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PURPOSE. Patients with central vision loss face daily challenges on performing various visual
tasks. Categorizing facial expressions is one of the essential daily activities. The knowledge of
what visual information is crucial for facial expression categorization is important to the
understanding of the functional performance of these patients. Here we asked how the
performance for categorizing facial expressions depends on the spatial information along
different orientations for patients with central vision loss.

METHODS. Eight observers with central vision loss and five age-matched normally sighted
observers categorized face images into four expressions: angry, fearful, happy, and sad. An
orientation filter (bandwidth ¼ 238) was applied to restrict the spatial information within the
face images, with the center of the filter ranged from horizontal (08) to 1508 in steps of 308.
Face images without filtering were also tested.

RESULTS. When the stimulus visibility was matched, observers with central vision loss
categorized facial expressions just as well as their normally sighted counterparts, and showed
similar confusion and bias patterns. For all four expressions, performance (normalized d0),
uncorrelated with any of the observers’ visual characteristics, peaked between �308 and 308
filter orientations and declined systematically as the filter orientation approached vertical
(908). Like normally sighted observers, observers with central vision loss also relied mainly on
mouth and eye regions to categorize facial expressions.

CONCLUSIONS. Similar to people with normal vision, people with central vision loss rely
primarily on the spatial information around the horizontal orientation, in particular the
regions around the mouth and eyes, for recognizing facial expressions.
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Patients whose macular area is affected by eye diseases such
as AMD often have to use their peripheral vision to explore

the world around them. Many essential daily activities such as
face recognition are severely affected by this visual impair-
ment.1–5 Because the ability to correctly categorize and
interpret facial expressions is essential for social interaction,
it is important to gain the knowledge of what visual information
is crucial for facial expression categorization in patients with
central vision loss. Not only will the information help us
understand the functional performance of these patients, but it
may also serve as a guide for their visual rehabilitation. For
instance, if we know where the critical information resides in
face images, with the advanced computer vision and image
processing technology, we may selectively enhance the
contrast of face images to increase the saliency of the critical
information, which could be beneficial for people with central
vision loss to categorize facial expressions.

To evaluate the perception of facial expressions, various
tasks can be used such as detection (detecting the presence of
expressions in face images) and categorization (categorizing
face images into several predefined categories according to
expressions). Each facial expression contains many signatures.
For normal vision, it has been shown that features around the
mouth region are important for both the detection6 and the
categorization of facial expressions.7 For facial expression

categorization, regions other than the mouth have been shown
to be important for the task as well. For instance, recent
studies7,8 identified the eye region as being diagnostic for
categorizing facial expressions. By examining how performance
varied with information at the pixel level of face images, Yu and
colleagues7 found that nearly half of the variance of observers’
responses could be explained by the information content in the
mouth and eye regions. Further, it has been shown that while
low spatial frequency information contained within face images
is sufficient to support facial expression categorization, high
spatial frequency information is necessary for detecting an
expression.9–11 For people with central vision loss, a previous
study showed that these individuals, many of whom have
reduced spatial resolution, experience difficulty in detecting
the presence of facial expressions but not in categorizing these
expressions,12 a finding that is in accord with the notion of high
spatial frequency information being useful for facial expression
detection and low spatial frequency information for facial
expression categorization.

Besides the dimension of spatial frequency, retinal images
are also decomposed along the dimension of orientation during
early visual processing.13 Some research has explored how the
orientation of spatial information affects face identification in
people with normal vision14,15 and in people with central
vision loss.2 In these studies, observers were asked to perform a
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face identification task: reporting the identity of face images
when viewing the images filtered along different bands of
orientation. For people with normal vision and people with
central vision loss alike, identification performance was best
when face images contained information in the vicinity of the
horizontal orientation, and declined gradually when the filter
orientation deviated away from horizontal, with the worst
performance at the vertical orientation. To our knowledge,
there are no a priori reasons to indicate that the same spatial
information would be used for the two different tasks of face
identification and facial expression categorization. Therefore, it
is of no surprise that recently, studies have been performed to
evaluate the dependency of facial expression categorization on
the orientation of spatial information in people with normal
vision.7,8 By testing four facial expressions (angry, fearful,
happy, and sad), Yu and colleagues7 found that young adults
with normal vision categorize facial expressions most effec-
tively based on the spatial information around the horizontal
orientation that captures primary changes of facial features
across expressions, and the categorization performance
declines systematically as the filter orientation approaches
vertical. The link between the horizontal information and the
successful categorization of facial expressions was also found
for disgust expression but not for surprise expression.8

