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Abstract: Scripting programming languages provide the fastest means of prototyping complex
functionality. Those with a syntax and grammar resembling human language also greatly enhance the
maintainability of the produced source code. Furthermore, the combination of a powerful, machine-
independent scripting language with binary libraries tailored for each computer architecture allows
programs to break free from the tight boundaries of efficiency traditionally associated with scripts. In
the present work, we describe how an efficient C11 crystallographic library such as Clipper can be
wrapped, adapted and generalized for use in both crystallographic and electron cryo-microscopy
applications, scripted with the Python language. We shall also place an emphasis on best practices in
automation, illustrating how this can be achieved with this new Python module.
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Introduction

The excitement that accompanies the interpretation

of a new macromolecular structure is, at many levels,

a well-earned compensation for a prologue plagued

with iterative, repetitive work: first the biochemical

challenges (grow cells, purify, and try to crystallize a

protein, sometimes for months or even years)—and

then the structural ones (collect data, obtain electron

density maps, build models, refine, and validate). At

the latter stage, automation can offer two main func-

tions. First, it can perform many uncomplicated tasks

systematically and swiftly, and report success or fail-

ure clearly. An example is brute—force testing of

many models for molecular replacement, then report-

ing R factors after preliminary refinement. Success is

indicated by finding one trial that stands out as

“better” from a cluster of other results. We will call

these cases exhaustive solutions.

Second, decisions can be made to supplement the

user’s lack of expertise. Examples are: selecting the

space group for a data set, choosing the resolution cut-

off for the experiment, choosing a hand after substruc-

ture detection based on how much of the structure can

be built automatically, then proceeding to further model

building. We will refer to these as expert solutions.

In certain scenarios, automation is more of a need

than a commodity. Data acquisition in synchrotrons

and XFEL facilities is nowadays so fast that user inter-

vention in the processing and presentation of these

data is neither required nor wanted, as this would

slow the process down unnecessarily. Electron cryo-

microscopy (cryoEM) users may see that the third

generation of direct-electron detectors will correct

beam-induced particle drift transparently (done using

GPGPU methods, General Purpose computing on

Graphics Processing Units). Crystallographers at syn-

chrotrons may be presented with datasets fully proc-

essed with the different algorithms embedded in state-

of-the-art software packages,1–3 together with relevant

statistical quality indicators to inform the best choice

of data for further analysis4,5. Indeed crystallographic

methods are now so mature that these data can now be

fed into down-line procedures such as phasing,6 selec-

tion of molecular replacement solutions followed by

refinement,7,8 or even preliminary model building9. It

is quite possible that the user’s involvement may begin

with interpretation of features in a difference map.

The structure solution tools can also access

excellent bioinformatics packages,10–12 which pro-

vide valuable supplementary information; for exam-

ple, to select likely models, monomers, oligomers or

domains to use as molecular replacement templates,

to pinpoint likely N-glycosylation sites, or to provide

a high resolution structure that best fits into a

moderate-resolution cryoEM reconstruction.

Finally, linking these tools with validation and

analysis software can allow self-assessment capabilities,

with expert scripts able to test their own hypotheses—

for example, is the result satisfactory, as indicated by a

simple statistic such as a low R-factor or a high correla-

tion coefficient for a sub-structure solution.

Advances in scripting languages, both in terms of

efficiency (byte code vs. fully interpreted code) and

semantics (readable high level languages such as

Python), have opened the door to new ways of automa-

tion. Modules such as lxml (for eXtensible Markup

Language [XML] data) and json (for JavaScript Object

Notation [JSON] object definitions) guarantee interop-

erability between different programs at the data

exchange level. Furthermore, the integration of fully-

featured database systems such as SQLite into stan-

dard distributions of the Python language have also

enabled the production of persistent pipelines: software

pieces—either in binary form or as callable modules—

glued together in such a way that data, state, results

and all the decisions made are available to down-

stream, connected processes, offering the possibility of

revising the whole process years later and by different

people.

