
© 2023 Journal of Medical Physics | Published by Wolters Kluwer - Medknow 129

Abstract

Original Article

IntroductIon

According to the World Health Organization, lung cancer is one 
of the most common types of cancer with the highest mortality 
rate. In general, nearly 80%–85% of all lung cancers present 
as non-small cell lung cancer (NSCLC), with the remaining 
being small cell lung cancers (SCLC).[1,2] SCLC is the more 
aggressive of the two and is more likely to migrate to other 
parts of the body. Treatments for lung cancer may include 
surgery, radiation therapy, and/or chemotherapy. Prior to 
radiation therapy for lung cancer, several steps are required, 
including imaging, treatment planning, quality assurance, and 
treatment verification. The tumor lesion is delineated prior to 
treatment planning to ensure that the intended dose conforms 

to the target volume with minimal exposure to surrounding 
healthy tissue. Delineation of organs at risk (OARs) and 
tumor volumes is a time-consuming process, in which the 
quality and accuracy of contours depend on the skill set of the 
observer.[3] Artificial intelligence (AI)-based autosegmentation 
models have been developed to overcome this limitation and 
to improve the consistency and efficiency of lung cancer 
treatment planning. AI-based autosegmentation models vastly 
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improve the reproducibility of delineations while reducing the 
time spent performing manual segmentation.[4]

Deep learning techniques have become increasingly popular in 
the medical field for developing algorithms that automatically 
detect abnormalities, classify medical images, segment 
organs, and detect abnormal masses.[5] Manual segmentation 
from medical images can be challenging for several reasons. 
The complex and irregular shape of lungs and their varying 
densities and textures make it difficult to accurately delineate 
the tumor boundary. Moreover, lung tumors are heterogeneous, 
and can have different characteristics within the same volume, 
which makes it challenging to distinguish the tumor from 
adjacent healthy tissues. The quality of medical images is also 
affected by acquisition techniques and parameters, resulting 
in low-resolution images with minimal contrast and artifacts. 
Furthermore, lung tumors are prone to movement due to 
breathing, and depending on their location in the thoracic 
cavity and breaths per minute, it can lead to artifacts on the 
scans and may also be subjected to deformation.

The accuracy of deep learning models is influenced by several 
parameters, including the optimizer, batch sizes, sample sizes, 
weights and biases, learning rates, and epochs. Optimizers 
are particularly important as they reduce losses and guide the 
model toward the global loss minimum. Multiple optimizers 
are available in deep learning, each with its own advantages 
and disadvantages. For example, while stochastic gradient 
descent (SGD) is a widely used optimizer, it may converge 
slowly for certain datasets.[6] SGD utilizes the gradient of 
the loss function to update the model’s parameters and is 
suitable for both small and large datasets. PyTorch offers 
several extensions to SGD, including momentum-based SGD 
using Nesterov momentum, with weight decay to improve its 
performance on certain tasks.[7]

Another optimizer, RMSprop, is similar to SGD but with some 
adjustments that make it more likely to be more effective.[8] 
However, like other optimization methods, RMSprop can be 
unstable and may struggle to converge to the global minima. 
Adam, a relatively new optimizer, combines the strengths of 
both SGD and RMSprop and is generally faster than SGD 
while being less sensitive to hyperparameters.[9] Adam is more 
stable than other optimization methods and performs well on a 
wide range of tasks. It is particularly useful for training models 
with large datasets and high-dimensional parameter spaces. 
Despite the overall effectiveness of the Adam optimizer, it is 
still susceptible to the potential of not converging to the global 
minimum of the optimization problem. In addition to these 
optimizers, AdaGrad, AdaDelta, and NAdam have also been 
shown to be effective in deep learning.[10-13]

The nnU-Net is a deep learning architecture that automatically 
configures itself for medical image segmentation. It is a 3D 
U-Net architecture extensively used in biomedical image 
segmentation.[14,15] It includes several enhancements over 
simpler 3D U-Net models, such as optimized preprocessing, 
training strategies, and architecture adaptations. nnU-Net has 

demonstrated its potential for volume autosegmentation on 
medical images by winning several segmentation challenges. 
To handle noise in medical imaging data and achieve faster 
convergence during training, nnU-Net uses SGD with Nesterov 
momentum of 0.9 as the default optimizer. Furthermore, 
using Nesterov momentum reduces the oscillations typically 
associated with momentum-based optimization methods. 
nnU-Net divides hyperparameters into fixed, rule-based, and 
empirical configurations.