In the present study, we assessed the dependency of facial
expression categorization on the orientation of spatial infor-
mation for people with central vision loss. Based on the prior
findings,2,12 we expect that people with central vision loss rely
primarily on the same spatial information that is used by
people with normal vision. In addition, we examined
confusion patterns among different facial expressions across
filter orientations, and the relationship between the informa-
tion content at the pixel level and observer’s response, to gain
a fuller understanding of the critical information for facial
expression categorization for people with central vision loss.
For comparison, we also performed testing on a group of age-
matched controls with normal vision.

METHODS

Observers

Eight observers with long-standing central vision loss and five
age-matched observers with normal or corrected-to-normal
vision participated in the study. Table 1 shows the age, sex,
diagnosis, time since diagnosis, and best-corrected distance
visual acuity of the observers. All normal vision observers have
no known eye disease or prior history of eye disease. For each
observer with central vision loss, we used a Rodenstock
scanning laser ophthalmoscope (Model 101; Rodenstock,
Munich, Germany) to map the central scotomas and to identify
the location of the preferred retinal locus for fixation (fPRL) for
each eye. This measurement was not performed for the normal
vision group. The research followed the tenets of the
Declaration of Helsinki and was approved by the Committee
for Protection of Human Subjects at the University of
California, Berkeley. Observers gave written informed consent
before the commencement of data collection. All observers
were tested binocularly in a dimly lit room, and completed the
experiment in one session lasting 1 to 2 hours.

Apparatus and Stimuli

Custom-written MATLAB (version 7.7.0; Mathworks, Natick,
MA, USA) software and Psychophysics Toolbox16,17 were used
to control the experiment on a Macintosh computer (MacBook
5.1; Apple, Palo Alto, CA, USA). The face images were

presented on a gamma-corrected SONY color graphic display
(model: Multiscan E540; resolution: 1280 3 1024; dimensions:
39.3 cm 3 29.4 cm; refresh rate: 75 Hz; SONY, Tokyo, Japan).

Our stimuli and the psychophysical procedures for testing
were similar to those described by Yu and colleagues.7 Four
facial expressions, angry, fearful, happy, and sad, were tested.
The source face stimuli were selected from the NimStim Set of
Facial Expressions.18 To avoid the possible interfering effect of
mouth openness, only closed-mouth versions were used in the
present study. To ensure that each face image was to be
presented to each observer without repetition, we generated
more test faces by morphing between the images of two
persons of the same sex and with the same facial expression
(see Yu and colleagues7 for detailed morphing procedures).
Ultimately, a total of 140 different face images were obtained
for each facial expression. We then applied an orientation filter
to restrict the information within these face images. The filter
had a wrapped Gaussian distribution with an orientation
bandwidth r¼ 238 with the center of the filter ranged from 08

(horizontal) to 1508 in steps of 308. For each filtered image,
only information within the filter orientation 6 the bandwidth
was retained. All face images were rendered in gray scale,
cropped to an oval shape, and normalized to equate the root
mean square (RMS) contrast (0.12) and mean luminance (0.5).
A gray background (29 cd/m2) was used. Figure 1 gives
examples of the four facial expressions in the unfiltered
(original) and the six filtered conditions. Accuracy for
categorizing facial expressions for each of the seven conditions
was measured.

Procedures

Twenty trials were tested for each of the 28 (four facial
expressions 3 seven filtering conditions) and for each observer.
A total of 560 trials were randomized and divided into four
blocks with 140 trials per block. At the beginning of the
experiment, each observer was given a practice session in
which a different set of face images was used. Based on the
performance in the practice session, an image exposure
duration was selected for each observer (0.1 to 4.0 seconds;
Table 1) to target the categorization accuracy (averaged across
the four facial expressions) for the unfiltered condition at
approximately 0.8. The actual average categorization accuracy
during the testing ranged between 0.74 and 0.93. Statistics
confirmed that performance for the unfiltered condition was
similar between the two observer groups (F1,11¼0.09; P¼0.77
from a repeated-measures ANOVA with facial expression as the
within-subject factor and group as the between-subject factor).