The development of pipelines within the Collab-

orative Computational Project No4 (CCP413) and the

Collaborative Computational Project for Electron

cryo-Microscopy (CCP-EM14) has, at least until now,

been limited by the wider availability of program

libraries in compiled, machine-dependent code. Aside

from Coot,15 which is fully callable from both Python

and Scheme languages, few other programs have

offered scripting interfaces. However, the situation

is rapidly changing. Recently, CCP-EM has included

the mrcfile library—a pure Python module for

reading and writing MRC files—enabling developers

to produce standard-compliant map files in that for-

mat14. The introduction of the CCP4i2 interface,

fully written in Python,18 has provided bespoke-

wrapped versions of many CCP4 programs, includ-

ing Aimless,16 Buccaneer17 and Refmac518. Although

this opened up interesting possibilities for automa-

tion, there was still a major gap to be addressed

within CCP4, which is the lack of a Python toolkit

that links basic crystallographic operations to sup-

port the creation of novel scripted methods. The well

documented, efficient Clipper C11 library19 pro-

vides precisely the required functionality.

Here, we show how a major pre-existing C11

library such as Clipper can be conveniently wrapped

with Python applications. Although the proposed

method is not the only one available, it is the most

convenient one when a pre-existing C or C11

library is available.

Wrapping a C11 Library for Use with

Scripting Languages

For reasons of computational efficiency, most crystal-

lographic libraries have been originally designed and

implemented in compiled languages such as C and

208 PROTEINSCIENCE.ORG Automating Tasks in Protein Structure Determination



C11, but thanks to the wide availability of wrapper

interface generators it is now possible to access them

from scripting languages. Some popular interface

generators are Simplified Wrapper Interface Genera-

tor (SWIG), Boost.Python and SIP. SWIG and Boost.-

Python are routinely used within crystallographic

software suites.

Originally conceived to provide generic scripting

capabilities, SWIG is able to translate classes, types

and function calls, requiring only a textual interface

definition from the developer. This interface file (see

Fig. ,1 file “clipper.i”) can be reused to generate

wrappers for other scripting languages, with little to

no modification. From Python’s perspective, some

noticeable differences with the original C11 code

include the use of a single namespace as opposed to

multiple, nested ones in C11, and lack of support

for templates. SWIG is widely used in the structural

biology community, with programs such as Coot,15

CCP4mg,20 Privateer,21 CCP-EM,14 and Modeller22

offering scripting capabilities through a wrapper

interface generated with this software.

Boost.Python offers powerful bi-directional

interfacing capabilities between Python and C11,

requiring only a C11 compiler and the Boost distri-

bution to work. Boost.Python is most notably used

within the crystallographic community as the main

interfacing mechanism within the PHENIX project23

and the cctbx toolkit,24 allowing for the proportion

of algorithms written in Python to rise up to 60% of

the total distributed cctbx code without compromis-

ing interoperability (http://cctbx.sourceforge.net/cur-

rent/tour.html).

Looking to the future, C11/Python bindings

may be greatly simplified by taking advantage of

C1111-specific compilers. This allows lightweight

bindings to be generated using pybind11 (https://

github.com/pybind/pybind11), minimizing the need

for extensive boilerplate code.

A real world example: the clipper_python

module

The Clipper C11 library,19 developed at the University

of York and cornerstone to many different developments

within the CCP4 suite (Buccaneer,17 Coot,15 Privateer,21

Aimless,16 and Blend25 among others), has been

wrapped in the Python language using SWIG and made

available with the standard CCP4 and CCP-EM distri-

butions, among others (please refer to the Availability

section). The SWIG package was chosen in order to min-

imize issues with binary distribution in CCP4, as there

are already a number of CCP4 programs that expose a

Python scripting layer through SWIG, and the suite

also maintains compatibility with pre-C1111 sys-

tems—for example, Mac OS X 10.6. In the near future,

the module will be made available through the Python

Package Index under the name clipper_python. The

clipper_ python module is also now at the core of the

CCP4 suite’s new, Python-based graphical interface

(CCP4i2,26), and is being adapted in a joint collaboration

between CCP4 and the CCP-EM consortiums to hold big

data structures such as the ones required by electron

cryo-microscopy. Clipper provides methods and classes

that support all stages of the macromolecular structure

determination process after data reduction, that is, it

does not offer data structures for holding unmerged

reflection data. Many of the most common tasks are

implemented in optimized method-classes, for example,

calculation of structure factors with bulk solvent correc-

tion or computing rA-weighted map coefficients.

