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Abstract
We examined how object categories and scene contexts act in conjunction to structure the acquisition and use of statistical
regularities to guide visual search. In an exposure session, participants viewed five object exemplars in each of two colors in each
of 42 real-world categories. Objects were presented individually against scene context backgrounds. Exemplars within a category
were presented with different contexts as a function of color (e.g., the five red staplers were presented with a classroom scene, and
the five blue staplers with an office scene). Participants then completed a visual search task, in which they searched for novel
exemplars matching a category label cue among arrays of eight objects superimposed over a scene background. In the context-
match condition, the color of the target exemplar was consistent with the color associated with that combination of category and
scene context from the exposure phase (e.g., a red stapler in a classroom scene). In the context-mismatch condition, the color of
the target was not consistent with that association (e.g., a red stapler in an office scene). In two experiments, search response time
was reliably lower in the context-match than in the context-mismatch condition, demonstrating that the learning of category-
specific color regularities was itself structured by scene context. The results indicate that categorical templates retrieved from
long-term memory are biased toward the properties of recent exemplars and that this learning is organized in a scene-specific
manner.
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Introduction

To perform most real-world activities, people must find and
attend to objects that match current goals. Over the last 20
years or so, it has become clear that the guidance of attention
to relevant objects is driven not only by stimulus salience and
top-down templates, but also by the history of previous selec-
tive actions, i.e., selection history (Awh et al., 2012; Failing &
Theeuwes, 2018; Le Pelley et al., 2016). Core phenomena of
this type include inter-trial effects (Kristjansson et al., 2002;
Li & Theeuwes, 2020; Talcott & Gaspelin, 2020), reward
learning (Anderson et al., 2011; Hickey et al., 2010), learned
distractor rejection (Gaspelin et al., 2015; Stilwell et al., 2019;
Wang& Theeuwes, 2018), and target probability cuing (Geng
& Behrmann, 2005; Jiang et al., 2013).

These phenomena show that the human visual system
tracks recent statistical regularities predicting the proper-
ties that are likely to be associated with task-relevant ob-
jects, and that this learning can play a major role in
where, and to what objects, attention is directed.
However, to be of any practical use in real-world visual
search, such learning must be structured, because the vi-
sual world is itself structured by elements such as scene
context and object category. As an example of contextual
structure, learning that targets in a kitchen have tended to
appear near the sink may predict the location of the next
target in the kitchen, but it does not provide much infor-
mation about the likely location of targets when the con-
text changes to a park. Similarly, for target category struc-
ture, learning that recent car targets have tended to be red
may help predict the color of the next car, but it does not
provide much predictive value when the target category
changes to a shoe or a cat.

In the literature on attention guidance by learning and his-
tory, there has been extensive work on the structural role of
scene context in statistical learning of target properties, broad-
ly collected under the term “contextual cuing” (for a review,
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see Sisk et al., 2019). Most of this work has focused on con-
textual structure in the learning of target position regularities
(e.g., Brockmole et al., 2006; Chun & Jiang, 1998), though a
smaller group of studies has focused on the learning of surface
feature properties, such as object shape (Chun & Jiang, 1999)
or rewarded color (Anderson, 2015).

In contrast with this extensive literature, there has been
relatively little work conducted to understand how target ob-
ject category structures the acquisition of recent statistical
properties to guide visual search. Zelinsky and colleagues
pioneered work on the role of object category in visual search,
but this has tended to focus on the role of mature category
representations rather than on the learning of recent statistical
regularities. Using real-world images of teddy bears as targets,
Yang and Zelinsky (2009) showed that visual search could be
guided, visually, to targets that were defined only by their
category “teddy bear.” One plausible mechanism by which
this occurs is through retrieval of long-term visual representa-
tions of teddy bears (either as individual exemplars or as a
category prototype), which then functions as a template to
guide attention towards targets with similar visual properties
in the search display. Consistent with this view, further work
on categorical search has shown that attention is guided to-
ward objects in the search array that share visual features with
the target category (Alexander & Zelinsky, 2011), especially
typical features of that category (Maxfield et al., 2014), and
that attention is guided best to the target when it is cued at the
basic level, presumably because visual variability increases at
the superordinate levels (e.g., all chairs have legs but not all
furniture has legs) (Yu et al., 2016).

