
type per time point. Incoming of one cell type counts the number
of L-R pairs sending from this cell type to other cell types. Outgoing
of one cell type estimates the number of L-R pairs receiving from
other cell types to this cell type. The total edge number of one cell
type counts the number of L-R pairs connecting this cell type with
other cell types.
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2.3. Data preparation

Different single-cell datasets were used to illustrate and bench-
mark dsCellNet. To demonstrate the efficacy in the inference of
cell–cell interactions using developmental series scRNA-seq data,
we downloaded scRNA-seq data over the entire period of cortico-
genesis (Gene Expression Omnibus (GEO): GSE153164 [10];
including embryonic day (E)10.5, E11.5, E12.5, E13.5, E14.5,
E17.5, E18.5, P1 and P4). Besides, to illustrate the advantage of
dsCellNet in identifying more confident cell–cell interactions, we
picked expression data of E15.5 single cells to compare the result
of different L-R expression calculations. In order to test the running
time, we subsample those cells into 2,000 to 10,000, each with
three replicates. Moreover, dsCellNet can also deal with two groups
of scRNA-seq data. To illustrate this, we used scRNA-seq data from
the human brain of late-stage Alzheimer’s disease and healthy con-
trol from GEO: GSE174367 [23].

2.4. Functional enrichment analysis

To analyze the function of L-R genes during development, we
carried out the gene ontology (GO) enrichment analysis using clus-
terProfiler (version 3.10.0).

3. Results

3.1. Overview of dsCellNet workflow

To trace the changes of cell–cell interactions during develop-
ment, we developed a new computational method termed dsCell-
Net. Users can provide their data files of gene expression, cell
type labels, and time point information to construct developmental
series cell–cell networks. Firstly, we collected known L-R pairs and
public protein localization information to make a multi-species
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supported membrane or secreted L-R database. Then, through
respectively calculating the significance of membrane or secreted
L-R genes, we constructed a more robust interaction network com-
pared to previous methods. Finally, DTW and fuzzy clustering
divided those candidate interactions into several clusters (Fig. 1).
So, based on dsCellNet method, users can not only infer interac-
tions but can also identify the key time point and the mediator cell
types in the progress of divergent biological processes.

3.2. Default ligand-receptor pair list

To respectively calculate the secreted or cell membrane ligand-
mediated signaling, we collected secreted and localized to the
membrane protein (Fig. 2A and 2B). We incorporated pairs from
published methods including Ramilowski et al., 2015 (2,557 pairs),
CellPhoneDB (1,396 pairs), NATMI (4,071 pairs), and SingleCellSig-
nalR (3,251 pairs) to expand the default L-R pair list (Fig. 2C). In
total, 5,744 interactions were kept for the default list of L-R pairs.
We annotated genes of the default list as selected subcellular local-
ization (secreted, plasma membrane). Additionally, users can also
provide their own custom L-R pair list for further analysis. To facil-
itate running dsCellNet on other species, the L-R pairs can be
inferred based on the default human/mouse homologs using
homologene package.

3.3. Impact of protein localizations in cell–cell interactions

To compare the performance of dsCellNet which respectively
predicts interactions according to protein localizations with other
published methods in inferring cell–cell interactions, we selected
the expression data of 11,670 single cells from E15.5 mouse
embryonic cerebral cortex to compare the results of cell–cell cross-
Fig. 2. dsCellNet database. (A) Subcellular localization of protein database in published m
Ligand Receptor database in published methods.
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talk. It seems that inferring significantly enriched L-R interactions
using the product of sum expression of L-R pairs captured the least
but the highest number of interactions which did not include inter-
actions between the least cell type, such as endothelial cells (ECs),
oligodendrocyte precursor cells (OPCs), and other cell types. Infer-
ring significantly enriched L-R interactions based on the product of
mean expression of L-R pairs can capture the most but the lowest
number of interactions. Significantly enriched L-R interactions pre-
dicted by dsCellNet which respectively predicts interactions
according to protein localizations captured more general interac-
tions which cover interactions among the least or most cell types
(Fig. 3A). The single-cell atlas of E15.5 mouse embryonic cerebral
cortex is composed of eight cell types with different proportions,
and shows an especially high percentage of projection neurons
(PNs) (59.89 %), especially low percentages of vascular and lep-
tomeningeal cells (VLMCs) (0.30 %), microglia (MG) (0.24 %), OPCs
(0.02 %) and ECs (0.01 %) (Fig. 3B).