In terms of design, the Clipper C11 library follows

a number of guidelines that ease the many potential

obstacles a C11 beginner programmer might encoun-

ter. These are, among others: support for either float or

double, use of namespaces to avoid naming conflicts,

avoidance of pointers in public APIs, the use of generic

Standard Template Library (STL) containers instead of

manually allocating and freeing memory, parameters

Figure 1. Overview of the files and commands involved in the generation of the Python interface. The build system chosen for

this project is cmake, as it is well integrated with both CCP4 and CCP-EM build pipelines. The only machine-dependent files

(highlighted in yellow) are Clipper’s pre-existing shared objects (.so) and the new shared object generated by SWIG as a com-

panion to the Python interface. Both files (clipper.py and _clipper.so) are required for the module to work, and are distributed

as part of CCP4 and CCP-EM.
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which are passed by reference, and strict use of const.

While all these guidelines make sense in a C11 context,

their translation into a scripting language such as

Python is not possible, as there are no pointers, tem-

plates are not supported, parameters are passed by

assignment, and there is no notion of const.

Fortunately, SWIG provides many mechanisms

tailored to dealing with these translation issues:

instances of templatized data structures can be

created—for example, name an xmap_float Python

type for a clipper::xmap<float> C11 type - to

create a finite number of derived types. Also, as

namespaces are flattened upon conversion, a %rename

command is provided in order to resolve conflicts.

Adapting Clipper’s C11 data structures to be

accessed in Python’s more natural way required extend-

ing the original classes with special accessor and modifier

operations. For instance, __getitem__(index) and

__setitem__(index, value) functions were imple-

mented for most array classes under the %extend direc-

tive. Standard C11 list containers (std::vector<> in

C11) are detected and automatically decorated with

Python-style functions by SWIG, making it possible to

iterate over these list components in a manner familiar to

the Python programmer. This is suitable for smaller lists

(e.g., a list containing atomic contacts), but not for longer

and unfortunately more common components (e.g., reflec-

tion lists or a succession of grid points in a map), where

iterating over the elements would be too time-consuming.

Therefore, a decision was made to interface the bigger

data containers to NumPy,27 which in addition to speed-

ing most operations up and providing a wealth of opti-

mized numerical functions, will also open the door to

offloading certain calculations to GPU processors seam-

lessly in the near future28.

The need to carefully wrap data structures for

fast and Pythonic access and modification extends to

simpler data types as well. As an example, existing

get and set functions for coordinates contained in the

Coord_grid object appear in the C11 library as:

and similar for the v and w grid coordinates. While

excellent C11 style, this presents a dual problem

for wrapping in Python: (1) the identical naming of

the get and set functions creates a naming conflict

in SWIG; and (2): access from Python would require

three (slow) Python function calls for every (u,v,w).

These have therefore been renamed to hidden func-

tions using the %rename directive, and replaced

with Python-friendly properties. Constructors and

common mathematical functions have also been

defined, allowing calls such as the following (where

uvw is any Python iterable of three ints):

Note that the latter method is only valid when

the Coord_grid object is on the left hand side of

the equation. Implementation of getter/setter func-

tions as properties has been implemented for most

classes exposed to Python.

As an example of accessing Clipper’s data

structures in a Pythonic way, consider the following

code, which reads a clipper.MiniMol structure

(Fig. 2):

import clipper_python as clipper

f5clipper.MMDBfile()

f.read_file (“test.pdb”)

mmol5clipper.MiniMol ()

f.import_minimol (mmol)

for polymer in mmol.model ():

for monomer in polymer:

for atom in monomer:

print atom

Figure 2. Structure and functions within clipper.MiniMol. The

original C11 implementation of MiniMol makes use of STL

vectors, which can contain MModel, MPolymer, MMonomer

or MAtom. These have been extended to allow for natural

Pythonic access (see example in the main text).

inline const int& u() const {return (*this) [0];}//!< get u

inline int& u() {return (*this)[0];}//!< set u

import clipper_python as clipper

uvw5[1, 2, 3]

this_coord5clipper.Coord_grid(uvw)

grid_vals5this_coord.uvw # returns a NumPy array of 3 ints

this_coord.uvw5uvw

new_coord5this_coord1[1,2,3] # returns a new Coord_grid object
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This example shows that MModel, MPolymer
and MMonomer are now iterable objects, while MAtom
has been extended to include a __str__() function
that collates the atom’s ID with the output of
MAtom.format() for convenience.