Recently, Bahle et al. (2021) examined how the learning of
new statistical regularities biases the expression of this type of
category-specific template representation. The experiments
were divided into two sessions, an exposure session and a vi-
sual search session. In the former, participants viewed six pho-
tographs of objects from each of 40 familiar real-world catego-
ries (e.g., “cat,” “chair”). The objects were presented individu-
ally, and participants simply categorized each as “natural” or
“man-made.” Critically, the exemplars from a category had a
similar color (e.g., all six chairs were black). In the search
session, participants completed a categorical search task
(Yang & Zelinsky, 2009). They were shown a category label
cue on each trial (e.g., “chair”) and searched through an object
array for any category member. Critically, the color of the cat-
egory member in the search array either matched (e.g., black
chair) or mismatched (e.g., brown chair) the color of the cate-
gory exemplars from the exposure session. Search was reliably
faster in the match condition, indicating that participants had
acquired color regularities from the exposure session, that these
regularities were organized by object category, and that
category-specific learning influenced the formation of the visu-
al template guiding search. In analogy to the term “contextual
cuing,” where recent statistical regularities are organized by

context, Bahle et al. (2021) termed these processes “categorical
cuing,” because category-specific learning cued the probable
features of the target object, facilitating search. In general, the
results indicate that the long-term category representations
guiding visual search are surprisingly malleable and sensitive
to recent statistics. Such sensitivity could be implemented either
by preferential retrieval of recent exemplars (in an exemplar-
based model of category structure) or by modification of a
summary representation of the category (in a prototype model).

The effects in Bahle et al. (2021) were further notable be-
cause: (1) the bias toward the properties of recent exemplars
was observed for highly familiar, over-learned categories; (2)
there was a relatively large set of structural units over which
learning occurred (40 categories and 40 colors); (3) the learn-
ing specifically influenced the guidance of attention, with the
effect primarily attributable to differences in the time required
to orient attention and gaze to the target; and (4) learning
transferred across tasks, from a superordinate-level classifica-
tion task to a visual search task. Furthermore, category-
specific learning was extended tomultiple recent colors within
each category. That is, match effects were observed when
participants were exposed to exemplars of two different colors
in each category; search was more rapid for either exposed
color relative to a third, novel color.

Categorical and contextual structure in the learning of re-
cent statistical regularities have been thus far studied separate-
ly, but it is plausible that they will interact in visual search: the
learning of category-specific regularities could itself be struc-
tured by search context. For example, one might observe that
highlighters in Clyde’s office tend to be green, whereas
highlighters in Jenn’s office tend to be yellow, leading to the
formation of search templates that differ on the dimension of
color when searching for a highlighter in one office versus the
other. Addressing this issue is theoretically important, because
it helps distinguish between an account of statistical learning
effects on visual search in which different sources of learning
are applied independently versus an account in which they are
dependent. Moreover, evidence for dependency would illumi-
nate the nature of the memory representations’ function in
generating learning and selection history effects, indicating
that information about recent contexts and target features are
stored in a bound, episodic format. Consistent with this pos-
sibility is evidence that reward learning effects in visual search
are applied in a scene-specific manner (Anderson, 2015). In
sum, the present research question advances understanding of
how the multiple structural constraints inherent in real-world
environments are combined to guide visual search.

Experiment 1

In Experiment 1, we investigated the possible joint constraint
of context and category in the learning and application of
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statistical regularities guiding visual search (Fig. 1). In an
exposure session, participants viewed 420 object exemplars:

five in each of two different colors for each of 42 different
real-world categories. Each object was presented against a
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Fig. 1 Overview of method and design of Experiment 1. a Participants
first completed an exposure session, in which they viewed 420 objects:
five object exemplars in each of two colors in each of 42 different
categories. The objects were presented against scene backgrounds for
2 s each. The participants completed a Plausibility-Rating task, in which
they rated how likely it would be to encounter an object of that type in a
scene of that type on a scale of 1 (extremely likely) to 6 (extremely
unlikely). b In the exposure session, two categories were paired that
had exemplars with the same two possible colors (e.g., red or blue staplers
or pencil sharpeners). These two categories were paired with two different
scene background photographs in which each object type might plausibly
appear (e.g., classroom and office). The assignment of object colors to
scene backgrounds was complementary. For example, in the exposure

session red staplers appeared against the classroom background and blue
staplers against the office background. This assignment was reversed for
sharpeners: blue against the classroom and red against the office. c
Participants then completed a visual search session. On each trial, they
first saw a scene background for 500 ms, then a text cue describing the
target category for 800 ms, followed by a 1 s delay and a search array of
eight objects. They searched for the object that matched the category label
and reported the orientation of a superimposed letter “F”. The target
object in the search array either matched or mismatched the category-
specific color of exemplars associated with that background during the
exposure session. Note that the category label was always presented in red
font color and did not cue the color of the target object.
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scene background photograph. To ensure that participants
attended to the relationship between object and scene, their
task in the exposure session was to rate the plausibility that
an object of that type would be found in a scene of that type.

The associations between category-specific colors and
scenes in the exposure session were structured as follows.
Two categories were paired that had exemplars with the
same two possible colors (e.g., red or blue staplers and
red or blue pencil sharpeners). These two categories were
matched with two different scene background photographs
in which each object type might plausibly appear (e.g.,
classroom and office). The assignment of object colors to
scene backgrounds was complementary. For example, red
staplers appeared against the classroom background and
blue staplers against the office background. This assign-
ment was reversed for sharpeners: blue against the class-
room and red against the office. Thus, each scene back-
ground was associated with exemplars of both colors, but
from different categories.

