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Abstract: This study aimed to evaluate the biological activities of two Allium species (garlic and
onion) as well as diallyl disulphide (DADS) and dipropyl disulphide (DPDS) as their representative
bioactive compounds in a multi-assay experimental design. The genotoxic, antigenotoxic, and
lifespan effects of garlic, onion, DADS, and DPDS were checked in Drosophila melanogaster and their
cytotoxic, pro-apoptotic, and DNA-clastogenic activities were analyzed using HL60 tumoral cells.
All compounds were non-genotoxic and antigenotoxic against H2O2-induced DNA damage with a
positive dose-response effect and different inhibition percentages (the highest value: 95% for DADS)
at all tested concentrations. Daily intake of Allium vegetables, DADS, or DPDS had no positive effects
on flies’ lifespan and health span. Garlic and DADS exerted the highest cytotoxic effects in a positive
dose-dependent manner. Garlic and DADS exerted a DNA-internucleosomal fragmentation as an
index of induced proapoptotic activity on HL60 cells. Allium vegetables and DADS were able to
induce clastogenic strand breaks in the DNA of HL60 cells. This study showed the genomic safety of
the assayed substances and their protective genetic effects against the hydrogen peroxide genotoxine.
Long-term treatments during the whole life of the Drosophila genetic model were beneficial only at
low-median concentrations. The chemo-preventive activity of garlic could be associated with its
distinctive organosulfur DADS. We suggest that supplementary studies are needed to clarify the cell
death pathway against garlic and DADS.
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1. Introduction

The Mediterranean diet is one of the best nutritional patterns for humans due to its demonstrated
beneficial effects on health. This diet, which is based on the high consumption of fruit, vegetables, wine,
olive oil, and fish as the main animal protein contribution, is a type of a healthy and well-balanced food
intake [1]. Today, most of the studies asserting these well-being effects agree to point the increased
antioxidant and phenolic contents as the cause of its properties [2]. Diet-derived antioxidants are
implicated in maintaining a balanced homeostasis and scavenging reactive oxygen species (ROS) as a
major part of a highly efficient defensive biological network, which neutralizes the oxidative stress and
complements the endogenous defense enzymes [3].
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Garlic (Allium sativum) and onion (Allium cepa) are two native vegetables from Asia and are
widely used in different gastronomic cultures and traditional medicines for centuries [4]. According to
the Food Administration Organization (FAO), these vegetables are two of the most important crops
worldwide with a production of 20,000 tons of garlic and 100,000 tons of onion, respectively, in 2015,
which shows a trend toward an increased consumption in the recent years due to the expansion of
the Mediterranean and Asian cuisine. Both volatile and non-volatile compounds are found in Allium
species. Non-volatile compounds named sapogenins, saponins, and flavonoids whose contents are
differentially distributed in garlic and onions. The distinctive flavonoids present in onions are different
than in garlic (quercetin, kaempferol, and luteolin in onion and myricetin, apigenin and quercetin
in garlic) [5]. Quercetin, which is the major flavonoid present in onions, helps prevent glycation of
collagens, which is a leading causative factor for the development of cardiovascular complication
in diabetic patients. Moreover, quercetin and kaempferol from onions also possess anticarcinogenic
properties [6,7]. With regard to the phenolic acids present in the matrix of garlic and onions, gallic acid
is one of them and it has several reported bioactivities such as antineoplastic, bacteriostatic, antioxidant,
and anticancer. Protocatechuic acid is found in these vegetables as well. This molecule has been found
to have an antihepatotoxic, anti-inflammatory, free radical scavenger, including chemopreventive
and apoptotic bioactivities among others [8,9]. Nevertheless, despite the above described differences
between garlic and onion non-volatile content, these two species contain a unique and distinctive
group of volatile organosulfur compounds.

These vegetables have been linked to preventive effects against several diseases such as cancer,
obesity, diabetes type-2, coronary heart disease, and hypertension, among others [5,10–12]. These
pleiotropic effects were associated with the high content of thiosulfinates, which is a group of volatile
organosulfur compounds that originated from the decomposition of the allicin. These are also
responsible for their typical pungent aroma and taste [7,13–15]. However, both vegetables showed a
high variability with respect to the thiosulfinate profiles among strains including diallyl sulfide (DAS),
diallyl disulfide (DADS), and diallyl trisulfide (DATS) normally higher in garlics and dipropyl sulfide
(DPS) and dipropyl disulfide (DPDS) higher in onions [16,17]. Garlic oils and extracts were associated
with several health-benefit activities, such as a protective capacity against DNA damage induced
by oxidative stress, increased hydrogen peroxide (H2O2) scavenging activity, and ability to reduce
the bioactivity of carcinogens and tumor cell proliferation [18–21]. These capacities were directly
linked to DADS, one of their major and most garlic distinctive constituents, which was widely studied
and characterized as non-genotoxic, antigenotoxic, inhibitor of cell proliferation and pro-apoptotic in
different cancer cell lines like leukemia, colon, prostate, lung, bladder, and skin [22–29].

On the other hand, onions are more versatile vegetables that can also be consumed as fresh and
processed products. Both forms also showed a high oxy-radical scavenging capacity [30] as well
as an antigenotoxic effect [31]. In addition, garlic ethanolic extracts and oils showed antimutagenic
activity [32] and also decreased the viability and increased the apoptosis in several cancer cell lines
like HL60, MDA-MB-231, A549, and B16F10 [33–36]. In this case, their pro-healthy properties were
widely related to DPDS, which is one of its most representative organosulfur compounds. This
molecule was previously associated with strong anticarcinogenic activity [37] and a protective effect
against a DNA strand break and oxidative damage [38,39]. Nevertheless, this compound had no
anti-tumor effects in mice [40], which means it did not decrease tumor cell growth and did not induce
DNA-internucleosomal fragments on cancer cell lines by acting alone [29,40–42].