The location, heterogeneity, and presence of surrounding edema 
pose challenges for developing a robust autosegmentation 
model for lung tumors. This study focused on using multiple 
optimizers, including SGD with Nesterov momentum, 
Adam, AdaDelta, AdaGrad, NAdam, and RMSprop, for 
autosegmentation of lung tumors belonging to a publicly 
available “The Cancer Imaging Archive” (TCIA) datasets, 
and applying the trained model to local clinical lung computed 
tomography (CT) datasets.

MaterIals and Methods

One hundred and twelve lung cancer CT patient datasets, 
consisting of 92 TCIA patients[16] and 20 local clinical lung 
CT datasets, were included in this study. The gross tumor 
volume without any additional margin was considered the 
lesion for training and testing the models. Of the 92 TCIA 
patients, 57 were used for training and validation, and the 
remaining 35 cases were reserved for testing. The final model 
was additionally tested on the 20 local clinical datasets. The 
purpose was to evaluate the performance of a model trained 
on a publicly available dataset and its relative behavior when 
applied to local clinical cases. The training and testing of the 
autosegmentation models were performed on a dedicated 
Linux Ubuntu server housing a GeForce RTX 3090 Ti 24 GB 
graphics processing unit with 96 GB RAM.

The nnU-Net architecture was used to generate the lung 
autosegmentation models. The CT DICOM image and RT 
structure set files were converted to NifTi format. The images 
and masks were mapped together with the assistance of a json 
file. The learning rates for SGD with Nesterov momentum, 
Adam, AdaGrad, AdaDelta, NAdam, and RMSprop were 
10−2, 10−4, 10−3, 10−2, 10−5, and 10−3, respectively. The 
training was performed using the nnU-Net 3D full-resolution 
architecture, which utilizes images at their full resolution. The 
average lung lesion volumes in the training and test datasets 
from TCIA, consisting of 57 and 35 patients, respectively, 
were 66.86 ± 80.01 cc (ranging from 2.85 to 400.82) and 
69.59 ± 123.26 cc (ranging from 2.65 to 661.35). The average 
volume of local clinical lung lesions included in the study was 
47.38 ± 76.17 cc (ranging from 1.3 to 284.34 cc). To determine 
if the trained model could predict lesions outside the trained 
minimum volume, the study included three clinical lung cases 
with volumes below the minimum trained volume (1.32 cc, 
1.64 cc, and 2.35 cc). A t-test for two independent means 
with a significance level of P < 0.05 was used to evaluate 
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the statistical difference between the TCIA test and clinical 
datasets. To assess the agreement between the ground truth 
and predicted volume, the Dice similarity coefficient (DSC), 
Jaccard index, precision, Hausdorff distance (HD), 95th 
percentile Hausdorff distance (HD95), and average symmetric 
surface distance (ASSD) were calculated. To compute the 
evaluation metrics and volume of the lesions, a Python script 
was created that employed parallel processing to expedite 
the computation process. Prior to calculating the metrics 
for assessing the agreement between the ground truth and 
predicted lesions, both volumes were converted into binary 
objects.

DSC is a statistical metric used to evaluate the similarity or 
overlap between two sets of data or objects.[17] In the context 
of image segmentation, it is commonly used to quantify the 
similarity between a ground truth image (A) and a segmented/
predicted image (B). It is calculated as the ratio of twice the 
intersection of A and B to the total sum of A and B [Figure 1]. 
The range of values for DSC is between 0 and 1, with a value 
of 1 indicating a perfect match between the two sets.

Like DSC, the Jaccard index, also known as the intersection 
over union, is a statistical metric utilized to assess the similarity 
or overlap between two sets of data. It is computed by dividing 
the intersection of sets A and B by the union of sets A and B, 
as shown in Figure 2.