Participants then completed a visual search session, in
which the targets were new exemplars from the object catego-
ries used in the exposure phase. They were cued with a cate-
gory label (e.g., “stapler”) displayed against a scene context
background. Then, they searched through an array of eight
objects to find the target and report the orientation of a
superimposed letter. Wemanipulated the consistency between
the scene background and the target color. In the context-
match condition, the target color was consistent with the color
associated with that combination of category and scene back-
ground from the exposure session (e.g., a red stapler target
presented against the classroom background). In the context-
mismatch condition, the color of the target was not consistent
with that association (e.g., a red stapler target presented
against the office background).

If the statistical learning of recent, category-specific color
regularities is organized by scene context, when participants
view the search target label presented against a scene back-
ground, they should tend to instantiate a search template that is
biased toward the color of items from that category previously
associated with that context, leading to more efficient guid-
ance, and thus lower RT, in the context-match condition than
in the context-mismatch condition.

Method

Participants Participants (18–30 years old) were recruited
from the University of Iowa undergraduate subject pool
and received course credit. All participants reported normal
or corrected-to-normal vision. Human subjects’ procedures
were approved by the University of Iowa Institutional
Review Board. We collected data from 60 participants to
ensure sufficient power to detect a small-to-medium-sized
effect in the central contrast of interest. Seven participants

were replaced for failing to meet an a priori criterion of 85%
accuracy in the search task. Participant gender was not
collected.

Apparatus Due to novel coronavirus restrictions, the experi-
ment was conducted online. It was programmed with
OpenSesame software (Mathôt et al., 2012) and converted to
Javascript for web-based delivery on a JATOS server main-
tained by the University of Iowa. Because participants com-
pleted the experiment using their own computers, we report
stimulus size in absolute pixel values.

Stimuli. The stimulus set comprised 504 object images
and 42 scene backgrounds. In addition, there were 150
distractor objects (75 artifact, 75 natural) for the search
session that did not overlap with the experimental catego-
ries. Most stimuli were adapted from the set used in Bahle
et al. (2021). Additional object and scene background im-
ages were acquired using Google image search and existing
photo databases, such as Adobe Stock images. Each object
image was sized to fit within a 150 × 150 pixel square and
was presented against a white background within that
square region. There were 42 object categories (22 natural
and 20 artifact) and 12 exemplars in each category, six in
each of the two colors per category (see Appendix Tables 2
and 3 for a complete list of categories, colors, and scene
contexts). The colors for each category were chosen so that
there was significant color variability across categories. For
each participant, five of the six exemplars from each color
in each category were randomly chosen for the exposure
session. The final exemplar was assigned to the search
session.

Exposure session. For the exposure session, object catego-
ries were paired, and each category within a pair had the same
possible two colors. Colors were then assigned in a comple-
mentary fashion to two scene backgrounds (e.g., red staplers
and blue sharpeners against the classroom background; blue
staplers and red sharpeners against the office background).
There were two possible configurations of this type for each
pair of categories, and this was chosen randomly for each pair
for each participant. In this design, since each scene was as-
sociated with the two possible colors, any effect of color
match in the search session must have been mediated by ob-
ject category. Scene context backgrounds (1,024 × 768 pixels)
were presented in grayscale to avoid interactions with the
target color manipulation. The object exemplar was presented
centrally, superimposed over the background image.

Search session. For the search session, eight objects were
presented on a virtual circle (radius of 300 pixels), again
superimposed over a scene context background. The location
of the first object was selected randomly within a range of 1°
to 45°, with the remaining objects each offset by 45° around
the virtual circle. All arrays contained one target item
matching the category label cue. Seven distractor objects were
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chosen randomly without replacement from the set of 150
distractors. Each search array contained a total of four artifacts
and four natural objects. For example, if the target was an
artifact, three artifacts and four natural objects were chosen
from the set of distractors. Target and distractor locations were
also chosen randomly. A small, black letter “F” on a white
background (Arabic font, approximately 16 × 22 pixels) was
superimposed centrally on each object. The orientation of the
“F” (facing left or facing right) was chosen randomly for each
object. The target F was quite small, typically requiring fixa-
tion of the target object to discriminate its orientation. This
was designed so that the guidance of attention would be im-
plemented with overt shifts of gaze, which has been demon-
strated to increase sensitivity to differences in attention guid-
ance (Hollingworth & Bahle, 2020). The cue that appeared
before each search array described the category of the target
object (e.g., “stapler”) and was presented in red, Arabic font.