Before each trial, observers were instructed to fixate on a
white dot centered on the screen. An experimenter pressed a
mouse-button to initiate the trial after ensuring that observers
were ready for the trial. A face image was then presented for a
predefined, fixed amount of time (Table 1), followed by a
white-noise post-mask for 500 ms. Observers were then given a
response screen consisting of four words in large print (angry,
fearful, happy, and sad), and provided their response verbally.
The experimenter entered the observers’ response by clicking
on the respective word on the screen. Viewing distance was 40
cm for the age-matched controls. For each observer with
central vision loss, proper adjustment was made to the viewing
distance based on visual and ergonomic preference (20 to 40
cm; Table 1). Appropriate near corrections were provided to all
observers to compensate for the accommodative demand for
near viewing. No additional low vision devices were used.
Table 1 also listed the angular image size (width of image). At a
viewing distance of 40 cm, the angular subtense of the face
images was 88 (horizontal extent) by 11.98 (vertical extent),
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which is similar to the angular size of a real-life face at a
distance of 85 cm (a comfortable social distance).

RESULTS

Categorization Accuracy

The averaged categorization accuracy was plotted as a function
of the orientation of the spatial filter for each facial expression
and observer group in Figure 2. Individual data for observers
with central vision loss were also plotted. The chance
performance for the four-alternative forced-choice task is

0.25. Any performance lower than the chance level may be
due to sampling error or response bias. First, for the unfiltered
condition, happy expression outperformed the other three
expressions (Ps � 0.001). Second, performance changed with
the orientation of the filters; in other words, there was an
orientation tuning for performance. The tuning curves are
roughly symmetrical around the horizontal orientation, and are
similar between the two groups of observers. Averaged across
observers, the tuning curves are bell-shaped for angry, happy,
and sad expressions, and are inverted-bell shape for fearful
expression. The difference between the pattern of categoriza-
tion accuracy for the fearful expression versus the other

TABLE 1. Summary of Observers’ Characteristics (Age, Sex, Diagnosis, Time Since Diagnosis, Best-Corrected Distance Visual Acuity, and fPRL) and
Viewing Conditions (Stimulus Duration, Viewing Distance and Image Size)

Observer

Age,

y Sex

Diagnosis

Time Since

Diagnosis,

y

Best-Corrected

Distance Visual

Acuity (logMAR) fPRL Stimulus

Duration,

s

Viewing

Distance,

cm

Image

Size,

WidthOD OS OD OS OD OS OD OS

CVL1 86 M AMD AMD 12 12 0.78 0.78 0.028 T, 5.358 B 1.408 T, 6.488 B 4.00 40 8.08

CVL2 74 F AMD AMD 8 8 0.98 0.48 3.238 N, 2.178 B 2.888 T, 0.518 B 1.00 25 12.88

CVL3 83 F AMD AMD 11 11 0.50 0.60 1.018 T, 4.448 B 0.768 N, 1.478 B 3.50 35 9.18

CVL4 76 F AMD AMD 6 6 0.54 1.16 0.958 N, 0.728 A 2.488 T, 6.428 B 1.50 40 8.08

CVL5 75 F AMD AMD 5 8 0.32 1.10 0.838 T, 0.568 B 10.128 T, 4.208 B 0.64 40 8.08

CVL6 81 M AMD AMD 7 7 0.62 0.58 1.568 N, 2.538 B 0.868 T, 3.428 B 2.00 40 8.08

CVL7 52 M TC TC 38 38 0.86 0.98 1.128 N, 8.988 B 1.778 N, 9.688 B 1.00 40 8.08

CVL8 73 F AMD AMD 3 3 1.10 1.40 3.488 N, 5.418 B 8.868 T, 13.288 B 3.00 20 15.98

NV1 63 F / / / / �0.04 �0.04 / / 0.10 40 8.08

NV2 66 F / / / / �0.02 �0.04 / / 0.10 40 8.08

NV3 69 F / / / / �0.02 �0.02 / / 0.10 40 8.08

NV4 70 M / / / / 0.00 0.04 / / 0.15 40 8.08

NV5 62 M / / / / 0.00 0.00 / / 0.10 40 8.08

CVL, impaired vision with central vision loss; NV, normal vision; TC, toxoplasmic chorioretinitis; T, temporal; N, nasal; A, above; B, below from
fovea (directions listed here are in the visual field domain).

/, not applicable.

