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Abstract: Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining
keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal,
involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with
molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth
factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation,
and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability
was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell
proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays.
Cell migration assay was determined using the scratch wound healing test. Spheroid formation
was evaluated and the expression level of stem cell markers was investigated by western blot
analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell
proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin
19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of
abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness,
which could be a potential active ingredient in cosmeceutical products.
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1. Introduction

The skin is a large human organ that renews itself throughout life in supporting the complete
integrity ensuring its functions [1,2]. The skin renewal, especially epidermis, is critical for the barrier
function of human skin [3,4]. In particular, the renewal process, as well as the induction of massive cell
proliferation, are required in response to skin damages caused by several factors including ultraviolet,
heat, and wound [5,6]. The main regulators of epidermal renewal and skin homeostasis are keratinocyte
stem cells (KSCs) residing in the basal layer of epidermis and hair follicle [7]. Mature epidermis of
adult skin is a stratified squamous epithelium, in which only certain cells of KSCs and their derivative
progenitors at the innermost layer (stratum basale) preserve proliferative activity [8]. Such KSCs do not
only produce components of extracellular matrix (ECM), but also provide cytokines and growth factors
that govern the upper layer cells both for fundamental function and response to skin impairment [9].
In the aged skin, numbers and activities of KSCs were found to dramatically decrease, leading to the
gradually impairment of the epidermal barrier [10].
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Evidence suggests that KSCs express numerous proteins which play significant roles in retaining
stem cell-like phenotypes, such as keratin 19, β-catenin, ALDH1A1, and others. Keratin 19 is a marker
of skin stem cells which is found in the basal epidermal layer and the bulge region of the hair follicle.
It is proportionally reduced in expression from older donors [11,12]. β-catenin plays a role in the Wnt
signaling pathway and the cadherin complex which functions as a co-transcription factor of T-cell
factors/lymphoid enhancing factors (TCF/LEF) [13,14]. This pathway controls stem cell renewal and
regulates skin homeostasis and development [15,16]. In addition, ALDH1A1 is a detoxifying enzyme
that oxidizes aldehydes and converts retinol to retinoic acid, resulting in the elimination of toxic
byproducts of reactive oxygen species (ROS) and a rise in cellular antioxidant activity. A high level of
ALDH1A1 activity has been proposed to be a common feature of stem cells [17,18]. An increase in
stem cell-like phenotypes or stemness in keratinocytes may raise the rate of cell growth to maintain
epidermal homeostasis, as well as keep the skin healthy [19,20].

Collagen is the most common protein in the skin and bone [21]. The structure of collagen
is a triple helix molecule consisting of three polypeptide chains and repeating Gly-X-Y sequences.
Position X and Y are often occupied by proline and 4-hydroxyproline. Polypeptide chains form a
network in the extracellular matrix [22]. The collagen network helps to provide flexibility, strength to
support cellular structures, and maintain skin hydration [23]. Currently, about 28 types of collagen are
identified in human tissues, and approximately 80–90% of collagen is presented in the skin layer [24].
Collagen has been widely used in various applications, such as anti-aging and skin-hydrating for
cosmeceuticals [25,26], scaffolds for tissue engineering [27–29] and drug delivery systems [30–32].
In the past, major sources of collagen were bovine and porcine. There are some disadvantages of
these sources; for instance, forbidden usage due to religious restriction, and contamination of several
transmitted diseases such as bovine spongiform encephalopathy (BSE) and transmissible spongiform
encephalopathy (TSE), leading to a decrease in these use of collagen sources [26,33]. Therefore, marine
collagen sources from fishes [34–36], sponges [37], squids [38], jellyfish [39], and others gain high
interest due to no risk of transmitted diseases, their higher collagen content, low antigenicity, and a
reduction in environmental waste [33].