Procedure. Upon initiating the experiment, participants
provided informed consent and received instructions. They
were told that they would complete two sub-experiments.
They then received instructions for the exposure session.
Note that they did not receive instructions for the search ses-
sion until after completing the exposure session. Thus, during
the exposure session, they were not aware that they would
subsequently perform a search task.

For the exposure session, the trial began with a screen
instructing the participant to “Press Spacebar” to start the
trial. After doing so, there was a 200-ms delay, followed by
the object stimulus displayed against the scene background
for 2,000 ms. Participants then saw a response screen ask-
ing them to rate how likely it would be to encounter an
object of that type in a scene of that type on a scale of 1
(extremely likely) to 6 (extremely unlikely). (Note that, al-
though each background was chosen as a plausible context
for the object category, it was not necessarily the case that
there would be a high probability of encountering the object
there. For example, a bear could plausibly appear in a forest
scene, but encountering a bear in any given forest is unlike-
ly. In contrast, encountering a chair in a living room scene
is very likely.) They entered the corresponding number on
the keyboard.

In the exposure session, participants completed five blocks
of 84 trials. In each block, they viewed one exemplar in each
of the two colors for each of the 42 categories. Trials in a block
were randomly intermixed. In total, there were ten exposures
per category (five for each of the two colors per category). For
the plausibility-rating task, mean plausibility across the cate-
gories was 2.64 (SD = 0.31).

Participants then completed the search session. Each trial
began with a centrally presented “Press Spacebar” screen.
Once pressed, there was a 200-ms delay before a scene back-
ground was presented for 500 ms. Then, a category label cue
was centrally presented over the scene background (e.g.,

“stapler”) in red font for 800 ms, which indicated the category
of the search target in the upcoming search display. The use of
a category label cue required participants to retrieve a repre-
sentation of the target category from memory as a template to
guide visual search. Once the cue was removed, the scene
background was presented alone for 1,000 ms. Finally, the
search display was presented over the scene background.
Participants were instructed to find the cued object and report
the orientation of the “F” superimposed on it, and to do so as
quickly and as accurately as possible. Participants pressed the
“P” key to indicate a right-facing “F” (normal) and the “Q”
key to indicate a left-facing “F” (mirror reversed).

Response terminated the search display. A smiley emoti-
con was displayed for 200 ms following a correct response,
and a frowny emoticonwas displayed for 500 ms following an
incorrect response.

The search session began with instructions indicating the
change in task. Participants first completed ten trials of
practice using target object categories and scene back-
grounds not used in the exposure session. Then, they com-
pleted one experimental block of 168 search trials. Each of
the 42 categories was the target of search four times. Two
trials per category were in the context-match condition, in
which the color-category-background association from the
exposure session was retained (e.g., a red stapler against the
classroom and a blue sharpener against the office). Two
other trials were in the context-mismatch condition, in
which the color-background associations were reversed.
Trials in the block were randomly intermixed. Each of the
exemplars in the search phase was repeated once (e.g., the
same red stapler exemplar was the target against the class-
room in the context-match condition and against the office
in the context-mismatch condition). This reduced possible
variability across conditions, potentially increasing sensi-
tivity to the effect of context match. The entire experiment
lasted approximately 1 h. Participants were encouraged to
take short breaks between exposure blocks and between the
exposure and search sessions.

Results

Search accuracy For the visual search task, mean accuracywas
95.36% correct. The arcsine square root transformed values
did not differ as a function of context match, F(1, 59) = 1.06,
p = .308, adj ƞp

2 = .001.

Manual response time (RT) The critical measure was mean RT
in the search task as a function of context match condition.
The analysis was limited to correct search trials. We also used
a two-step RT trimming procedure. First, RTs shorter than
250 ms (not plausibly based on target discrimination) or lon-
ger than 6,000 ms were eliminated. Next, RTs more than 2.5
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standard deviations from the participant’s mean in each con-
dition were eliminated. A total of 8.02% of trials was elimi-
nated. The results are reported in Fig. 2, collapsing across
object type. The full set of marginal means is reported in
Table 1.

Analysis 1 ANOVA.We analyzed the RT data with a 2 (context
match: match, mismatch) × 2 (object type: artifact, natural)
repeated-measures ANOVA, treating participant as a random
effect. We included object type as a factor to examine poten-
tial differences in learning and context as a function of super-
ordinate category, though we did not develop predictions for

this factor, as previous work has shown equivalent categorical
cuing for artifacts and natural objects (Bahle et al., 2021).
Adjusted ƞp2 values accompany each test (Mordkoff, 2019),
correcting for the positive bias inherent in standard ƞp

2. There
was a reliable main effect of context match, with lower mean
RT on context-match (1,372 ms) compared with context-
mismatch (1,405 ms) trials, F(1, 59) = 6.48, p = .014, adj
ƞp2 = .084. There was also a reliable effect of object type, with
lower mean RT for natural objects (1,371ms) than for artifacts
(1,412 ms), F(1, 59) = 10.1, p = .002, adj ƞp

2 = .132. These
factors did not interact, F(1, 59) = 0.48, p = .492, adj ƞp2 = -
0.009.