Similarly, a reflection list can be exported into

NumPy and its amplitudes squared for the calcula-

tion of a Patterson function29:

A companion module (clipper_tools) is being

distributed with CCP4 and CCP-EM alongside the

clipper_python module, providing a growing set

of pluggable components for automating the most

common tasks in both X-ray crystallography and

cryoEM. These offer logging capabilities and create

results in XML. As a further example, the ‘Analyse

model geometry’ task in CCP4i226 is the first pro-

gram within this interface to take full advantage of

the clipper_python module.

Integration with pre-existing packages
Pre-existing structural biology packages (in particu-

lar those involved in molecular visualization) will

already have their own data structures and meth-

ods for handling atomic coordinates, transforma-

tions etc., but may be enhanced by the use of the

clipper_python module to provide handling of

map coefficients and crystallographic symmetry.

Thus, it is particularly vital that fast Pythonic

methods are provided for the most common func-

tions: interconversion of atomic coordinates

between Clipper and host data structures; export of

local map regions (e.g., to provide a live “box” of

density that moves as the user pans through a

structure); lookup of the necessary symmetry oper-

ators to pack a given region in space with copies of

the atomic model; retrieval of the affine transfor-

mation matrices corresponding to a given set of

symmetry operators.

Interconversion of atomic coordinates. The

Atom_list class in Clipper is a simple wrapping of

std::vector<clipper::Atom>. While this is a

useful and efficient structure in C11, a straightfor-

ward wrapping into Python would require extensive

use of (slow) Python loops for initialization and set-

ting/accessing atom properties. Substantial exten-

sions have therefore been added to this class to

provide the necessary fast array functions, for

example:

Export of local map regions. The Xmap

and NXmap classes have been extended with fast

functions to export map fragments to NumPy

arrays. These class types differ in that the

NXmap non-crystallographic map class stores a

map of arbitrary data type that is finite in

extent and has no symmetry, whereas Xmap is

specific to crystallographic maps, and contains

the symmetry information required to appear

infinite.

Options are provided to encompass most data

organization strategies:

numpy_data5hkl_data.export_numpy() # export NumPy array from HKL_data_F_Phi

numpy_data [:,1]50 # set phases to zero

numpy_data [:,0]5numpy_data [:,0]**2 # square the amplitudes

atoms5Atom_list(elements, coords, occupancies, u_isos, u_anisos,allow_ unknown_

atoms5False)

current_coords5atoms.coords # Returns a nx3 NumPy array

atoms.coords5new_coords # Takes any valid nx3 array of floats

atoms.u_anisos5u_anisos # Takes a nx6 NumPy array. For atoms with

# purely isotropic B-factors, fill their

# row with isotropic values.

# Creates and fills a NumPy array encompassing all grid coordinates

# between start_coord_grid and end_ coord_grid, in C-style row-major

# order and with the x axis first.

map_box5xmap.export_section_numpy(start_coord_grid, end_coord_grid,

order5’C’, rot5’xyz’)

# Re-fills the existing NumPy array defined by map_box with data

# starting at start_coord_grid, in Fortran-style column-major

# order and with the Z axis first.

export_section_numpy(start_coord_grid, target5map_box, order5’F’, rot5’zyx’)
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Note that the export_section_numpy methods

export data on the same axes and with the same

spacing as the data stored in Clipper (i.e., the

crystallographic axes in the case of an Xmap). If data is

required on strictly Cartesian axes this can be

achieved using export_interpolated_box_numpy(),

but this of course involves a large performance penalty.

Lookup of symmetry operations. A very

common requirement when working with crystallo-

graphic data is to expand a model to include its

symmetry neighbours, or to pack a given volume

in space with symmetry-equivalent molecules. This

is another task that involves large loops which

would become prohibitively slow if implemented in

Python using directly-wrapped Clipper functions.

We have therefore created a new Unit_Cell class

specific to the clipper_python module, such

that:

The chosen search algorithm trades off accuracy

for speed, erring on the side of inclusiveness. In

brief, a reference box is defined in grid coordinate

space as the smallest parallelepiped encompassing

the atomic model. The target volume is then

searched in steps of the shorter of (shortest refer-

ence box side length)/(sample frequency) or the step

to the next edge/face. For each search point, the

inverse symmetry operator(s) mapping the point

into the reference volume are determined. Finally,

the symmetry operators found are sorted and culled

to remove duplicates.