All of those three methods can identify interactions between
PNs and VLMCs, MG and apical progenitors (APs). When we look
into the L-R genes in those interactions, the dsCellNet and other
methods based on the product of mean expression of L-R pairs
have quite similar performance in identification of the
membrane-ligand and membrane-receptor interactions, but
dsCellNet can capture more interactions between secreted-ligand
and membrane-receptor. Methods inferring significantly enriched
L-R interactions based on the product of sum expression of L-R
pairs tended to identify more interactions in PNs with the highest
proportion (Fig. 3C).
ethods. (B) Overlap of protein localization database using in dsCellNet. (C) Overlap of



Fig. 3. Significant cell–cell interactions in Di Bella et al. dataset (GSE153164). (A) L-R pairs were inferred by product of sum ligand expression level and sum receptor
expression level (left panel). L-R pairs were inferred by product of sum secreted ligand expression level or mean membrane ligand expression level and mean membrane
receptor expression level (middle panel). L-R pairs were inferred by product of mean ligand expression level and mean receptor expression level (right panel). Rows indicate
cells expressed ligands, columns indicate cells expressed receptors. Cell-cell interactions are labeled with the number of L-R pairs and also colored from white to orange. (B)
Pie chart showing cell type composition in E15.5. Colors indicate different cell types. (C) Overview of the L-R pairs among chosen cell types (PNs, MG and VLMC). Rows
represent L-R pairs, columns indicate cells expressed ligands to cells expressed receptors. Right color bars indicate ligand protein localizations.
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3.4. Prediction of cell–cell interactions compared with other
approaches

In order to test running time of dsCellNet and other published
methods (NATMI, CellPhoneDB, SingleCellSignalR) with default
parameters, we randomly subsampled single cells of E15.5 mouse
embryonic cerebral cortex into 2,000, 4,000, 6,000, 8,000, 10,000
cells each with three replicates (Supplementary Fig. 1). All meth-
ods were conducted on a personal computer equipped with Intel�

Xeon� Gold 5218 CPU @ 2.30 GHz, 125G memory and 101G swap
memory. We found SingleCellSignalR and CellPhoneDB tend to
take a significantly longer time to finish compared with NATMI
and dsCellNet dealing with the same single cells (Wilcoxon test,
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p less than 0.01; Supplementary Fig. 1). SingleCellSignalR takes
up to 2 � 3 h to finish for samples with 10,000 single cells. Among
the top two performing methods, NATMI takes the least time to
finish. But dsCellNet only requires 12 min for 10,000 single cells,
this makes it an acceptable choice for constructing developmental
series cell–cell interactions (Supplementary Fig. 1). It should be
noted that we also used dsCellNet to deal with up to 98,047
single-cells in this study.

We next compared our results with those obtained by other
published methods (NATMI, CellPhoneDB, SingleCellSignalR) using
expression data of single cells from E15.5 mammalian cerebral cor-
tex (Supplementary Fig. 2). dsCellNet, CellPhoneDB, and NATMI
can capture the interactions among eight cell types, while Sin-
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gleCellSignalR can only capture interactions among six cell types.
SingleCellSignalR ignored the interactions between ECs and other
cell types which seem to be important in other three methods.
Moreover, SingleCellSignalR cannot distinguish the autocrine
interactions with the default parameters. The interactions inferred
by dsCellNet and NATMI were quite similar. By comparing the per-
formance of dsCellNet and other existing approaches, each
approach generates a different view of cell–cell communication
networks, users need to consider these differences when interpret-
ing their communication networks. The general characteristics of
dsCellNet and other tools are shown in Table 1.