Table 1 Marginal means for
response time and search accuracy
from Experiments 1 and 2

Experiment 1

Match Mismatch

Artifact 1,340 ms (SE = 27.34); 95.34% 1,424 ms (SE = 24.10); 94.87%

Natural 1,351 ms (SE = 23.72); 95.02% 1,391 ms (SE = 22.46); 95.87%

Experiment 2

Plausibility-Rating Task Match Mismatch

Artifact 1,449 ms (SE = 25.13); 96.58% 1,493 ms (SE = 26.55); 95.63%

Natural 1,418 ms (SE = 18.85); 96.48% 1,446 ms (SE = 25.21); 96.10%

Classification Task Match Mismatch

Artifact 1,487 ms (SE = 20.45); 96.21% 1,512 ms (SE = 23.84); 96.46%

Natural 1,431 ms (SE = 22.11); 95.80% 1,434 ms (SE = 24.29); 96.63%

A B

Fig. 2 Visual search results for Experiment 1 (a) and Experiment 2 (b). Mean search response time (RT) as a function of context match condition. Errors
bars are condition-specific, within-subject 95% confidence intervals (Morey, 2008)
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Analysis 2 Mixed effects. In a complementary analysis of the
RT data, we sought to draw both population inferences (from
the participant sample) and inferences about the population of
real-world categories (from the sample of categories). Thus,
we employed a linear mixed-effects approach with a cross-
classified random-effects structure, simultaneously treating
participant and category item as random effects (Baayen
et al., 2008). In addition, treating category item as a random
effect increased our confidence that the observed results were
robust not only across the set of participants but also across the
set of categories.

The fixed-effects structure included context match condition
and object type (natural, artifact). We then determined the
random-effects structure best supported by the data. We began
with the maximal random-effects structure and then simplified
the model in the manner recommended by Matuschek et al.
(2017), removing random-effects components that did not signif-
icantly improve model fit (via likelihood ratio test) or that pro-
duced critical failures in model convergence. The final random-
effects structure included an intercept for participant, an intercept
for category, and a slope for object type by participant.

Analyses were implemented with the lme4 package (ver-
sion 1.1-26) in R (version 4.0.3). Degrees of freedom for the
statistical tests were estimated using the lmerTest package
(version 3.1-3).

There was a reliable main effect of context match condi-
tion, with lower RT on context match compared with context
mismatch trials, F(1, 9,116) = 9.13, p = .003. There was no
reliable main effect of object type, F(1, 42.4) = 0.99, p = .326,
and no reliable interaction between object type and context
match, F(1, 9,114) = 0.48, p = .491. Thus, the mixed-effects
results support those from the ANOVA with respect to the
context-match effect, and allow inferences from this sample
of categories to the population of categories.

Discussion

In Experiment 1, we demonstrated that the learning of
category-specific color regularities was itself structured by
scene context. When searching for an object type in a scene,
participants selectively retrieved, and instantiated as a tem-
plate, properties of recent exemplars from that category which
had appeared in that particular scene. Thus, the two sources of
structure in the learning of object regularities, scene contexts
and object categories, are dependent.

Experiment 2

The design of Experiment 1 meant that the two colors within a
category were associated with backgrounds from different
scene categories (e.g., red staplers with a classroom and blue

staplers with an office). In Experiment 2, we sought
to associate the colors with different exemplars within a scene
category. For example, red staplers in the exposure session
appeared against classroom 1 and blue staplers against class-
room 2. In the search session, the target object color either
matched (e.g., red staplers against office 1) or mismatched
(e.g., red staplers against office 2) the color-scene association.
This allowed us to examine whether the structure imposed by
scene context operates at the level of scene exemplars or at the
level of scene categories. If the former, then we should repli-
cate the results of Experiment 1. If the latter, then no match
effect should be observed, as both colors within an object
category were associated with the same scene category.

In addition to this primary goal, we sought to examine the
effect of attention in the learning of object-category-to-scene
associations. In the search session, one group of participants
completed the plausibility-rating task used in Experiment 1,
which required attending to the relationship between object
and scene. A second group of participants simply classified
each object as “man-made” or “natural,”which did not require
attention to the background or to the relationship between
object and background. Previous work has shown that atten-
tion to the relationship between two entities is often required
to form an association (Gwinn et al., 2019; Rosas et al., 2013;
Sisk et al., 2019)

Method

Participants We collected data from 120 participants, 60 in
each exposure session task. Twelve participants were replaced
for failing to meet an a priori criterion of 85% accuracy in the
search task.