Retrieval of affine transformation matrices.

Each symmetry operator consists of a 3 3 3 rotation

matrix and a 3 3 1 translation vector. In order to aid

fast retrieval into Python we have added functions to

export these either individually or combined into a

single NumPy array. Additionally, we have created a

new Symops object (returned by the above Uni-

t_cell methods). Using the box_ops example above:

An example of a working Clipper plugin to an

existing visualization package (ChimeraX30) is

available on request from the authors, or by instal-

ling the most recent ChimeraX build (https://www.

rbvi.ucsf.edu/chimerax/download.html) and down-

loading the plugin via its Toolshed (Tools/More

Tools). Once installed, a crystal structure with live

scrolling of maps and live display of local symme-

try atoms can be instantiated by first loading the

PDB or mmCIF file into ChimeraX, then opening

the Python console (Tools/General/Shell) and

typing:

where maps.mtz contains at least one set of pre-

calculated map coefficients. Note that this plugin is

still in development and experimental.

Error handling

A danger when calling a C11 library from Python

is that any unhandled C11 exception will crash the

#reference_coord: an (x,y,z) coordinate, typically the centroid of

# the atomic model.

#atom_list: the Clipper Atom_list object holding the asymmetric

# unit

#cell, symmetry, spacegroup, grid_sampling: standard Clipper objects

uc5Unit_Cell(reference_coord, atom_list, cell, spacegroup, grid_sampling)

#all symmetry operators necessary to pack one unit cell starting

#from the model

symops5uc.symops

#all symops necessary to pack a given volumebox_

ops5uc.all_symops_in_box(origin_xyz, box_size_uvw, always_include_identity5

False, sample_frequency52)

# Returns a nx3x4 NumPy array providing all transformation matrices

# in the Symops object. The argument format5’4x4’ adds the row

# [0,0,0,1] to each matrix to create the full affine transformation

# matrix.

transforms5box_ops.all_matrices_orth

(cell, format5’3x4’)

from chimerax.clipper import CrystalStructure

m5session.models.list()[0]

cs5CrystalStructure(session, m, ’maps. mtz’)
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entire Python session. It is therefore very important

to ensure that all possible exceptions are converted

to Python objects to be handled by the calling code.

Within the clipper_python module, we have

chosen to map clipper::Message_fatal (C11) to

RuntimeError (Python), std::out_of_range to

IndexError, std::length_error and std::

invalid_argument to ValueError and any other

std::exception to UnknownError.

Testing and documentation

As the documentation for the Clipper C11 library

was originally produced using Doxygen (http://www.

doxygen.org), the optimal way of producing docu-

mentation for the clipper_python module would

involve channelling this information through the

Python help system. Fortunately, this can be accom-

plished with the doxy2swig script (https://github.

com/m7thon/doxy2swig), which can automatically

translate XML files—produced using a non-default

option in Doxygen—into SWIG interface files, which

can then be included in from the main interface file.

Tests are currently being written using Python’s

unittest system. The module is automatically

tested on a daily basis as part of the CCP-EM Jen-

kins CI system (https://jenkins.io).

A note on efficiency
As most of the computations are done in the original

binary library, the clipper_python module does not

exhibit the large performance penalty traditionally

found in pure Python programs. Moreover, its inter-

face to NumPy, itself a speed-optimized general pur-

pose numerical computing module, makes some tasks

efficient and very straightforward in Python. As an

example, a rough comparison is provided (Fig. 3) for

two tools of equivalent functionality, implemented in

C11 (Clipper) and Python (Clipper and NumPy).

The programs—cmapcut from CCP4 and cut_by_den-

sity.py from the clipper_tools companion module—

take a model and a map as input and output a map

(or map coefficients, with an optional B-factor correc-

tion for sharpening or blurring the transformed map).

The results suggest that, for smaller map sizes (blue

dots, plotted according to the colour bar on the right),

running times are only marginally shorter or longer

for either program, while bigger map sizes (light blue

or yellow dots) clearly favor the C11 alternative.