3.5. Application of dsCellNet to developmental series single-cell RNA-
seq dataset

The cell type composition during the entire period of corticoge-
nesis trends to have four different stages: E10.5-E12.5; E12.5-
E14.5; E14.5-E17.5; E17.5-P4, which is corresponding to the four
developmental stages (symmetrically dividing neuroepithelial
cells, birth date of the deep layer 6 and 5 excitatory neurons, the
birth date of the superficial layer 4 and 2/3 excitatory neurons
and gliogenesis) (Fig. 4A). We used expression, cell types and time
point information to infer cell–cell interaction network (Supple-
mentary Fig. 3A; Supplementary Table 1). The incoming (Fig. 4B)
and outgoing (Fig. 4C) numbers show that the APs are the most-
communicating cell type in the early stage (E10.5-E12.5), while
IPs are the most-communicating cell type in the middle stage
(E12.5-E17.5). ECs, OPCs, astrocytes (ASCs), and PNs interacted
with other cell types in the later stages (E18.5-P4).

The expression changes of L-R pairs were clustered into eight
distinct clusters using Mfuzz packages [21] (Supplementary
Fig. 3B; Supplementary Table 1). Among those, cluster 1 represents
L-R pairs that are highly expressed in E12.5, clusters 4, 5 and 6 rep-
resent L-R pairs that are highly expressed in the middle stage,
whereas clusters 2, 3, 7 and 8 represent L-R pairs that are highly
expressed in the later stage. We selected genes of cluster 1
(E12.5; 564 genes), cluster 4 (E15.5; 407 genes) and cluster 5
(E17.5; 306 genes) which are highly expressed in the early, middle
and later stages to identify their interactions, respectively (Fig. 4D).
The overall interactions are quantified in Fig. 4E, which shows APs
sending most of the signals in cluster 1, intermediate progenitors
(IPs) sending most of the signals in cluster 4, no cell types show
dominated control in cluster 5. Functional enrichment analysis
showed that interactions of cluster 1 significantly enriched for
functions related to stem cell proliferation, stem cell division,
and stem cell population maintenance (Fig. 4F), indicating those
interactions may be involved in regulating the pluripotency of
stem cell functions at E12.5. The overlapped functions between
cluster 1 and cluster 5 mostly involved in axonogenesis, neuron
projection guidance, and calcium ion homeostasis etc. (Fig. 4G).
Interactions of cluster 5 significantly enriched in synapse matura-
tion and cell polarity maintenance etc. (Fig. 4H).

3.6. Application of dsCellNet to two single-cell RNA-seq datasets

dsCellNet is not only restricted to construction of developmen-
tal series cell–cell interactions, but can also be applied to deal with
Table 1
Comparison of tools for measuring cell–cell communication.

Tool Method Multiple species Language

CellPhoneDB simulated p value No Python
SingleCellSignalR regularized product Yes R
NATMI cell specificity weight Yes Python
dsCellNet regularized product Yes R
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network comparison between two groups. To illustrate this, we
used scRNA-seq data from human brains of six late-stage Alzhei-
mer’s disease patients and six healthy controls to infer cell–cell
interaction network (Supplementary Fig. 4A and 4B; Supplemen-
tary Table 2). Interestingly, we found that compared with interac-
tions of healthy individuals, same interactions with significantly
higher frequency occurrence among the late-stage Alzheimer’s
individuals (Supplementary Fig. 4C).

The incoming and outgoing numbers show that each cell type
has a relatively similar pattern in sending or receiving signals
between healthy controls and Alzheimer’s disease patients (Sup-
plementary Fig. 4D and 4E). Through network extraction, we have
identified common interactions in healthy controls, Alzheimer’s
disease patients, increased or decreased in Alzheimer’s brains com-
pared to healthy controls (Fig. 5A; Supplementary Table 2). To gain
insight into the potential function of those interactions increased
in Alzheimer’s brains, the GO enrichment demonstrates MG and
ASCs are the primary immune cells that contribute to neuroinflam-
mation which involves cytokine production and glutamate secre-
tion in Alzheimer’s disease (Fig. 5B). Moreover, ASCs induce the
function of synapse in OPCs (Fig. 5B). To assess the potential func-
tion of interactions decreased in Alzheimer’s brains, we found
decreased anti-inflammatory cytokines such as IL8, IL18 are
secreted or produced and phagocytosis in MG (Fig. 5C). Consistent
with previous studies, functions of ECs are related to the regulation
of blood flow in healthy individuals are impaired in AD patients
(Fig. 5C). More interestingly, we identified some important recep-
tor genes upregulated such as NRP1, CX3CR1, TLR1 and TLR2 in
MG of Alzheimer’s brains, indicating the activation of MG in Alz-
heimer’s disease.
4. Discussion