Apparatus Experiment 2 was also conducted online using the
same apparatus.

Stimuli. The object stimulus set was comprised of 504
object images, 84 scene backgrounds, and the same set of
150 distractors as used in Experiment 1. Additional scene
context images were acquired so that each category was
assigned to one type of scene context (e.g., staplers to offices,
sharpeners to classrooms), and each color was assigned to a
different scene context exemplar (e.g., red staplers to office 1
and blue staplers to office 2). The viewpoints and general
composition of the two backgrounds were chosen to be quite
similar. Finally, some category colors were replaced to in-
crease color variability. The complete set of object categories,
colors, and backgrounds is listed in the Appendix Tables 2 and
3. Note that, unlike Experiment 1, each scene background was
associated with only one color. Thus, this design cannot elim-
inate the possibility that, during search, scene context facili-
tated search for a particular color in general (rather than in a
category-specific manner). However, the results of
Experiment 1 render this possibility unlikely.
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Procedure. For the exposure session, the plausibility-rating
task was the same as in Experiment 1. For the classification
task, participants were asked to classify the exemplar as either
“Man-made” or “Natural.” They viewed a response screen
similar to that for the plausibility-rating task, but with the
options “1” for man-made and “6” for natural. For the
plausibility-rating task, mean plausibility across the categories
was 2.11 (SD = 0.48). For the classification task, mean accu-
racy was 96% (SD = 0.09).

Next, participants completed one experimental block of
168 search trials with the same trial structure as in
Experiment 1.

Results

Search accuracy For the visual search task, mean accuracy
after the classification exposure task was 96.3% correct and
after the plausibility-rating task was 96.2% correct. A 2 (ex-
posure task) × 2 (context match) repeated-measures ANOVA
was conducted over the arcsine square root transformed prob-
abilities. There was no main effect of match, F(1, 118) = .096,
p = .757, adj ƞp

2 = -.008, or exposure task, F(1, 118) = .012, p
= .914, adj ƞp2 = -.008. There was a reliable interaction be-
tween task and match, F(1, 118) = 4.77, p = .031, adj ƞp2 =
.031. For the plausibility-rating task, there was a numerical
trend toward higher accuracy in the context-match condition
(96.5%, SD = 0.2%) than in the context-mismatch condition
(95.9%, SD = 0.2%), F(1, 59) = 2.29, p = .136, adj ƞp

2 = .021.
For the classification task, there was a numerical trend toward
higher accuracy in the context-mismatch condition (96.5%,
SD = 0.2%) than in the context-match condition (96.0%, SD
= 0.2%), F(1, 59) = 2.53, p = .117, adj ƞp2 = .025.

Manual RT The RT data were trimmed using the same proce-
dure as in Experiment 1. A total of 7.83% of trials was elim-
inated. The results are presented in Fig. 2, collapsing across
object type. The full set of marginal means is reported in
Table 1.

Analysis 1: ANOVA. We analyzed the RT data with a 2
(exposure task) × 2 (context match) × 2 (object type) mixed-
factor ANOVA. Again, we did not develop predictions for the
object type factor. There was a reliable main effect of context
match, with lower mean RT on context match (1,446 ms)
compared with context mismatch (1,469 ms) trials, F(1, 118)
= 7.65, p = .007, adj ƞp2 = .053. There was no reliable effect of
exposure task, F(1, 118) = 0.09, p = .771, adj ƞp

2 = -.008, and
no reliable interaction between exposure task and context
match, F(1, 118) = 1.37, p = .244, adj ƞp2 = .003. There was
a reliable effect of object type, with lower mean RT for natural
objects (1,432 ms) compared with artifacts (1,486 ms), F(1,
118) = 46.96, p < .001, adj ƞp2 = .279. Object type did not
interact with exposure task or context match, F(1, 118) = 3.36,
p = .069, adj ƞp2 = .019; F(1, 118) = 1.43, p = .235, adj ƞp2 =

.004, respectively, nor was there a three-way interaction, F(1,
118) = 0.04, p = .835, adj ƞp

2 = -.008. In planned follow-up
tests, the match effect was statistically reliable following the
plausibility-rating task, F(1, 59) = 7.89, p = .007, adj ƞp2 =
.103, but not the classification task, F(1, 59) = 1.04, p = .312,
adj ƞp2 = .001.

Analysis 2: Mixed effects. The fixed-effects structure in-
cluded the factorial combination of exposure task and context
match condition. The final random-effects structure included an
intercept for participant and an intercept for category. There
was a reliable main effect of context match condition, with
lower RT on context-match compared with context-mismatch
trials, F(1, 18,531) = 10.29, p = .001. There was no reliable
main effect of exposure task, F(1, 118) = 0.08, p = .778, and no
reliable interaction between exposure task and context match,
F(1, 18,531) = 2.27, p = .132. Object type did not produce a
reliable main effect,F(1, 40) = 2.20, p = .146, it did not produce
reliable two-way interactions with either exposure task or con-
text match, F(1, 18,531) = 3.78, p = .052 and F(1, 18,531) =
1.44, p = .229, respectively, and there was no reliable three-way
interaction, F(1, 18,531) = 0.054, p = .800.