Then, we performed a qualitative and quantitative evaluation of the health-beneficial properties
of garlic, onion, and their representative organosulfur compounds (DADS and DPDS) in a multi-assay
experimental design using in vivo and in vitro models. We assessed their genotoxic, antigenotoxic,
and lifespan effects in Drosophila melanogaster flies, which is a widely used experimental model closely
related to humans. Additionally, we evaluated their proapoptotic capacities against cancer processes
through the determination of their cytotoxic, clastogenic, and DNA epigenetic modulator activity
against in an in vitro human cancer model (HL60 cell line).



Foods 2019, 8, 222 3 of 19

2. Materials and Methods

2.1. Allium Vegetables and Single Compounds

Two Allium species and two of its most distinctive organosulfur compounds were assayed. Garlic
(Allium sativum, purple variety) and onion (Allium cepa, Victoria variety) were purchased in a local
market of Cordoba (Spain). Thiosulfinates, DADS from garlic, and DPDS from onions, which had 80%
and ≥97% of purity, respectively, were purchased from Sigma (St. Louis, MI, USA, Cat numbers 317691
and 43550, respectively) and were used without further purification.

2.2. Preparation of the Samples

Garlic samples and onions were washed twice with distilled water, cut in slim slices, and
freeze-dried at −80 ◦C. After that, both samples were lyophilized, pulverized with a mortar pestle,
sieved, and stored at 25 ◦C in the dark until use.

2.3. In Vivo Assays

2.3.1. Somatic Mutation and Recombination Test (SMART)

Two Drosophila melanogaster strains carrying visible wing genetic markers were used in our
experimental design: the flare (flr) strain flr3/ln (3LR) TM3, Bds and the multiple wing-hair (mwh)
strain mwh/mwh. The multiple wing hairs (mwh, 3_0.3) marker is a recessive viable mutation in
homozygous flies, which produces multiple-hairs trichomes in the fly adult body [43]. The flare (flr3,
3_38.3) marker is a homozygous recessive lethal mutation, which produces malformed individual wing
hairs in somatic cells of larvae. The flr3 allele is retained in a balancer chromosome carrying multiple
inversions and a homozygous lethal dominant visible marker expressed in the edge wing [44].

Genotoxicity was determined using the SMART test as described by Graf and Wurgler [45]
including a negative control of pure water. The antigenotoxic activity was also determined using
a modified SMART test following our standard protocols [46]. Optimally virgin flr3/ln (3LR) TM3,
ri pp sep bx34e es BdS (flare) females were crossed with mwh/mwh strain males, obtaining 72 h
transheterozygous F1 larvae after an 8-hour egg-laying on fresh yeast. Larvae were fed with Drosophila
Instant Medium (Formula 4-24, Carolina Biological Supply, Burlington, NC, USA) in 4 mL vials.
Genotoxicity assays consisted of eight experimental groups by supplementing the base larvae food
(0.85 g) with different concentrations of onion (0.625 and 5 mg/mL), garlic (0.625 and 5 mg/mL), DADS
(4 mM and 34 mM), and DPDS (4 mM and 33 mM). The concentration ranges of single compounds
were selected to mimic those described in the fresh Allium sp. and they cover the lower and higher
estimated content values [47]. Negative (distilled water) and positive (0.12 M H2O2) concurrent
controls were included. Antigenotoxicity experimental design was similar to the genotoxicity assays
by concurrently treating the larvae with the tested substances supplemented with H2O2 (0.12 M)
as a positive geno-toxicant control. The emerged adults in each group were stored in 70% ethanol
until analysis.

Forty wings of heterozygous flies (mwh/flr3) treated with each compound and concentration were
removed and mounted on slides with Faure’s solution (Arabic gum 50 g (Sigma, Cat Number G9752),
glycerol of 20 mL (Sigma, Cat Number G5516), chloral hydrate of 50 g (Sigma, Cat Number C8383),
and distilled water of 50 mL). Both dorsal and ventral surfaces were screened under a bright light
microscope at 400×magnification to detect small single spots (1–2 mwh or flr3 cells), large single spots
(three or more cells), and twin spots (adjacent mwh and flr3 cells). Single spots are produced by gene
mutation, somatic recombination, and deletion between the two markers. Twin spots are produced
uniquely by recombination between the flr3 marker and the centromere.

In order to evaluate the possible genotoxic effect, the frequencies of total spots per wing of each
series were statistically compared with the total spots of the negative control with the non-parametric
U-test of Mann, Whitney, and Wilcoxon [48]. Antigenotoxicity was determined as the inhibition
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percentage (IP) using the total spots per wing determined at each concentration with the following
formula [49].

IP = ((a − b)/a) × 100, (1)

where a represents the frequency of total spots induced by the treatment with genotoxine alone, and b
represents the frequency of total spots obtained with genotoxine plus substance tested in the different
combined treatments.