Here, we present dsCellNet, a tool to infer cell–cell interaction
networks using developmental series RNA-seq data. First, we
demonstrate the workflow of the dsCellNet and compare the effect
of dsCellNet which respectively predicts interactions according to
protein localizations with other published methods. We found that
inferring significantly enriched L-R interactions using the product
of sum expression of L-R pairs captured the least but the highest
interactions (Fig. 3A). Furthermore, it cannot identify interactions
in the least cell type such as ECs and OPCs. Inferring significantly
enriched L-R interactions based on the product of mean expression
of L-R pairs identified the most but the lowest interactions
(Fig. 3A). Second, methods inferring significantly enriched L-R
interactions based on the product of mean expression of L-R pairs
and dsCellNet didn’t show a bias on the proportion of cell types. So
we recommend using dsCellNet or methods inferring significantly
enriched L-R interactions based on the product of mean expression
of L-R pairs to infer cell–cell communications when dealing with
the rare cell proportion.

To help identify the different L-R genes in those interactions, we
just focus on three interactions including PNs-VLMCs, PNs-MG, and
PNs-PNs, which include the highest cell proportion and two lower
cell proportions [10,24] at E15.5. dsCellNet and methods based on
the product of mean expression of L-R pairs have quite similar per-
Direction Network compare LR database size Time-series data

No No 1,396 No
Yes No 3,251 No
Yes Yes 4,071 No
Yes Yes 5,684 Yes



Fig. 4. Changing trend of cell–cell interactions in the developing cortex. (A) Flow diagram displaying changing trend of the proportion of each cell types across the entire
period of corticogenesis. (B) Heatmap view of the number of L-R pairs directed to each cell type. (C) Heatmap view of the number of L-R pairs released from each cell type.
Row indicates each cell type, column indicates each time point. (D) Line chart showing the expression changes of Cluster 1 (upper panel), Cluster 4 (middle panel) and Cluster
5 (lower panel) along the corticogenesis stage. (E) Network-graph view of Cluster 1 (upper left panel), Cluster 4 (middle left panel) and Cluster 5 (lower left panel). Arrows
indicate target cell type and thickness is the number of L-R pairs between the two cell types (the number range from 1 to 240, edge range from 0.3 to 6). Stacked histogram
showing cell type composition in ligand or receptor of Cluster 1 (upper right panel), Cluster 4 (middle right panel), and Cluster 5 (lower right panel). Representative gene
ontology (GO) terms enriched in L-R pairs of Cluster 1 (F), common in Cluster 1 and Cluster 5 (G), and Cluster 5 (H).
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formance in membrane-ligand and membrane-receptor, but
dsCellNet can infer more interactions in secreted-ligand and
membrane-receptor (Fig. 3C). As expected, methods inferring sig-
nificantly enriched receptor-ligand interactions based on the pro-
duct of sum expression of L-R pairs have a bias on cell
proportion. Hence, dsCellNet can be used to deal with inferring
more robust cell–cell interactions.

For the first time, we used developmental series scRNAseq data
which contains the entire period of corticogenesis (GSE153164) to
discuss the changes of L-R interactions during brain development.
Except for cell type composition, the incoming and outgoing edge
number of L-R interactions were successfully captured in the early,
middle and later stages of corticogenesis, respectively [10]. To
identify the L-R pairs in those important stages, L-R pairs highly
expressed in early, middle and later stages were obtained through
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fuzzy clustering. We can capture that APs sending most the signals
in cluster 1 which coordinates with mainly APs had interactions
with other cell types in early stage through incoming or outgoing
signals. L-R genes of cluster 1 significantly enriched in regulating
pluripotency of stem cell functions, which coordinates with the
results that APs in E12.5 encode cues for neurogenesis [25]. IPs
send most of the signals in cluster 4, which is consistent with
mainly IPs interacted with other cell types in the middle stage
through incoming or outgoing signals. No cell types show domi-
nated control in cluster 5, also corresponding to the results using
incoming or outgoing signals. Interactions of cluster 5 significantly
enriched in maintenance of cell polarity, which correspond to the
neuronal migration at E17.5 [26].