In planned follow-up analyses, we examined the effect of
context match separately for the plausibility-rating and classi-
fication tasks. There was a reliable main effect of context
match in the former, F(1, 9,263) = 11.42, p < .001, but not
in the latter, F(1, 9,229) = 1.40, p = .236.

Discussion

In Experiment 2, we replicated the context-match effect when
the two colors within an object category were associated with
different exemplars from the same scene category (rather than
from different scene categories, as in Experiment 1). Thus, the
results confirm that individual scene exemplars structure the
acquisition of statistical regularities within object categories
and that this structure influences the feature values instantiated
in a categorical search template. The secondary goal of
Experiment 2 was to examine the role of attention during
exposure in the learning of structured statistical regularities.
The “classification task” did not require attention to the rela-
tionship between object and scene background. There was no
reliable context match effect in this condition, but there was a
numerical trend, and there was no reliable interaction between
exposure task and context match. Thus, although the results
are broadly consistent with a role for attention in learning, they
do not support strong conclusions on this specific question.

General discussion

Our previous work has shown that statistical learning of the
surface feature properties of recently observed objects is
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organized by real-world object categories, influencing visual
search in a category-specific manner (Bahle et al., 2021).
Such learning is also structured by scene and array context
(Anderson, 2015; Chun & Jiang, 1999), consistent with the
larger literature on contextual cuing. In two experiments, we
demonstrated that these two forms of structure operate in a
dependent manner. Visual search was influenced by within-
category color regularities, and this category-level learning
was contingent on the scene context in which the exemplars
appeared.

The first key finding was that object category templates were
biased toward the properties of recently viewed exemplars rather
than depending solely on more generalized knowledge acquired
over extensive experience. That is, although red may not be a
frequent color for cars given one’s overall experience with cars,
it is possible to quickly set up a bias toward red items when
searching for a car if the last few car exemplars have been red
(see also Bahle et al., 2021). Note that, unlike Bahle et al., there
was no baseline condition in which the target color matched
neither of the exposed colors. However, the context effects ob-
served here allow the same inference: It would not have been
possible to observe a context effect if search were not guided by
the color of the recent exemplars observed in that context. In
addition, since the learning effects in Bahle et al. specifically
influenced the guidance of attention (as assessed by eye move-
ment measures), we can be confident that the present differences
in RT were largely attributable to differences in the guidance of
attention and gaze (rather than to other processes, such as post-
selection target confirmation or response execution).

The second key finding was that category-specific biases
were episodic in the sense of being structured by scene con-
text. That is, the structures imposed by object category and
scene context are not independent of each other; rather,
category-level learning is organized by scene context. This
dependency in category learning likely reflects the fact that
the properties of real-world category members often vary sys-
tematically as a function of context (e.g., yellow taxis are
typical in New York, whereas black taxis are typical in
London). Of course, categorical search for real-world,
overlearned categories will depend heavily on relatively stable
representations acquired over a lifetime of experience (Yang
& Zelinsky, 2009). However, the functional expression of the
category representation is biased by local changes in the sta-
tistical distribution of features and to changes in context.

The incorporation of both category and contextual con-
straints may arise through the underlying format of the memory
representation. The properties of category exemplars are likely
to be stored as part of a bound, episodic representation of a
scene (e.g., Hollingworth, 2006). Exemplar retrieval would
then depend on the scene context that cues the previous episode
(Anderson, 2015; Anderson & Britton, 2019; Bramao et al.,
2017; Godden & Baddeley, 1975; Hardt et al., 2010;
Richardson & Spivey, 2000). In turn, a bias to retrieve

exemplars associated with the current scene would, in the pres-
ent design, tend to lead to retrieval of exemplars of one color
and not the other, producing the present effects. Although this
account places exemplar retrieval at the heart of the observed
results, we do not consider the data as mediating between com-
peting exemplar (e.g., Medin & Schaffer, 1978; Nosofsky,
1987) and prototype (e.g., Minda & Smith, 2001; Rosch,
1975) theories of categorization. For example, the results could
be accommodated by a prototype model assuming that retrieval
of a small number of highly accessible exemplars can influence
the use of the category in addition to that derived from a more
stable summary representation (e.g., Allen & Brooks, 1991).