2.3.2. Longevity Assays

All the longevity experiments were performed following our standard procedures [50].
Transheterozygous larvae from a 12-h egg-laying with the same genetic background described above
were used in the life and health-span trials. Health span is the healthy adult period of unimpaired
life that precedes functional decline [51]. It is important to consider the quality of a prolonged life
and, for this reason, health span is a new focus in aging research. Synchronized larvae of 72 ± 12 h
were clustered in groups of 100 individuals in glass vials with 0.85 g of Drosophila Instant Medium
in 4 mL of water solutions of the different experimental concentrations assayed (0.625, 1.25, 2.5, and
5 mg/mL for Allium vegetables, 4, 8, 16, and 33 mM for DPDS, and 4, 8, 17, and 34 mM for DADS).
The emerged flies were anesthetized under CO2, separated into 10 single-sex groups, transferred
to longevity vials and fed with the same treated medium during the whole experimental design.
A concurrent treatment was also included using distilled water as a negative control. The survivors
were counted and the medium was renewed twice a week until all individuals die. Survival curves
were plotted as estimated by the Kaplan-Meier method and the statistical significance of curves were
assessed using the Log-Rank (Mantel-Cox) method using the SPSS 15.0 statistics software (SPSS Inc.
Headquarters, Chicago, IL, USA).

2.4. In Vitro Assays

2.4.1. Cell Line Cultures and Cytotoxicity Assay

In vitro assays were performed using the promyelocytic leukemia HL60 cell line. Some of the
genetic characteristics of this tumor cell line are the following: karyotypic abnormalities (monosomy,
trisomy, and tetrasomy), and different chromosomal translocations. On the molecular genetic level, the
HL60 cell line has deletions in the p53 gene on chromosome 17pl3 and one allele of the GM-CSF gene
on chromosome 5q21–q23 is rearranged and partly deleted as well [52].

Cells were cultured at 2.5× 105 cells/mL following our standard protocol [53] in complete RPMI 1640
medium (BioWhittaker, Basel, Switzerland; BE12-167F) containing 10% heat-inactivated fetal bovine
serum (BioWhittaker, de14-801F), l-glutamine 200 mM (Sigma, G7513), and antibiotic-antimycotic
solution (Sigma, A5955) at 37 ◦C in a humidified atmosphere of 5% CO2. Two passes per week were
performed and the experiments were carried with cells with no more than 20 passes. Cell viability was
evaluated by the Trypan blue exclusion assay. To ensure the proper behavior of the cell line, proliferation
was followed at 0, 4, 24, 48, and 72 h checkpoints. Control cells doubled every 24 four-hour exponentially
(y = 100446e0.0345x), which reached the maximum at 72 h. Cells (1 × 105 cells/mL) were seeded and
incubated for 72 h in 96 well plates supplemented with six different concentrations Allium species
(ranging from 0.002 mg/mL to 0.06 mg/mL) and 6 different concentrations of thiosulfinates (ranging
from 0.012 mM to 0.4 mM). A concurrent negative control (base medium without supplementation)
was also run. After incubation, Trypan blue was added to the cell suspension (1:1 ratio) and cells were
counted in a Neubauer chamber under an inverted microscope at 100×magnification. Cell viability
was expressed as a percentage of survival with respect to control after a 72-h period. IC50 values
(concentration of tested molecule causing 50% of cell growth inhibition) and EC50 values (concentration
of a tested substance that complements a system and gives a half-maximal growth response) were
estimated for each treatment. Viability curves were plotted as mean viability ± standard deviation of
three independent replicas in each substance and concentration.
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2.4.2. Inter-Nucleosomal DNA Fragmentation Assay

HL60 cells (1.5 × 106 cells/mL) were incubated with the same compounds and concentrations
as in cytotoxicity assays for 5 h in 12-well plates. Thereafter, cells were harvested, centrifuged at
2500 rpm. for 5 min, and washed with phosphate buffer saline (PBS). Total DNA was extracted using
a commercial DNA-extraction kit (Blood Genomic DNA Extraction Mini Spin Kit, Canvax Biotech,
Cordoba, Spain), according to the manufacturer’s instructions and subsequently treated with RNase
overnight in order to eliminate a false positive. DNA yielding was quantified in a Nanodrop™ (Thermo
Scientific, Madrid, Spain). A total of 1.5 µg of DNA per sample was electrophoresed in a 2% agarose
gel, stained with ethidium bromide, and run by 120 m at 60 V. Internucleosomal DNA fragmentation
was determined by the presence of ladder band patterns with 200 bp multiple fragments.

2.4.3. Evaluation of DNA Breakage Ability: Comet Assay

DNA strand break ability of the compounds was determined by the alkaline comet assay, as
described Olive and Banáth [54] with minor modifications. HL60 cells (5 × 105 cells) were plated in
1.5 mL of culture medium supplemented with different concentrations of onion (0.004, 0.016, and
0.06 mg/mL), garlic (0.002, 0.004, and 0.008 mg/mL), DPDS (0.025, 0.1, and 0.4 mM) and DADS (0.01,
0.025, and 0.05 mM) and incubated for 5 h. After treatment, cells were washed and adjusted to
6.25 × 104 cells/mL in PBS. Then, cells (1.6 × 104) were suspended in a 75 µL pre-warmed low melting
point agarose (A4018, Sigma) and 50 µL of the suspension were rapidly spread on microscope slides
and covered with coverslips. After gelling for 30 min at RT, the coverslips was gently removed and
the slides were put in a tank filled with lysis solution (2.5M NaCl (S3014, Sigma), 100mM Na-EDTA
(1.09992, Sigma), 10mM Tris (T4661, Sigma), 250mM NaOH (S8045, Sigma), 10% DMSO (D8418, Sigma),
and 1% Triton X-100 (T8787, Sigma), pH = 13 at 4 ◦C for 1 h. Next, slides were removed from the
lysis solution and incubated in alkaline electrophoresis buffer (300 mM NaOH (S8045, Sigma) and
1 mM Na-EDTA (1.09992, Sigma), pH = 13 at 4 ◦C for 20 to 30 min. Electrophoresis was then carried
out in a fresh-made electrophoresis buffer for 15 min at 20 V and 400 mA in dark conditions. After
electrophoresis, slices were gently washed in cold fresh-made neutralization buffer (0.4 M Tris-HCl
buffer, pH 7.5) for 10 min and allowed to dry overnight at RT in dark conditions. Lastly, gels were
stained with 7 µL propidium iodide (S7109, Sigma), covered with a coverslip, and photographed
at 400× magnification in a Leica DM2500 epifluorescence microscope with a microscope. At least
50 cells were assessed for each treatment. Data were analyzed using the Open CometTM software [55].
The statistical ANOVA-Tukey test was applied [56] using the SPSS 15.0 statistics software (SPSS Inc.
Headquarters, Chicago, IL, USA) in order to compare the results obtained for the different treatments
and the negative control.