FIGURE 1. Example stimuli of the four facial expressions, angry, fearful, happy, and sad, in the unfiltered (original) and the six filtered conditions.
The spatial filter was applied along six orientations:�608 (1208), �308 (1508), 08 (horizontal), 308, 608, and 908 (vertical).
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FIGURE 2. Proportion correct of categorizing facial expression is plotted as a function of orientation of filter. The black symbols and lines represent
data from normally sighted controls (NV). The gray symbols and lines represent data from observers with central vision loss (CVL). Dashed lines

denote the categorization performance for unfiltered images. For each set of data, performance for the vertical filter orientation is plotted twice at
�908 and 908. Error bars represent 6 1 SEM.
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expressions can be accounted for by response biases (see
results on d0 and Response Bias). In the following, we shall
examine the stimulus-response confusion matrix and the
energy content in face stimuli for a more comprehensive
evaluation.

Confusion Matrices

A confusion matrix with data accumulated across observers
was constructed for each condition and observer group (Figs. 3
and 4). In each matrix, the rows are targets presented (Y), and
the columns are observer responses (X). Each cell contains the
proportion of response X given a target Y. The diagonal
elements represent the proportion of correct categorization of
a given target. The rest of the matrix shows the pattern of
confusions (false alarms and misses). False alarms refer to the
errors of reporting a facial expression as being present when it
was absent. Misses refer to the errors of reporting a facial

expression as being absent when it was present. For both

groups, the overall performance was best for unfiltered face

images (proportion correct in the cells along the diagonal were

quite high) and for recognizing happy expression (proportion

correct was generally high for the cell along the diagonal that

corresponded to happy expression in each matrix). The

confusion rate (values in the ‘‘off-diagonal’’ cells) between

facial expressions increased as the filter orientation ap-

proached vertical, except when the images contained fearful

expressions. For fearful expression, categorization accuracy

was lowest when filter orientation was at or near the

horizontal (�308, 08, and 308) and was highest when filtering

is along the vertical. As revealed later, high accuracy in

categorizing fearful expression for faces filtered with the

vertical orientation should be discounted by observers’ bias.

Both observer groups showed high miss rate at 6608 filtered

conditions for both angry and sad expressions. Both groups

FIGURE 3. Confusion matrices for the central vision loss group. One matrix was constructed for each of the seven filtering conditions (unfiltered,
�608,�308, 08, 308, 608, and 908 filtered conditions) with the data averaged across all observers in the group. The average confusion matrices across
the six filtered conditions (‘‘6 Filtered’’) and across all conditions (‘‘6 Filteredþ Unfiltered’’) were also constructed. In each matrix, the rows are
targets presented (Y), and the columns are observer responses (X). Each cell contains the proportion of response X given a target Y. The diagonal
elements represent the proportion of correct categorization of a given target. The rest of the matrix shows the pattern of confusions (false alarms
and misses). The value under each column stands for the total proportion of response X for a given condition.
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also had more false alarms for sad expression compared to the
other expressions for all except the 908 filter orientation.

d0 and Response Bias

From the confusion matrices, we computed d-prime (d0) values
to examine observers’ ability to distinguish target-present from
target-absent using the equation d0 ¼ /�1(1 – Miss Rate) �
/�1(False-Alarm Rate). We further obtained a relative d0

(referred to as normalized d0 in this paper) by subtracting the
d0 of the unfiltered condition from the d0 of each filtered
condition. The normalization of d0 can help minimize the
impact of possible faults of the source face stimuli. Our analysis
also showed that the normalization removed the possible
influence of viewing conditions (e.g., viewing distance) on the
outcome measure. We also calculated response bias, c ¼
�(/�1[1 – Miss Rate] þ /�1[False-Alarm Rate])/2. A non-zero
value of c indicates that observer biases toward a type of
response regardless of the stimulus.19 These calculations were
done for each facial expression, filtering condition and
observer.

In Figure 5, the averaged normalized d0 was plotted as a
function of the orientation of the spatial filter for each facial

expression and observer group. A two-factor repeated-mea-
sures ANOVA (facial expression 3 orientation with group as the
between-subject factor) was performed. The tuning curves are
roughly symmetrical around the horizontal filter orientation,
appear to be bell-shaped for all four facial expressions (F5,55¼
75.27, P < 0.0005), and are similar between the two observer
groups (F1,11 ¼ 0.02, P ¼ 0.89). The change in shape of the
tuning curve for fearful expression, from inverted-bell shape
for categorization accuracy (Fig. 2) to bell-shaped for normal-
ized d0 (Fig. 5), may be explained by observers’ response
biases. All tuning curves have flat peaks, as demonstrated by
the similar performance across the three orientations near the
horizontal (�308, 08, and 308; F2,22¼ 1.76, P¼ 0.20), while the
slope of the tuning curve (the change in performance between
the peak and the vertical orientation) varies across facial
expressions (F15,165 ¼ 11.18, P < 0.0005).