Currently, there is conflicting evidence concerning whether
learning of and guidance by statistical regularities is driven by
implicit or explicit memory. In the contextual cuing literature,
learningwas initially thought to be implicit, but there is evidence
that themagnitude of the effect correlates positivelywith explicit
awareness (Annac et al., 2019; Vadillo et al., 2016), although
this correlation is not always observed (Colagiuri & Livesey,
2016). In addition, contextually specific guidance effects are
observed both when participants are aware of the associations
(e.g., Brockmole & Henderson, 2006) and when awareness is
much more limited (e.g., Chun & Jiang, 1998). Here, we fo-
cused on the guidance process itself rather than on questions of
implicit versus explicit memory, and thus we did not include a
test probing explicit memory. Moreover, such a test would have
needed to have been administered between the exposure and
search sessions, because the associations changed in the search
session. This would have delayed and potentially contaminated
the transfer of learning across tasks, because test items instanti-
ating different associations would have been necessary. The
issue of awareness could be addressed more directly in a mod-
ified version of the categorical cuing paradigm that implements
a repeated search design (similar to contextual cuing), where
explicit memory for category-color consistencies could be
assessed at the end of the experiment. The advantage of the
current, two-session design is that it demonstrates cross-task
transfer that is often absent in other forms of statistical learning.

Finally, we observed a reliable context match effect in the
plausibility-rating task, when participants needed to attend to
the association between the scene context and the category
color during the exposure phase. No reliable context match
effect was observed in the classification task, when attending
to the relationship was not required to complete the exposure
task. The between-task interaction did not reach reliability,
limiting our ability to draw strong conclusions about a differ-
ence in the context match effect as a function of attention. In
the reward learning literature, there is some evidence that
context-specific learning depends on attending to the associa-
tion between context and reward value (Gwinn et al., 2019).
Our results are suggestive that attention may play a role in the
context-specific learning of category-specific regularities, but
this remains an open question.
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Appendix

Table 2 Target object types, categories, colors, and corresponding scene contexts used in Experiment 1

Category 1 Category 2 Context 1 Context 2 Color 1 Color 2

Horse Dog Stable Yard Brown Black

Bed Frame Leather Chair Empty Room Living Room Black Brown

Bean Onion Grocery Store Vegetable Garden Yellow Red

Watch Backpack Library Locker Black Yellow

Bell Pepper Pear Farm Fridge Green Yellow

Apple Grape Carnival Kitchen Green Red

Snake Frog Water Pond Green Brown

Potato Mushroom Pantry Factory Red Brown

Dress Shirt Perfume Closet Makeup Area Purple Green

Cup Pot Dining Room Stove Black Grey

Cat Laptop House Electronic Store Black Grey

Shoe Hairbrush Foyer Bathroom Red Blue

Sharpener Stapler Classroom Office Blue Red

Car MP3 Parking Lot Farmers Market Blue Red

Rat Rabbit Alley Flower Garden Black Brown

Crab Beetle Grass Tree Blue Red

Bird Butterfly Birdhouse Sky Red Blue

Dress T-Shirt Bedroom Dresser Blue Yellow

Camera Hat Art Studio Mall Black Blue

Tricycle Leaf Driveway Street Yellow Red

Bear Squirrel Forest Mountain White Brown

1313Attention, Perception, & Psychophysics  (2022) 84:1304–1316

1 3



Table 3 Target object types, categories, colors, and corresponding scene contexts used in Experiment 2

Artifact/
Natural

Target Set 1 Set 2 Scene Context

Natural Apple Green Red Carnival

Bean Yellow Red Grocery Store

Bear Black Brown Forest

Beetle Green Red Tree

Bell Pepper Green Yellow Farm

Bird Brown Blue Birdhouse

Butterfly Blue Orange Sky

Cat Black Orange House

Cherry Black Red Farmer’s Market

Crab Blue Red Water

Dog Black Brown Yard

Frog Brown Green Pond

Grape Green Red Kitchen

Horse Black Brown Stable

Leaf Green Red Street

Mushroom Brown Red Factory

Onion Red Yellow Vegetable Garden

Pear Yellow Green Fridge

Potato Brown Red Pantry

Rabbit Brown Black Flower Garden

Rat Brown Black Alley

Snake Brown Green Grass

Artifact Backpack Black Yellow Locker

Bed Frame Black Brown Empty Room

Camera Black Purple Art Studio

Car Blue Red Parking Lot

Cup Black Green Dining Room

Dress Blue Yellow Bedroom

Dress Shirt Purple Green Closet

Hairbrush Blue Red Bathroom

Hat Blue Brown Mall

Laptop Black Red Electronics Store

Leather Chair Black Brown Living Room

MP3 Player Blue Red Recording Studio

Perfume Red Purple Make-up Store

Pot Black Red Stove

Sharpener Blue Red Classroom

Shoe Red Blue Foyer

Stapler Blue Green Office

T-Shirt Red Yellow Dresser

Tricycle Yellow Blue Driveway

Watch Black Gold Library
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