2.4.4. Epigenetic Analysis of Repetitive Sequences on DNA of HL60 Cells

HL60 cells were plated and treated with two concentrations of Allium species (0.002 and
0.06 mg/mL) and two concentrations of thiosulfinates (0.012 and 0.4 mM) for 5 h. Genomic DNA from
HL60 cells was isolated in the same way as described in the DNA fragmentation section. After that,
Bisulphite-modified DNA from food coloring treatments (EZ DNA Methylation-Gold™Kit) was used
as a template for fluorescence-based real-time quantitative Methylation-Specific PCR (qMSP). A qMSP
were carried out according to the protocol described by Merinas-Amo et al. [57] in 48 well plates in the
MiniOpticon Real-Time PCR System (MJ Mini Personal Thermal Cycler, Bio-Rad) and was analyzed
by Bio-Rad CFX Manager 3.1 Software. The final reaction mixture (V = 10 µL) consisted of: 1 µL of
bisulfite converted genomic DNA, 2 µL of milliQ water, 5 µM of each forward and reverse primer, 2 µL
of iTaq™ Universal SYBR® GreenSupermix (Bio-Rad, which contained antibody-mediated hot-start
iTaqDNA polymerase, dNTPs, MgCl2, SYBR® Green I dye, enhancers, stabilizers, and a blend of
passive reference dyes including ROX and fluorescein).
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qMSP conditions included initial denaturalization at 95 ◦C for 3 min and amplification, which
consisted of 45 cycles at 95 ◦C for 10 s, 60 ◦C for 15 s, and 72 ◦C for 15 s, taking a picture at the end of
each elongation cycle. After that, the melting curve was determined by increasing 0.5 ◦C each 0.05 s
from 60 ◦C to 95 ◦C and taking pictures.

Repetitive elements were selected in order to analyze a wide range of human genomic
DNA. While Alu and LINE sequences are interspersed throughout the genome, satellites are
confined to the centromere areas [58–61]. Alu M1, LINE-1, and Sat-α sequences were used and
the housekeeping Alu-C4 was used as a reference to correct for total DNA input. All primers
were obtained from Isogen Life Science and their sequences are as follows: Alu-C4 (forward:
5′-GGTTAGGTATAGTGGTTTATATTTGTAATTTTAGTA-3′; reverse: 5′-ATTAACTAAACTAATCTTA
AACTCCTAACCTCA-3′), Alu-M1 (forward: 5′-ATTATGTTAGTTAGGATGGTTTCGATTTT-3′;
reverse: 5′-CAATCGACCGAACGCGA-3′); LINE-1 (forward: 5′-GGACGTATTTGGAAAATCGGG-3′;
reverse: 5′-AATCTCGCGATACGCCGTT-3′); Sat-α (forward: 5′-TGATGGAGTATTTTTAAAATATAC
GTTTTGTAGT-3′. For detailed information on the primers, see Weisenber et al. [62].

The relative yielded results were normalized with the housekeeping sequence Alu C4 using the
Nikoliaidis et al. [63] and the Liloglou et al. [64] comparative CT method.

- CT of the target gene was normalized with respect to the referent gene (∆CT).
- ∆CT of each experimental sample or reference (∆CT,r) were compared with ∆CT of the calibrator

sample (∆CT,cb): ∆∆CT.

- The relative value of each sample is defined by the formula below.

2−(∆CT,r − ∆CT,cb) = 2−∆∆CT

Each sample was analyzed in triplicate. One-way ANOVA and post hoc Tukey’s tests were used
to evaluate the differences among the tested compound, repetitive elements, and concentrations.

3. Results

3.1. SMART Test

The results of genotoxicity and antigenotoxicity are shown in Table 1. All the assayed compounds
were non-genotoxic in the flies at all tested concentrations. Both Allium vegetables showed no
differences compared with water control in single and total spots. Validation of the experimental
design was assessed by the results of the positive control (H2O2, 0.37 total spots/wing), which agreed
with our previous results [50,65]. The antigenotoxic potency of Allium sp. vegetables, DPDS and DADS
against H2O2 exhibited a clear positive dose-response effect even though the lowest concentration of
garlic was not statistically different with respect to the positive control (Figure 1), which shows the
DADS the highest IP value (95%).

Figure 1. Mutagenicity inhibition percentages produced by onion, garlic, dipropyl disulphide (DPDS),
and diallyl disulphide (DADS) against H2O2 – DNA induced damage (Drosophila melanogaster model).
*: Statitiscal significance compared with the positive control using the Kastenbaum-Bowman binomial
test with significance levels α = β = 0.05.
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Table 1. Genotoxicity and antigenotoxicity results obtained in the SMART test when flies were fed
with different concentrations of onions, garlic, and organosulfur DPDS and DADS in single and
combined treatments.