By fitting each of these tuning curves using a Gaussian
function, we quantified the orientation selectivity for each
facial expression and observer group using the tuning
bandwidths (full-width at half-maximum). We compared these
bandwidths for the two observer groups with those of
normally sighted young adults tested by Yu and colleagues.7

FIGURE 4. Confusion matrices for the normal vision group. Details are the same as in Figure 3.
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FIGURE 5. Normalized d0 as a function of orientation of filter for each facial expression and observer group. Dashed lines denote a normalized d0 of
zero. Data points plotted at �908 are the same as those at 908. Error bars represent 6 1 SEM.

TABLE 2. Lower and Upper Values of the 95% Confidence Intervals of Tuning Bandwidths for the Four Facial Expressions and the Three Observer
Groups: Observers With Central Vision Loss, Age-Matched Controls, and Normally Sighted Young Adults Tested by Yu and Colleagues7

Observer Group Angry Fearful Happy Sad

Central vision loss [738, 918] [688, 998] [948, 1058] [948, 1218]

Normal vision (older) [808, 988] [598, 1128] [908, 1018] [638, 1018]

Normal vision (young)7 [888, 988] [898, 1018] [958, 1038] [898, 1018]

FIGURE 6. Response bias, c, as a function of the orientation of filter for each facial expression and observer group. Dashed lines denote c of the
unfiltered condition. A negative value indicates a preference toward responding ‘‘present,’’ whereas a positive value indicates a bias toward
responding ‘‘absent.’’ Data points plotted at�908 are the same as those at 908. Error bars represent 6 1 SEM.

TABLE 3. Linear Regression Results for Three Observer Groups: Observers With Central Vision Loss, Age-Matched Controls, and Normally Sighted
Young Adults Tested by Yu and Colleagues7

Observer Group Intercept RMSmouth RMSeye RMSmouth 3 RMSeye R2
adj

Central vision loss Coefficient 0.48 �6.03 �2.38 / 0.46

sr2 0.45 0.08 /

P <0.001 <0.001 <0.001

Normal vision (older) Coefficient 0.45 �5.08 �2.48 / 0.31

sr2 0.29 0.08 /

P <0.001 0.002 <0.001

Normal vision (young)7 Coefficient 0.65 �9.80 �7.74 113.76 0.49

sr2 0.33 0.22 0.05

P <0.001 <0.001 0.004 <0.001

/, not applicable.
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For each observer group, bootstrapping was performed with
1000 iterations, based on which 95% confidence interval was
derived for each facial expression. As shown in Table 2, the
tuning bandwidth is similar across different observer groups
for all four expressions.

Figure 6 plotted response bias as a function of filtering
orientation for the four facial expressions and the two observer
groups. For the unfiltered conditions, no response bias was
found for happy and sad expressions for both observer groups
(Ps > 0.05). We observed small preferences toward the
‘‘absent’’ response (value > 0) for angry expression for the
central vision loss group (c¼0.36, t[7]¼6.61, P < 0.0005) and
for fearful expression for the age-matched control group (c ¼
0.56, t[4] ¼ 5.14, P ¼ 0.007). For the filtered conditions,
response bias varied depending on observer group, facial
expression, and filter orientation. Averaged across the four
expressions, response bias was found to be the largest at the
908 (vertical) filtered condition for both observer groups. As
shown in Figure 6, relative to the bias level at the unfiltered
condition, observers tended to have a bias toward ‘‘present’’
response for fearful expression and ‘‘absent’’ for angry, happy,
and sad expressions at the 908 filtered condition, although the
relative biases did not reach significance for fearful and sad
expressions for the central vision loss group. These results can
account for the shapes of the tuning curves shown in Figure 2
(inverted-bell for fearful expression and bell-shaped for angry,
happy, and sad expressions), and for the high false-alarm rates
for fearful expression and high miss rates for the other three
expressions in Figures 3 and 4.