Abalone is a valuable marine gastropod that is wildly cultured. It consists of several molecules like
proteins, polysaccharides, and fatty acids. It has been used in traditional medicine and found to have
multiple biological activities, such as anti-oxidant, anti-inflammatory, and anti-cancer activities [40,41].
Many studies have found that marine collagen extracts could increase cell proliferation and the
migration of skin cells [35,36,42,43]. However, no research on the effects of abalone collagen on human
keratinocytes has been conducted. We hypothesize that abalone collagen could increase stem cell
activity of keratinocytes, as well as increase cell activity, including cell proliferation and migration.
The aim of this study is to compare the effects of abalone collagen (AC) extracts with molecular
weights of 3 kDa (AC 1) and 300 kDa (AC 2) to the epidermal growth factor (EGF) on cell proliferation,
migration, spheroid formation, and the expression levels of stem cell markers on human keratinocytes
(HaCaT cells).

2. Results and Discussion

2.1. Effects of Abalone Collagen Extracts on Cell Viability and Cell Proliferation

The proliferation of epidermal stem cells plays a key role in epidermis renewal and wound
healing [44,45]. The effect of AC 1 and AC 2 on cell viability and cell proliferation were investigated.
For cell viability assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
performed. The principle of this assay is to measure formazan crystal that is reduced by mitochondrial
reductase. However, there is limitation with this assay to apply MTT assay for cell proliferation
measurement [46,47]. Therefore, in this study, the number of cells was determined by quantifying ATP,
DNA, and total cellular protein content to study the proliferation effect of AC 1 and AC 2. Briefly,
HaCaT cells were cultivated in the presence of various concentrations of AC 1 (0–1000 µg/mL), AC 2
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(0–1000 µg/mL), and EGF (1–100 ng/mL) for 48 h. In terms of stem cell biology, EGF was shown
to stimulate stem cell proliferation and survival [48,49]. Besides, EGF can activate Wnt/β-catenin,
a cellular signal that dominates underlying mechanism for stemness maintenance of many stem
cells [50]. Therefore, EGF was used as a positive control in the present study because its direct link
to the molecular mechanism of stem cell control. Figure 1A shows that AC 1 (100 µg/mL) and EGF
(10 ng/mL) significantly enhanced cell viability when compared to the control, which is medium alone
(p < 0.05). In a high concentration of EGF (100 ng/mL), the cell viability significantly decreased when
compared to the control (p < 0.05). For cell proliferation, only AC 1 at the concentration of 100 µg/mL
significantly promoted cell proliferation in ATP, DNA, and Sulforhodamine B (SRB) assays as shown
in Figure 1B–D, respectively. From cell viability and cell proliferation results, 100 µg/mL of AC 1,
100 µg/mL of AC 2, and 10 ng/mL of EGF were selected for further study on their activities.
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Figure 1. Effect of keratinocytes in response to various concentrations of abalone collagen (AC) 1, AC
2 and EGF for 48 h compared to the control by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay (A), ATP assay (B), DNA assay (C) and Sulforhodamine B (SRB) assay (D).
Data represent the means obtained from three independent experiments ± SD. * p < 0.05 compared to
the control.

2.2. Abalone Collagen Extracts Induces Epithelization

Epithelization was found to link with the activity of epidermal stem cell during the wound
healing process [44,51]. The cell movement activity of keratinocytes over a wounded space was futher
investigated as described in Materials and Methods. The scratch test was performed in HaCaT cells
treated with AC 1 (100 µg/mL), AC 2 (100 µg/mL), or EGF (10 ng/mL) in Figure 2A. The percentage of
wound covered at different time points was shown in Figure 2B. At 6 and 12 h after the scratch test,
AC 1 (100 µg/mL) significantly stimulated wound closure more effectively than EGF (10 ng/mL) and
the control (p < 0.05) did. At 24 h after the scratch test, the wound covered by cells treated with AC 1
(100 µg/mL) was higher than that of the control, but similar to those treated with EGF (10 ng/mL),
whereas the wound covered by those treated with AC 2 (100 µg/mL) was lower than the control
(p < 0.05). In conclusion, AC 1 significantly stimulated cell migration (wound healing) activity faster
than EGF (10 ng/mL) at 6 and 12 h after the scratch test.
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2.3. Abalone Collagen Extracts Potentiates 3D Spheroid Forming Activity