Clones Per Wings (Number of Spots) (1)

Compounds N Small Spots
(1–2 cells)

Large Spots
(>2 cells) Twin Spots Total Spots Mann-Whitney Test (3)

Controls
H2O 40 0.10 (4) (2) 0 0 0.10 (4)

H2O2 (0.12M) 40 0.30 (12) 0.05 (2) 0.02 (1) 0.37 (15) + Ω
Onion (mg/mL)

0.625 40 0.17 (7) 0 0 0.17 (7) i ∆
5 38 0.08 (3) 0.03 (1) 0 0.10 (4) i ∆

0.625 + H2O2 40 0.20 (8) 0 0.05 (2) 0.25 (10) λ Ω
5 + H2O2 38 0.08 (3) 0 0.03 (1) 0.11 (4) β

Garlic (mg/mL)
0.625 40 0.07 (3) 0 0 0.07 (3) i ∆

5 40 0.05 (2) 0 0 0.05 (2) i ∆
0.625 + H2O2 40 0.27 (11) 0 0.02 (1) 0.30 (12) λ ∆

5 + H2O2 40 0.15 (6) 0 0 0.15 (6) β
DPDS (mM)

4 40 0.22 (9) 0.02 (1) 0.02 (1) 0.27 (11) i ∆
33 40 0.07 (3) 0.07 (3) 0 0.15 (6) i ∆

4 + H2O2 40 0.20 (8) 0.05 (2) 0 0.25 (10) λ Ω
33 + H2O2 40 0.17 (7) 0.02 (1) 0 0.20 (8) λ Ω

DADS (mM)
4 40 0.15 (6) 0 0 0.15 (6) i ∆

34 26 0.04 (1) 0 0 0.04 (1) i ∆
4 + H2O2 40 0.20 (8) 0.02 (1) 0 0.22 (9) λ Ω
34 + H2O2 40 0.02 (1) 0 0 0.02 (1) β

1 Statistical diagnosis according to Frei and Würgler [48]. + (positive) and i (inconclusive) versus negative control. β
(significantly different) and λ (inconclusive) versus positive control. m: multiplication factor. Kastenbaum-Bowman
Test without Bonferroni correction and probability levels α = β = 0.05. 2 Number of spots or clones in parentheses.
3 Inconclusive and positive results were resolved using the Mann-Whitney U-test. Delta marker (∆) means no
differences between the treatments and the concurrent control. Ohm marker (Ω) means differences between the
treatments and the concurrent control.

3.2. Longevity Assays

Flies’ survival curves for all treatments are plotted in Figure 2. In general, all treatments induce
lifespan maintenance. As shown in Table 2, only DPDS significantly decreased the lifespan at two
supplementation levels (8 and 16 mM). DPDS and DADS significantly decreased the mean health span
by 17% and 14%, respectively, only at the highest concentrations. It is noteworthy that there is an
agreement between lifespan and health span significances of DPDS at 8 and 16 mM.



Foods 2019, 8, 222 8 of 19

Figure 2. Effects of garlic, onion, DADS, and DPDS supplementation on the lifespan of Drosophila
melanogaster.

Table 2. Effects of the tested compounds at different concentrations on the Drosophila melanogaster mean
lifespan and health span.

Mean Lifespan
(Days)

Mean Lifespan
Difference (%) a

Health-Span (75th
Percentile) (Days)

Health-Span
Difference (%) a

Onion (mg/mL)
Control 92.24 ± 3.58 0 76.00 ± 12.63 0

0.625 95.77 ± 3.45 4 83.00 ± 5.04 9
1.25 92.83 ± 3.36 1 83.00 ± 5.08 9
2.5 81.92 ± 4.98 −11 65.00 ± 13.34 −11

Garlic (mg/mL)
Control 81.25 ± 4.57 0 51.14 ± 4.31 0

0.625 79.51 ± 3.30 −2 58.83 ± 1.76 15
1.25 76.21 ± 4.46 −6 47.29 ± 3.73 −7
2.5 77.68 ± 3.35 −4 53.57 ± 3.48 5

DPDS (mM)
Control 91.63 ± 2.06 0 77.37 ± 1.05 0

4 89.58 ± 2.39 −2 73.00 ± 2.80 −6
8 84.23 ± 2.38* −8 67.12 ± 2.69 ** −13
16 82.25 ± 3.23* −10 64.20 ± 6.63 * −17

DADS (mM)
Control 88.00 ± 2.26 0 73.11 ± 2.40 0

4 84.64 ± 3.01 −4 68.00 ± 3.34 −7
8 88.83 ± 2.36 1 75.22 ± 2.50 3

17 86.21 ± 3.27 −2 62.87 ± 3.96 * −14
a Difference between treated flies and the concurrent negative control (water) in percentage. Positive results indicate
that lifespan was increased and negative results indicate that lifespan was decreased. Statistical significance: * = p ≤
0.05, ** = p ≤ 0.01 (log-Mantel-Cox test).