This may be due to the need to copy and relocate

very large arrays in memory in the Python version—

optimizations might be possible to alleviate this.

Automation Through Scripting
In a computing context, a pipeline is a collection of

programs arranged in a way that the output of each

program serves as input for the next one. As men-

tioned before, pipelines mainly serve two purposes:

combinatorial testing of options (exhaustive pipeline),

and performing all tasks within a well-defined pro-

cess in an informed way, making choices along the

way and reporting these at the end of the execution

(expert pipeline). In the field of crystallography, some

examples are MrBUMP10 (mainly exhaustive),

Balbes31 (exhaustive), Arcimboldo32 and Arcimboldo_-

lite12 (exhaustive and expert), PDB_REDO33 (expert)

and Crank29 (expert). For the cryoEM field, pipelines

in CCP-EM14 include Refmac18 (expert), DockEM34

(exhaustive) and Flex-EM35 (expert). It is also worthy

of mention that, although a popular cryoEM recon-

struction package such as Relion36 is not distributed

as a pipeline, it has recently introduced the graphical

creation of workflows, which closely resemble the

functionality of a pre-designed pipeline37.

Structure of a pipeline

The code flow within a pipeline will differ signifi-

cantly between the exhaustive and expert types.

While the former will essentially consist of a main

loop which will go through all the different possibili-

ties to be tested—opening the door to using parallel

job dispatchers such as GNU Parallel38—the latter

will typically be organized in sequential blocks of

code, tasks indeed, best organized in functions or

modules and representing the logic of the pipeline—

for example, auto-build a protein model, refine it

and only model waters if R-factor goes below 0.30.

It is important to decide how best to communi-

cate information between tasks. As certain scripting

Figure 3. Comparison of C11 and Python run times. The

run times of a map cutting tool written in C11 (cmapcut.cpp

from CCP4, using the Clipper library) VS a Python counter-

part (cut_by_density.py from the clipper_tools module, using

the clipper_python module and NumPy). The test dataset

was composed of 100 entries—map and fitted atomic

model—obtained from the Electron Microscopy Data Bank

(EMDB [19]) which were selected based on resolution—better

than 4.0 Å. The results (elapsed time, measured using the

time UNIX tool) were plotted with MatPlotLib [14], scaling

both axes by log10.
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languages such as Python offer the possibility of

returning multiple values, it is tempting to simply re-

use these variables as input for the next task; how-

ever, pipelines often run for much longer times than

interactive tasks, making interruptions an event to

consider. To this effect, persistent storage of interme-

diate results—that is, writing them to disk—provides

a way of continuing interrupted jobs. Basic crystallo-

graphic data structures—for example, maps, models

or reflections—can be dumped to disk in standardized

formats—CCP4/MRC map format, PDB file format or

MTZ file format respectively for the above exam-

ples—but writing other, non-standard results usually

requires the choice of a structured textual represen-

tation—for example, XML or JSON files, although a

popular toolkit such as cctbx provides a module for

handling its own file format (Python-based hierarchi-

cal Interchange Library), which deals with task

parameter communication.

The choice of standard for communication files

and data structures

The most popular available options, XML and JSON,

were originally created to answer different needs.

The XML was created as a flexible text format that

could serve as the basis for markup languages such

as HTML. Some examples of binary programs in the

macromolecular crystallographic environment capable

of XML output are Aimless,16 Privateer,21 and ARP/

wARP39. XML is a typically verbose way of represent-

ing results, with a requirement to write opening and

closing tags for each piece of representable data

instead of a one-off definition in the header, followed

by structured data. JSON is also a structured data

format, but it was designed for a different purpose: to

provide a human-readable way of transmitting data

objects. The JSON format allows for more compact

data strings, in a programming language-like struc-

ture. Both formats are flexible enough for represent-

ing textual data, and both have libraries available for

reading and writing results from major scripting lan-

guages. As real-world examples, both the Protein

Data Bank in Europe and CCP-EM represent their

structural data objects in JSON internally, while the

choice within CCP4i2 and clipper_tools has been

XML26.