Pixel Level Face Image Analysis

Following the analysis conducted by Yu and colleagues,7 we
examined the information content of face stimuli at the pixel
level and evaluated its relationship with observers’ response on
the group level. Specifically, we performed image subtraction
between each pair of different facial expressions for all seven
filtering conditions using average face images. Figure 7 shows
examples of images (between happy and angry expressions)
after subtraction and the four defined facial regions (eye, nose,
mouth, and the rest). To quantify the amount of information
content, RMS contrast was computed for each facial region of
the subtracted images. Linear regression was performed to
model the confusion rate (the proportion of response X given a
target Y averaged across observers within each group) as a
function of RMSeye (range: 0.020–0.083), RMSnose (range:
0.019–0.067), RMSmouth (range: 0.015–0.070) and RMSrest

(range: 0.005–0.019). The data were compiled across all
filtering conditions. Both the linear and two-way interaction
terms were examined. The results shown in Table 3 suggest

that observers’ response was mainly driven by the information
contained within the mouth and eye regions. The information
contained within the mouth and eye regions accounted for
46% of the total variance in observers’ response for observers
with central vision loss and 31% for the age-matched controls.
The results on sr2 (the squared semipartial correlation) show
that the mouth region provides more unique contribution to
the total variation in observers’ response than the eye region.

Relationship to Other Factors

Linear regression modeling was used to examine the possible
effects of observers’ characteristics (Table 1) on the individual
normalized d0. All combinations of orientation of filter and
facial expression were considered. Across observers, we found
that only age showed significant association with the outcome
measure (r ¼ �0.14, P ¼ 0.01) with older observers having
worse performance, but it merely accounted for approximately
2% of the difference in facial expression categorization
performance among the observers. No other observer factors
were significant predictors. Performance level was not
correlated with diagnosis (presence or absence of central
vision loss), time since diagnosis, best-corrected distance visual
acuities, and the locations of fPRL (OD, OS, or the better eye).

DISCUSSION

Similar to face identity processing,20 facial expression process-
ing is also strongly tuned to horizontal orientation.7 The
current study assessed the dependency of facial expression
categorization performance on the orientation of spatial
information, and showed that the finding on horizontal tuning
extends to older adults and people with central vision loss.
After matching the baseline performance (categorization of
unfiltered face images) by adjusting viewing duration and
distance, we found little difference in performance (normal-
ized d0) between the central vision loss group and the normal
vision group. Previously, Yu and colleagues7 found that the
curve of normalized d0 versus the orientation of the spatial
filter was symmetrical bell-shaped with a flat peak for all four
facial expressions for normally sighted young adults. This also
appeared to be true for our central vision loss and age-matched
control groups. In addition, tuning bandwidth was similar
across observer groups for each of the four facial expressions
(Table 2), that is, orientation selectivity for each expression
was similar regardless of age and the presence of central vision
loss.

Pixel Level Face Image Analysis

Performance on categorizing facial expression is largely driven
by stimulus images.21 Across all observer groups, the largest
biases were observed at the vertical-filtered condition. As
shown in Figure 1, the information carried by the vertical and
its neighboring orientation channels primarily contains diag-
nostic features for fearful expression and varies minimally
across expressions. This explains the strong ‘‘present’’ bias for
fearful expression and ‘‘absent’’ bias for the other expressions.

By analyzing the information content within face stimuli at
the pixel level, we identified the key information contents (in
terms of facial region) for facial expression categorization.
Despite being older and having central vision loss, observers
with central vision loss (at the group level), like their age-
matched peers and young normally sighted people,7 mainly
relied on the mouth and eye regions to categorize facial
expression. The negative coefficients (Table 3) indicate that
larger energy changes occurred in these two regions produced

FIGURE 7. Examples of pixel-by-pixel image subtraction between
happy and angry expressions for unfiltered, horizontal-filtered, and
vertical-filtered conditions. The eye, mouth, and nose regions are
defined by the three white boxes (from top to bottom), respectively.
The remaining region is categorized as ‘‘the rest.’’ This analysis was
performed for all pairs of the four facial expressions investigated in this
study.
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lower confusion rate between the two expressions. Interest-
ingly, the mouth region always provides more unique
contribution than the eye region.

The generalization of the above findings to the real-life
circumstance may depend on the quality of the source face
stimuli, such as how well the source stimuli reflect the genuine
emotions.22 With nongenuine emotion, the face image may
contain exaggerated or non-natural features. For instance, if
testing stimuli contains some non-natural features in the mouth
region, it may cause an overstating of the importance of the
mouth region in facial expression categorization.