3.3. Cytotoxicity and Proapoptotic Assays in Leukemia Cells

The cytotoxic effects of Allium vegetables and their distinctive compounds (DADS and DPDS) on
the survival of HL60 cells are shown in Figure 3. Garlic and DADS exerted a cytotoxic effect on cell
growth in a positive dose-dependent manner after 72 h of incubation, with EC50 of 0.003 mg/mL in the
case of garlic and IC50 of 0.06 mM in the case of DADS. On the contrary, the effect observed in DPDS
was smaller, with a high IC50 of 0.25 mM and it was absent in onion treatments in which the cytotoxic
effect resulted only in a growth inhibition of 30% at the higher tested concentrations.
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Figure 3. Viability of HL60 cells treated during 72 h with different concentrations of onion, garlic, and
their respective organosulfur compound, DPDS, and DADS. Curves are plotted as mean percentages
with respect to the control (three independent replicates). IC50: Inhibition concentration 50 for the
tested organosulfur. EC50: effective concentration 50 for the tested extracts.

The results of proapoptotic effects of different concentrations of garlic, onion, DADS, and DPDS
in HL60 cells measured as internucleosomic programmed fragmentation [66] are shown in Figure 4.
DNA fragmentation was observed at high concentrations of garlic (0.03 and 0.06 mg/mL) and DADS
(0.1, 0.2, and 0.4 mM). Nevertheless, any DNA inter-nucleosomal fragments were induced neither by
onions nor by DPDS at the assayed concentrations.

Figure 4. Inter-nucleosomal DNA fragmentation. HL-60 cells were exposed to various concentrations
of onion, garlic, and their distinctive organo-sulfurs for 5 h. DNA was extracted from cells and was
subject to 2% agarose gel electrophoresis at 50 V for 90 min. M: DNA size marker.
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3.4. DNA Single Strand Breaks

Both vegetables induced a significant (p ≤ 0.001) increase in the tail moment (TM) at all tested
concentrations. On the contrary, only DADS (garlic with organosulfur) was able to induce a significant
(p ≤ 0.01) increase of this parameter at 28 and 56 µM (Figure 5).

Figure 5. HL60 DNA integrity measured by the comet assay after 5 h of treatment with different
concentrations of the tested compounds. Data are expressed as a TM parameter [54]. Statitiscal
significance compared with a negative control: *** p ≤ 0.000 and ** p ≤ 0.01 for mean values of three
independent replicates.

3.5. Methylation Status

The relative normalized expression of three repetitive sequences (Alu M1, LINE-1, and Sat-α)
studied in HL-60 cells treated with different concentrations of Allium sp. vegetables, DPDS, and
DADS is shown in Figure 6. After one-way ANOVA and post hoc Tukey’s test, statistical results
showed a significant hypermethylation level at LINE-1 and Sat- α repetitive sequences at the highest
concentration tested of onion and DPDS. Moreover, garlic exhibited a significant hypermethylation
status at the highest concentration tested in LINE-1 and at the lowest concentration tested in Sat-α
sequences. Contrarily, a significant hypomethylation level of both assayed concentrations of DADS
and garlic is shown in the Alu M1 repetitive sequences. The rest of the concentrations showed a similar
methylation level to that of the normalized control.
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Figure 6. Methylation status of Allium sp. vegetables, DADS, and DPDS in HL-60 cells. Relative
normalized expression data of each repetitive element (Alu M1, LINE-1, and Sat-α). Values represent
the mean ± SE from three independent experiments. * p ≤ 0.05.

4. Discussion

4.1. In Vivo Assessment of the Safety, Protection, and Lifespan Modulation

Garlic samples and onions have traditionally been used as food sources around the world across
centuries likely due to their demonstrated particular flavor but also due to the health benefits, such as
the prevention of cardiovascular diseases, cancer, and even aging [7]. Despite their popularity, the
number of systematic, integrated, and multifocal studies assessing the genotoxic, antigenotoxic, and
health span effects are scarce, and even less for assessing their distinctive organosulfur compounds
(DADS and DPDS).

Our in vivo DNA stability studies (genotoxicity, antigenotoxicity, and longevity) were carried out
using D. melanogaster flies. These organisms are widely used as a genetic animal model due to their
homology with several mammal models in biological, physiological, and neurological traits [67,68].
It was demonstrated that more than 70% of human disease-causing genes have a functional homolog
in this fly model [69]. Additionally, this particular model was also largely used to evaluate the
genotoxicity of different biological compounds and molecules due to its accuracy, robustness, and
reproducibility [70–72].

Carcinogen molecules and mutagenic properties should be taken into account and carefully
evaluated in every complex mixture to be proposed for food. For this reason, genotoxic screening
assays are considered as the first mandatory step, with the Drosophila wing spot test one of the most
reliable methodologies to be employed as an ideal assay to evaluate biological products aimed to use
in human and animal diets. To our knowledge, this is the first study to characterize the genotoxic effect
of garlic, onion, and their two major and distinctive organosulfur constitutive molecules (DADS and
DPDS, respectively) using the D. melanogaster animal model. Previous studies determined the lack of
mutagenicity of these vegetables in a Salmonella typhimurium and in yeast models [73,74]. It has also
been demonstrated that aqueous garlic extracts (5% v/v), fine garlic powder supplementation (7.5, 5,
and 2.5 g/kg body weight), and fresh garlic bulb extracts (3, 6, and 12 mg/culture) were safe in vitro
(cell lines) and non-animal models [74–77].
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Our results for onion supplementation in the Drosophila model demonstrated a lack of genotoxicity,
which validates previous reports obtained by Kulkarni et al. [78] in several Salmonella strains. In
the same way, DPDS and DADS, which are the active principles in garlic and onion, were also
non-genotoxic in our SMART trials. Despite the fact that onions are widely employed in the human
diet, the number of genotoxicity studies carried out in DPDS are scarce [37,79]. Our study was the first
to test the safety and protective effects of this compound using in vivo models. Nevertheless, previous
reports assessing these particular molecules are controversial. For instance, Musk et al. demonstrated
that DADS induced both chromosome aberrations and sister chromatid exchanges, characterized as
genotoxic effects, at lower concentrations (below 0.07 mM) in a Chinese hamster ovary cell line [80].
However, this controversy could partially be explained due to methodological differences (in vivo vs.
in vitro models) and the concentrations were tested. Controversial results are commonly found for a
single molecule when it is tested in different assays and in vivo carcinogenic trials are needed.