In addition, dsCellNet can also be used to identify changes in
cell-to-cell communication by comparing networks using paired



Fig. 5. Cell-cell interactions in the human brain with late-stage Alzheimer’s disease and healthy control. (A) Network-graph view of common interactions in healthy control
(Control), common interactions in Alzheimer’s disease (AD), increased interactions in Alzheimer’s disease (Increased) and decreased interactions in Alzheimer’s disease
(Decreased). Arrows indicate target cell type and thickness is the number of L-R pairs between the two cell types (the number range from 1 to 8, edge range from 0.68 to 4.02).
Colors represent confidence level (the number of individuals in which each interaction significantly detected). (B) The enriched gene ontology terms of increased interactions
in Alzheimer’s disease (left panel). Summary of functions of cell–cell interactions (at least found in 3 individuals; right panel). (C) The enriched gene ontology terms of
decreased interactions in Alzheimer’s disease (left panel). Summary of functions of cell–cell interactions (at least found in 3 individuals; right panel).

Z. Song, T. Wang, Y. Wu et al. Computational and Structural Biotechnology Journal 20 (2022) 4072–4081

4079



Z. Song, T. Wang, Y. Wu et al. Computational and Structural Biotechnology Journal 20 (2022) 4072–4081
samples. Interactions were inferred by using scRNA-seq data from
human brains of late-stage Alzheimer’s disease patients and
healthy controls. Compared with healthy individuals, same inter-
actions with higher frequency occurrence among late-stage Alzhei-
mer’s disease patients, which indicates Alzheimer’s disease has a
general effect on patients. Through network extracting, we found
that MG and ASCs are the primary immune cells that contribute
to neuroinflammation in Alzheimer’s disease. Anti-inflammatory
cytokines such as IL8 and IL18 of Interleukin-1 (IL-1) family are
secreted or produced in MG, which could contribute to neuroin-
flammation [27]. Hence, neuroinflammation may play an impor-
tant role in the neurodegeneration process. While in healthy
individuals, the regulation of cytokine production could prevent
excessive neuroinflammation in healthy individuals. The opposite
function of MG in late-stage Alzheimer’s disease patients or
healthy individuals further suggests and confirms the pivotal roles
of MG activation and polarization during the pathology of Alzhei-
mer’s disease. Receptor genes such as NRP1, CX3CR1, and TLR1/2
were found increased in MG of Alzheimer’s brains compared with
healthy controls. TLR1 and TLR 2 belong to Toll-like receptor (TLR)
family that activates and mediates pro-inflammatory responses in
innate immune cells. Nrp1 expresses on ameboid and activated
microglia [28], once manipulation of Nrp1 in microglia can alter
the immune polarization of microglia and the adaptive immune
response [29]. Cx3cl1-Cx3cr1 interactions temper microglial
response polarized to inflammatory stimuli [30]. We actually iden-
tified the interaction between MG and Neurons in each AD patient
(Supplementary Fig. 4B). But when we look into the same interac-
tions in control or AD patients, we can’t found the MG–Neurons
interactions (Fig. 5A). This maybe owing to the limitation that
the size of default L-R genes, users can support their L-R genes as
supplementary. This also might the different ligand and receptor
genes mediated interaction between them, which implies the
immensely complex mechanisms among AD patients.

In sum, dsCellNet is a new computational tool to facilitate the
analysis of cell-to-cell communication networks based on develop-
mental series or paired scRNAseq data. Note that dsCellNet is not
restricted to developmental series or paired scRNAseq data analy-
sis, but can also apply to developmental series bulk RNA-seq data
or proteomic data. The advantage of dsCellNet using single-cell
data for building these networks is that inferring more robust
interactions in secreted-ligand and membrane-receptor and rare
cell proportion. Thus the cell–cell connection network for develop-
mental series expression data will help users to highlight the key
time points and the mediator cell types that are driving these
interactions.
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