HD is a mathematical concept used to measure the agreement 
between two sets of points in a metric space.[18] Specifically, 
it measures the greatest distance between any point in one set 
to the closest point in the other set. In other words, the HD 
between two sets of points is the maximum distance of a point 
in one set to its nearest point in the other set. For two nonempty 
subsets A and B of a metric space M, the directed HD h (A, B) 
from set A to set B is defined as:

max min a - b h(A,B) = a A b B∈ ∈
 

Figure 3 illustrates the ground truth (A) and predicted (B) 
volumes’ boundary along with the minimum distances from 
boundary points/pixels in A to B, and vice versa. The HD 
between sets/objects A and B is then defined as the maximum 
of the two directed HDs, h (A, B) and h (B, A):

HD (A, B) = max (h(A, B), h(B, A)) 

The metric HD (A, B) captures the maximum dissimilarity 
or separation between the two objects/volumes A and B. 
The HD95 is a metric used to represent the 95th percentile of 
the distances between the surface points of the ground truth 
object (A) and the corresponding points on the predicted 
object (B). In other words, it measures the maximum distance 
between the two objects such that 95% of the surface points 
of the ground truth object are within this distance from the 
corresponding surface points of the predicted object. HD95 is 
a robust metric that is less sensitive to small outliers than the 
traditional HD metric, as it excludes the largest 5% of values. 

The higher the HD95 value, the greater the dissimilarity or 
deviation between the two objects A and B.

The average surface distance (ASD) is a metric used to 
measure the average distance between points in objects 
or regions of interest, such as A and B, while minimizing 
the sum of distances. To calculate ASD, the mean surface 
distance of object A and object B is computed separately 
in both directions. Subsequently, the ASSD is determined 
by taking the mean of the ASDs in both directions.[19] This 
means that the distance is calculated both from the ground 
truth volume surface to the predicted volume surface and 
vice versa, and then averaged over all boundary points. 
ASSD is generally more robust to outliers compared to the 
HD alone. It considers the average distance between the 
surfaces of the two objects, which tends to reduce the impact 

Figure 2: Jaccard index of two objects A and B

Figure 3: Illustration of the methodology for computing HD and ASSD. 
HD: Hausdorff distance, ASSD: Average symmetric surface distance

Figure 1: Dice similarity coefficient of two objects A and B
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of isolated extreme distances or outliers that may exist when 
comparing two volumes.

ASSD (A, B) = (ASD [A to B] + ASD [B to A])/2

results

The lung tumor prediction model, trained on a dataset of 
57 patients, demonstrated accurate tumor prediction for all 
35 test patients from TCIA using AdaDelta, AdaGrad, Adam, 
NAdam, RMSprop, and SGD optimization algorithms. 
Figure 4 shows the predicted and ground truth masks from 
the test TCIA thoracic datasets which had the highest DSC 
value for most models.

Table 1 presents the mean DSC, Jaccard index, precision, HD, 
HD95, and ASSD results for the trained models. Except for 
AdaDelta, all models exhibited average DSC values > 0.80. 
The Jaccard index followed a similar pattern to the DSC. All 
models displayed high precision, with values above 0.86. 
Notably, AdaDelta and SGD showed high HD, HD95, and 
ASSD values, indicating significant shape differences between 
the ground truth and predicted volumes.

For the clinical datasets, most of the models trained on the 
dataset of 57 patients were unable to predict the lesions in 
the three cases (with ground truth volumes of 1.32, 1.64, 
and 2.35 cc) that had volumes less than the minimum trained 
lesion volume (2.85 cc). As a result, these three volumes were 
not taken into consideration for the analysis. Figure 5 shows 

the predicted and ground truth masks from the clinical lung 
thoracic datasets with a high DSC value.

Table 2 presents the mean DSC, Jaccard index, Precision, 
HD, HD95, and ASSD for the various optimizers’ models. 
Consistent with the DSC, the Jaccard index also decreased for 
all optimizers when the TCIA-trained model was applied to the 
clinical datasets. All models exhibited a significant variation 
in HD, HD95, and ASSD when the trained model was used 
on the clinical datasets, indicating data heterogeneity between 
the TCIA and the clinical datasets.

Figure 6 illustrates the trend of the average DSC, indicating 
that the models trained on the TCIA datasets performed well on 
those datasets; however, there was a decrease in the DSC values 
when applied to the local clinical dataset. The t-test for two 
independent means revealed significant differences (P < 0.05) 
between the DSC calculated on the TCIA test data and the 
clinical lung datasets.