One of the strategies for coping with the food and environmental genotoxic compounds is to
identify effective antimutagens and anticarcinogens in order to increase man’s exposure to them as a
way to decrease the cancer incidence [81]. This is the second step in the search of real nutraceutical
substances. In our case, antigenotoxicity assays were conducted using hydrogen peroxide as a positive
geno-toxicant model since this compound is able to induce somatic mutation and mitotic recombination
in D. melanogaster [65], which affects the DNA integrity and stability.

Similar results to ours were reported on the desmutagenic activity of onions. Ethanolic extracts
showed a strong inhibitory effect against NDBA in prokaryotes [32] and Welsh onion juice suppressed
the mutagenic activity of benzo[a]pyrene (BaP) and 4-nitroquinoline 1-oxide (4QNO) and reduced
the number of 2,4-dimethoxybenzaldehyde (DMBA)-induced chromosome aberrations in rats [82]
while onion supplementation protected D. melanogaster against urethane-induced DNA damage [31].
All those reports validate our findings since onion supplementation reduced the mutagenic effects of
H2O2 by as much as 65% in a dose-dependent manner. In the same way, DPDS showed des-mutagenic
properties when it was tested as an individual molecule despite being at a lower extent when compared
with the effect on onions. In this sense, DPDS strongly increased dimethyl nitrosamine (DMN)
mutagenicity in S. typhimurium [37] and reduced NPYR/NDMA-induced oxidative DNA damage in
HepG2 cells at 5 µM [38]. However, our study is the first one demonstrating that Allium vegetables
have a protective role against H2O2 induced damage using the D. melanogaster model, which is a more
adequate model widely used to extrapolate to mammals. This effect could be due to its well-known
scavenging potential against free-radicals of their respective organosulfur compounds [18,83,84] since
similar results were observed in the vegetables and simple molecule assessments.

The desmutagenic activity of garlic and different types of garlic extracts were previously described
in several induced mutagenesis models. It was demonstrated that garlic and garlic water extracts
protected against gamma-radiation and cyclophosphamide in mice [75,77,85]. In the same way,
methanolic and ethanolic garlic extracts, even prepared by different processing methods (raw, grilled,
and pickled), showed inhibitory activities on H2O2-induced DNA damage in human leukocytes [86]
and reduced the chromosomal aberrations induced by DMBA in mice bone marrow [87]. In the
same way, raw garlic methanolic extracts reduced the urethane mutagenicity in standard and high
bioactivated D. melanogaster crosses [31]. In our experimental design, garlic clearly behaves as an
anti-genotoxin, which could potentially be explained by the fact that concurrent experiments using
DADS as simple molecule also inhibited the 95% of the H2O2-induced DNA damage. This desmutagenic
property of DADS was previously proposed in several reports using different mutagenic substances
such as (+)-anti-7β,8α-dihydroxy-9α,10α-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), styrene
oxide (SO), 4-NQO, aflatoxin B1 (AFB1), N-nitrosodimethylamine (NDMA), and 1-nitrosopyrrolidine
(NPYR) [38,79,88].

Longevity assays are one of the most simple and efficient methodological approaches to evaluate
the aging and anti-aging effects of simple compounds and complex mixtures on higher organisms.
D. melanogaster is considered a very useful genetic model on aging research since its similarities
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with human metabolic pathways controlling nutrient uptake, storage, and metabolism [89,90].
In addition, this model has a short lifespan compared with similar in vivo models, which reduces the
experimental periods.

To our knowledge, this is the first assessment on the effect of onions, DADS, and DPDS on the D.
melanogaster lifespan and one of the few available assessing this effect in garlic samples [91]. These
results support the hypothesis that individual organosulfur compounds can reduce longevity to some
extent. These compounds could primarily be responsible for the apparent reduced viability observed in
some cohort groups of flies. A similarity between the complete food and their distinctive compounds
in the lifespan behavior is observed, although, in the case of vegetables, the lifespan is not significantly
reduced when compared to the concurrent negative controls. Being onion and garlic complex mixtures
of many individual molecules, the final outcome of such a complex trait longevity appears to be
an additive combination of positive and negative synergic effects of the molecular components of
vegetables with many of them phenolic and organosulfur, which are not included in the present
study. Previous reports showed beneficial effects of garlic extracts on animal lifespan, including D.
melanogaster and C. elegans [21]. Those differences could be due to the different tested samples being
raw garlic in our study and garlic extracts in previous reports. In this sense, Prowse et al. demonstrated
the insecticidal activity of garlic juices across several life stages of flies at a wide range of concentrations
(0.25%–5%) in two dipteran pests (Delia radicum and Musca domestica) [92]. These results agree with
the fact that similar but not significant effects on lifespan were caused by garlic, onion, DADS, and
DPDS in our D. melanogaster experiments. It is noticeable that high doses were used for medicinal
purposes in human acute treatments [93]. Thus, high dosages of garlic would not be advisable to be
used in long-term chronic treatments due to the adverse effects that could be associated, even though
nutraceuticals or dietary supplements include the bioactive compounds at higher doses than those
used in this study.