As an example of a structured-data report in

XML:

The same report in JSON format would look

like this:

<program name5"cut_by_model" user5"jon" date5"Fri Feb 24 11:14:24 2017" ok5"yes">

<parameters mapin5"././unittests/test_data/emd_5148.mrc" pdbin5"././unittests/test_

data/emd_5148_3ktt.pdb" b_factor5"210.0" resolution5"2.5" mask_ radius5"2.5"/>

<input_file name5"././unittests/test_ data/emd_5148_3ktt.pdb" type5"PDB" ok5 "yes"/>

<input_file name5"././unittests/test_ data/emd_5148.mrc" type5"xmap" ok5"yes"/>

<output_file name5"mapout_cut_density. mtz" type5"mini MTZ" ok5"yes"/>

</program>

{

"program": {

"-name": "cut_by_model",

"-user": "jon",

"-date": "Fri Feb 24 11:14:24 2017",
"-ok": "yes",

"parameters": {

"-mapin": "././unittests/test_ data/emd_5148.mrc",

"-pdbin": "././unittests/test_ data/emd_5148_3ktt.pdb",

"-b_factor": "210.0",

"-resolution": "2.5",

"-mask_radius": "2.5"

},

"input_file": [

{

"-name": "././unittests/test_ data/emd_5148_3ktt.pdb",

"-type": "PDB",

"-ok": "yes"

},

{

"-name": "././unittests/test_ data/emd_5148.mrc",
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As automatic conversion between the two for-

mats is entirely possible in Python, choosing one over

the other is not likely to mark a point of no return.

A note on format interoperability: within clip-

per_python, it is possible to read and write most

universally used formats—for example, PDB,

mmCIF, MTZ, CCP4 maps. Other formats, such as

those composed using plain text, must be read and

converted using the Python language’s standard

facilities for reading and writing files.

Persistence

Although most persistence requirements can be ful-

filled simply by using structured results files, a popu-

lar option for indexing (and serving) results quickly

is using a database engine. Python incorporates a

module for accessing SQLite, which offers a complete

single-user database system that can be accessed

with great simplicity, and is efficient across many

configurations except perhaps those using network or

distributed file systems. Alternatively, Python pro-

vides bindings to MongoDB, a NoSQL alternative to

SQLite which uses JSON intermediates.

Results presentation

Python provides graphical facilities for the creation

of ad-hoc reports (https://wiki.python.org/moin/

NumericAndScientific/Plotting), with modules such

as MatPlotLib40 being a popular choice for graphs.

Within the CCP413 and CCP-EM14 suites, the

JSrview framework provides an excellent alternative

for real-time reporting in Python, as its pyrvapi

bindings provide function calls for the creation of

HTML5/Javascript reports. In addition to several

programs in the aforementioned suites, this package

is successfully being used by many pipelines hosted

by CCP4-online. If reports are not to be generated

using live calls to an API, they can also be created

by a separate module which should read intermedi-

ate results (XML or JSON files, for instance) and

produce a summary of the execution. This approach

is exemplified by the CCP4i2 report mechanism,26

which was specifically designed to cope with parsing

log files from legacy binary applications unable to be

updated to produce structured data formats.

Exhaustive pipelines require a streamlined pre-

sentation, as the potential sheer number of results

can impair the user’s decision-making process. Exam-

ples of this are Fragon41 or MrBUMP10. Expert pipe-

lines on the other hand should expose their decision

making process clearly, allowing the user to inspect

the choices and, potentially, making it easy to tweak

these in subsequent runs. This is particularly well

exemplified by the Crank-2 pipeline9.

Conclusions

In this work, we have demonstrated how an existing

C11 library can be adapted to work with a scripting

language such as Python. Moreover, its combination

with the NumPy module has provided a convenient

way around traditional Python speed bottlenecks.

Finally, the recent introduction of the CCP4i2 and

CCP-EM Python graphical interfaces coupled with the

wide availability of free complementary Python mod-

ules (e.g., databases, structured data formats, access

to various network protocols or code offloading to mas-

sively parallel architectures) will turn both CCP4 and

CCP-EM into fertile ground for automation.

Availability
The clipper_python module is free software and it

has been released under the terms of the GNU

Lesser Public Licence (LGPL v3). There are several

ways of obtaining it: through CCP4 or CCP-EM

(either as binary distributions or as source code), as

a ChimeraX plugin and, in the near future, as a reg-

ular Python package installable by issuing the pip

install clipper_python command. Also, sources

are available through GitHub (https://github.com/

clipper-python).
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