The results also demonstrate that RMSprop and SGD 
performed relatively better on the local clinical datasets, while 
all other optimizers exhibited a significant decrease in DSC 
when the model was transferred to the clinical datasets.

dIscussIon

Deep learning models have shown significant potential in 
automating the segmentation of lung tumors and OARs in (CT) 
images.[20-22] This can improve the accuracy and efficiency 

Table 1: Mean performance metrics comparison of optimizers on 35 The Cancer Imaging Archive test datasets

AdaDelta AdaGrad Adam NAdam RMSprop SGD
DSC 0.75 0.84 0.85 0.84 0.83 0.81
Jaccard index 0.63 0.74 0.75 0.73 0.73 0.72
Precision 0.87 0.88 0.89 0.88 0.86 0.89
HD (mm) 12.79 9.95 9.32 9.12 9.58 14.18
HD95 (mm) 7.45 4.96 4.38 4.92 4.52 8.79
ASSD (mm) 2.15 1.41 1.31 1.43 1.23 2.89
HD: Hausdorff distance, HD95: 95th percentile HD, ASSD: Average symmetric surface distance, SGD: Stochastic gradient descent, DSC: Dice similarity 
coefficient, Adam: Adaptive Moment Estimation, NAdam: Nesterov-Accelerated Adaptive Moment Estimation, RMSprop: Root Mean Square Propagation

Figure 4: Ground truth and predicted TCIA Test data volume comparison for all six optimizers (sagittal, coronal and axial views). TCIA: The Cancer 
Imaging Archive
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of treatment planning, particularly in radiation therapy. 
Autosegmentation of lung tumors is challenging due to factors 
such as location, variability in shape and size, interobserver 
variability,[23,24] tumors surrounded by atelectasis,[25] low 
contrast with surrounding tissues, volume changes introduced 
by respiration, and image artifacts.

Our study primarily focused on the performance of different 
optimizers for autosegmenting NSCLC tumors. It demonstrated 
that most optimizers produced decent DSC values above 

0.80, with the exception of AdaDelta. When applying the 
TCIA-trained model to the clinical datasets, we observed 
a significant drop in DSC values for most optimizers. 
RMSprop and SGD showed a minimal decline in DSC values. 
An increase in the mean HD indicates greater, indicating 
differences between the ground truth and predicted volumes. 
This suggests that the model performance decreased compared 
to the predictions on TCIA datasets. When comparing the 
mean HD and mean HD95 results between the TCIA and 
clinical datasets, TCIA HD and HD95 values were lower 
than the clinical datasets, except for SGD. Furthermore, HD 
is skewed by outliers whereas HD95 indicates the distance 
below which 95% of the points fall, effectively capturing 
the majority of the differences between the ground truth and 
predicted volumes. This observation suggests that the HD95 
metric provides a more robust measure of distance, as it is 
less affected by outliers and extreme values. On average, there 
was a 33% increase in the mean HD95 across all optimizers 
when evaluating the clinical datasets compared to the TCIA 
test datasets. Similarly, in line with the HD95 metric, the mean 
ASSD exhibited a 40% increase when comparing the clinical 
datasets to the TCIA datasets. In the present study, we observed 
that the Jaccard index consistently yielded lower values 
compared to the DSC when evaluating various optimizers with 
both the TCIA and clinical datasets. This discrepancy can be 
attributed to the fundamental differences in how these metrics 
calculate similarity. The Jaccard index determines similarity 
by dividing the size of the intersection of two sets by the size 
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Figure 6: Mean DSC comparison between the TCIA test dataset and 
clinical dataset. DSC: Dice similarity coefficient, TCIA: The Cancer 
Imaging Archive

Table 2: Mean performance metrics comparison of optimizers on 17 clinical cases

AdaDelta AdaGrad Adam NAdam RMSprop SGD
DSC 0.67 0.72 0.77 0.69 0.80 0.76
Jaccard index 0.53 0.60 0.64 0.56 0.67 0.64
Precision 0.87 0.92 0.91 0.83 0.90 0.93
HD (mm) 14.83 15.78 12.75 14.06 11.77 12.25
HD95 (mm) 9.36 9.50 7.08 7.52 5.92 7.08
ASSD (mm) 2.94 2.94 2.18 2.29 2.05 2.24
HD: Hausdorff distance, HD95: 95th percentile HD, ASSD: Average symmetric surface distance, SGD: Stochastic gradient descent, DSC: Dice similarity 
coefficient, Adam: Adaptive Moment Estimation, NAdam: Nesterov-Accelerated Adaptive Moment Estimation, RMSprop: Root Mean Square Propagation