4.2. In Vitro Assessment of the Cytotoxic, Clastogenic Activities and Methylation Status

Our results showed that only garlic and DADS have a strong cytotoxic effect and induce a
clear DNA pro-apoptotic inter-nucleosomal fragmentation against HL60 cells. Previous reports
demonstrated that garlic and DADS exerted a chemo-preventive effect through different pathways:
(i) by increasing apoptosis and Bcl-2 expression and decreasing p53 protein and Bax expression in
lung cancer cells (NCI-H1299) [94], (ii) by increasing intracellular ROS in A549 cells [22], (iii) by
inhibiting cell proliferation in CaCo-2 and HT-29 cells repressing histone deacetylase activity and
histone hyperacetylation and increasing the p21(waf1/cip1) expression [95], and (iv) by inducing
apoptosis by activating caspase-3 expression in HL60 cells [96]. In addition, Yang et al. observed
that DADS supplementation (0.5, 10, and 25 µM) had a pro-apoptotic effect in COLO 205 cell line
by inducing reactive oxygen species and caspase cascade [23]. On the contrary, the cytotoxic effect
exerted by the onion and DPDS is relatively weak and their molecular mechanism is less clear. As an
example, Sundaram and Milner [97] demonstrated that DPDS (100 µM) was an inefficient molecule
to inhibit the cell growth and to induce programmed cell death in tumor cells (HCT-15). However,
Wu et al. suggested that onion oil induces cell cycle arrest and apoptosis through ROS production
in A549 cells [35]. It was also proposed that the carcinogenic inhibition mechanism of DADS is
mediated through a modulation of the P450 cytochrome–dependent monooxygenases and/or the
acceleration of carcinogen detoxification through phase II-enzymes upregulation [98,99]. In our case,
the chemo-preventive properties of raw onion samples and DADS were weak despite the type of
sample employed.

DNA inter-nucleosomal fragmentation was defined as one of the hallmarks of cellular apoptosis,
even though it cannot be considered as a single criterion to assess the apoptotic cell death [100]. In order
to determine the ability of our tested substances to induce DNA breaks in HL60 cells, we employed a
single cell gel electrophoresis (comet) assay, which it is widely used to detect the apoptotic capability
of mixtures and single compounds to induce DNA damage [101,102]. Currently, this procedure is



Foods 2019, 8, 222 14 of 19

being widely employed to evaluate the DNA stability in normal and carcinogenic cell lines against
different substances, due to its robustness and reliability [103]. In this methodology, we employed the
tail moment (TM) index, which is an accurate parameter to quantify the DNA migration and, thus,
the DNA fragmentation status [54]. With this parameter, we differentiated apoptosis-induced from
necrosis-induced DNA damage as follows: a TM > 30 is considered to be an indicator of apoptosis and
a TM between 5 and 30 a.u. (arbitrary units) is considered to be a necrotic process [104].

In this study, we determined for the first time the DNA-damage exerted by garlic, onion,
DADS, and DPDS through the alkaline “comet assay” in HL60 leukemic cells in order to assess
their potential anticarcinogenic effect. Our results (Figure 6) showed that onion and garlic induced
DNA damage in HL60 by necrosis (short tails, TM < 2) being in concordance with our cytotoxic and
DNA-fragmentation results. Similar results were observed in DADS and DPDS, but in a lower extent,
which suggested the total absence of proapoptotic activity in the entire compound tested at the different
assayed concentrations.

Our results with DPDS disagree with those obtained by Arranz and Haza [38], who showed that
DPDS could act in a positive dose-dependent manner since the higher concentrations tested (>5 µM)
caused DNA damage in HepG2 cells (data not shown) by the comet assay. Arranz et al. assaying
higher concentrations of DADS (>5 µM), showed DNA damage in HepG2 cells in the alkaline comet
assay [38]. However, controversial results were also reported by Belloir et al., which suggests that
DADS was not genotoxic at concentrations between 5 to 100 µM in the same in vitro model [105].

Despite a non-significant relationship shown in the methylation status of Allium sp. vegetables,
DPDS, and DADS in the three repetitive sequences studied, a general tendency to hypermethylate the
genomic randomized-distributed sequences of the HL-60 cells (LINE-1 and Sat-α) is shown.

Based on our knowledge, no previous studies about the in vitro effects that Allium sp. vegetables,
DPDS, and DADS have in the methylation status of three repetitive sequences of treated HL-60 tumor
cells. Taking into account that methylation of the repetitive sequences is understood as an important
genomic protective mechanism [62,106], high concentrations of Alliium sp. vegetables and DPDS could
have positive effects on tumor cells, that could be an interesting chemo-preventive effect. On the other
hand, negative effects on tumor cells are related to garlic and DADS in the short repetitive element
studied (Alu M1).

5. Conclusions

To sum up, our experimental results provide the evidence that (i) garlic, onion, DADS, and DPDS
are safe substances, which exert an antigenotoxic effect against oxidative mutagens in a dose-dependent
manner. (ii) The decrease of lifespan induced in the Drosophila animal model by DPDS at the highest
concentrations could be a signal that the long-term consumption of complex mixtures is safe only at
low concentrations. (iii) Garlic exerted a clear chemo-preventive effect, with its distinctive organosulfur
DADS as the most likely cause of such activities. (iv). The slight cytotoxic effect of onions is
probably mediated by a non-apoptotic mechanism. Overall, this study could be a baseline for further
supplementary studies to clarify the cell death pathway induced by garlic and DADS. (v) A general
increase of the methylation status in LINE-1 and Sat-α repetitive sequences of HL-60 treated cells are
shown in onions, garlic, and DPDS, which is related to a genomic protective mechanism.
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