Happy Expression

Previous research has shown that happy expression often
outperforms the other expressions. Goren and Wilson23 found
that when moving face images from the fovea to the periphery,
performance of facial expression categorization was lowered
for angry, fearful, and sad expressions but not for happy
expression. They attributed the performance degradation to
the lack of high spatial frequency information in peripheral
vision, and suggested that happy expression is impervious to
the effect of eccentricity because of its particular saliency. The
advantage of recognizing happy expression in the periphery
has also been shown in another study,24 although the account
of the advantage remains elusive. In the present study, among
the four expressions, happy expression again yielded the
highest categorization performance for unfiltered faces and
most filtered faces (except when images were filtered along the
vertical orientation; Fig. 2). Our findings indicate that happy
expression has prominent diagnostic features that are carried
by a broad range of orientation channels. Even with some
substantial information removal (e.g., keeping only the
information near 308 orientation), the residual information
can still be adequate for observers with or without central
vision loss to accurately categorize happy expression.

Central Vision Loss

In face identification, performance of people with central
vision loss seems to suffer more from information removal
compared with performance of normal vision even when the
remaining information is along the horizontal orientation.2 In
the present study, we did not find any major difference in facial
expression categorization between the central vision loss and
normal vision groups. The two groups behaved similarly in
categorizing expressions for face images filtered along various
orientations. A caveat is that we matched the performance
accuracy between the central vision loss and the age-matched
control groups for the task of categorizing facial expressions of
unfiltered images.

In the present study, all observers performed the task using
their best available vision (i.e., fovea for normal vision group
and PRL for central vision loss group). We did not test the
control group in the periphery. A prior study showed that
when moving from normal fovea to normal periphery, the
accuracy of face identification versus filter orientation function
becomes flatter and more similar to the functions obtained in
observers with central vision loss.2 It is likely that for facial
expression categorization, our control group would also
behave more similarly to the central vision loss group (e.g.,
similar degradation in baseline performance, requiring larger
image size and/or longer stimulus duration) when using
peripheral vision. Given the adaptation that might have
occurred for observers with central vision loss,25 it is possible
that these individuals might even outperform the age-matched
control when tested at equivalent eccentricities.

Information content of face stimulus was determined by
the whole spectrum of spatial frequencies. It is known that
older adults tend to lose sensitivity in the high spatial
frequency range.26 For people with central vision loss, this
sensitivity is further reduced.27 Given their impaired high
spatial frequency processing, we expect that people with
central vision loss categorize facial expressions primarily by
retrieving configural information (i.e., the spatial relations
between facial features) through low spatial frequency
channels, which fortunately seems sufficient.12 Although
sensitivity can also reduce in the lower spatial frequency
range due to central vision loss,28 we did not find that
information content was a weaker predictor of the confusion
pattern for observers with central vision loss, compared with
normally sighted people. Note that some of the observers
with central vision loss performed the task at a shorter
viewing distance, which resulted in shifted spatial frequency
distributions of the face images. This makes it necessary to
obtain normalized d 0, which helps remove the possible effect
of individual variations in viewing conditions on the outcome
measure.

In comparison to what we observed in the laboratory, facial
expression categorization in real life may be much more
challenging for the individuals with central vision loss because
they may not be able to come very close to the target face to
retrieve useful information. In addition, faces are typically
present in a cluttered environment with other faces and
objects, which makes it more difficult to recognize due to
crowding (the increased difficulty in recognizing a target due
to the interference from nearby objects29). For faces, crowding
can occur both externally (adverse interference on face
recognition from nearby faces or objects)30 and internally
(impairment on recognizing a facial part from other parts of
the face).31 Unfortunately, crowding is more prominent in
peripheral vision on which people with central vision loss
heavily depend. Apparently, besides viewing distance and
crowding, other factors, such as viewing angle and illumina-
tion, also may influence everyday performance in facial
expression categorization.

A practical implication of our findings is that one way to
alleviate the difficulty of facial expression categorization for
people with central vision loss may be to selectively enhance
information along horizontal and nearby orientations, and
around the mouth and eye regions. Given the recent
advancements in the fields of computer vision and image
processing, the endeavor to isolate face images in real-life
scenes and to process the relevant information of face images
could present a viable option to help people with central
vision loss to recognize facial expressions.
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