Figure 5: Ground truth and predicted clinical data volume comparison for all six optimizers (sagittal, coronal and axial views)
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of their union. Since the intersection is always a subset of 
the union, the Jaccard index tends to produce lower values 
compared to the DSC. On the other hand, the DSC places 
greater emphasis on the size of the intersection by considering 
twice the intersection’s size divided by the sum of both set 
sizes. As a result, this formulation can generate higher values 
compared to the Jaccard index. Additionally, the Jaccard index 
is sensitive to the size of the sets being compared.[26] When 
the sets are small, there is a higher chance of a relatively 
larger intersection, leading to higher Jaccard index values. In 
our study, we had 92 TCIA datasets for training and testing, 
which helped ensure reliable comparisons. In contrast to the 
Jaccard index, the DSC is less sensitive to set size, resulting 
in more balanced values for different set sizes. It is important 
to note that the specific values obtained from these similarity 
metrics will depend on the characteristics of the sets being 
compared and the specific problem domain. Zhang et al. 
reported that their modified version of ResNet yielded a DSC 
of 0.73, Jaccard index of 0.68, and a true positive rate of 0.71 
when trained on a dataset of 400 NSCLC patients.[27] Our 
study revealed true positive rates of 0.72, 0.83, 0.84, 0.83, 
0.85, and 0.79 with AdaDelta, AdaGrad, Adam, NAdam, 
RMSprop, and SGD optimizers for the TCIA test datasets. 
In the clinical datasets, the best true positive rate (0.74) was 
observed with RMSprop. Bi et al.’s study using a deep dilated 
residual network on 418 CT data showed an average DSC of 
0.75.[28] However, combining positron emission tomography 
and CT has been shown to improve the DSC to 0.85.[29] Lung 
autosegmentation was also studied on stereotactic ablative 
radiotherapy datasets, yielding a DSC of 0.71.[30] While these 
studies show promising results for autosegmentation models 
in contouring lung tumors, it is essential to note that they can 
still be subject to limitations, such as sensitivity to variations 
in image quality, tumor size, and tumor shape. Additionally, the 
performance of these models is highly dependent on the quality 
and diversity of the training data. As a result, it is generally 
recommended to use autosegmentation as a starting point, with 
manual adjustments and verification by experienced radiation 
oncologists to ensure accurate tumor delineation. The memory 
size of a GPU determines the maximum size of datasets and 
models that can be stored and processed simultaneously.[31] 
When training deep learning models on large datasets, the 
model parameters and intermediate activations consume a 
significant portion of the available memory. Several methods 
have been proposed to reduce memory consumption, which 
can assist in training large datasets.[32,33] In this study, it took 
approximately 20 hours to run 1000 epochs for one optimizer. 
nnU-Net dynamically adjusts the batch size, patch size, and 
number of pooling operations for each axis based on the 
available memory resources. It optimizes these parameters to 
balance computational efficiency and memory consumption.

It is essential to acknowledge that the choice of optimization 
algorithm for autosegmentation can depend on various factors, 
including the target volume’s type, size, and location, the dataset 
size, and the neural network architecture. While the presented 

results suggest that Adam performed well on the TCIA dataset 
and RMSprop and SGD displayed minimal variation in DSC 
between TCIA and clinical datasets, it should be noted that these 
optimizers may perform well for this specific task, but their 
performance may differ for different type of tumors or OARs.

conclusIon

The choice of optimizer in deep learning is a critical factor that 
can significantly impact the performance of autosegmentation 
models. However, it is worth noting that the behavior of 
optimizers may vary when applied to clinical datasets, which 
can lead to differences in model performance. Therefore, 
selecting the appropriate optimizer for a specific task is 
essential to ensure optimal performance and generalizability 
of the model to different datasets.
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