Stem cells preserve their unique property to grow in an anchorage-independent condition with
superior cellular survival signals [52,53]. Therefore, the three-dimensional (3D) spheroid forming assay
was utilized to evaluate the stem cell phenotypes [54,55]. Here, the ability of keratinocytes to grow and
survive in 3D culture was assessed by culturing the HaCaT cells in 96-well ultra-low-attachment plates
in the presence of AC 1 (100 µg/mL), AC 2 (100 µg/mL), and EGF (10 ng/mL). The cells were allowed to
grow for 14 days. Phase-contrast images of spheroids are shown in Figure 3A. At day 2, cells started to
form spheroids in all groups and the relative diameters of the cells treated with AC 1, AC 2, and EGF
were larger than that of the control (p < 0.05) (Figure 3B). At day 7, the relative diameters of the cells
treated with AC 1 and EGF were larger than that of the control (p < 0.05) (Figure 3B). In contrast,
the spheroids of the control were gradually deformed. At day 14, the spheroids of the control and
those treated with AC 2 were deformed and underwent apoptosis. Whereas, in EGF and AC 1 groups,
spheroids still remained, but the relative diameters of EGF treated spheroids were higher than those
with AC 1 treatment (p < 0.05) (Figure 3B). In summary, AC 1 but not AC 2 could stimulate the spheroid
formation of HaCaT cells within 14 days.

2.4. Evaluation of Stem Cell Markers

Having found that abalone collagen extracts potentiate the stem cell-like properties in keratinocytes,
we next confirmed such a finding by determining the stem cell markers in AC-treated keratinocytes. The
expression levels of stem cell markers including keratin19, β-catenin, and ALDH1A1 were evaluated
by western blot analysis. Keratin 19 is a marker of the skin stem cell and the smallest member of the
keratin family (40 kDa). It appears in transit-amplifying (TA) cells in the basal layer and hair follicles.
In addition, a cell with an increasing age proportionally reduced in keratin 19 expression [11,12,56].
β-catenin was determined as a stem cell marker in many epithelial tissues. β-catenin functions as a
co-transcription factor of TCF/LE in the Wnt signaling pathway. This pathway regulates epidermal
stem cell renewal and lineage selection [14–16,57]. ALDH1A1, considered as a marker for stem cells,
plays a functional role, including cell self-protection and survival. ALDH1A1 is a member of the
aldehyde dehydrogenase superfamily for cellular detoxification [17,58]. The expression levels of stem
cell markers in cells treated with AC 1 (100 µg/mL), AC 2 (100 µg/mL), and EGF (10 ng/mL) were
quantified by western blot analysis and ImageJ analysis (Figure 4A). All samples significantly increased
the expression levels of keratin 19 and β-catenin when compared to the control (p < 0.05) (Figure 4B,C).
The level of ALDH1A1 was significantly induced by only AC 1 when compared to the control (p < 0.05)



Mar. Drugs 2019, 17, 424 5 of 12

(Figure 4D). No significant change in ALDH1A1 expression was found after EGF and AC 2 treatment
compared to the control. Among all, AC 1 was the best at inducing the expressions of stem cell markers
on HaCaT cells.
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From all experiments, AC 1 (3 kDa) at a concentration of 100 µg/ml, but not AC 2 (300 kDa),
increased cell proliferation, migration, spheroid formation, and the expression levels of stem cell markers
of HaCaT cells when compared to the control. These results indicate an effect of abalone collagen
molecular weight on keratinocyte response. Lower molecular weight molecules could penetrate into
cells better than a higher molecular weight molecule, therefore leading to better cell or tissue functional
improvement [59]. Furthermore, many studies have found that collagen with molecular weights of
less than 5 kDa can increase cell proliferation, migration, adhesion, anti-oxidization, or angiotensin-I
converting enzyme (ACE) inhibition activity [36,60–62]. Therefore, the molecular weight of collagen
could be considered as a significant factor for collagen selection.

As the collagen was shown to potentiate stem cell properties, survival, and proliferation in
some studies, we have provided the direct information for the first time that abalone collagen should
induce the stem cell signal through Wnt/β-catenin signal. The study in colorectal cancer found that
type I collagen could increase stem cell-like phenotype through the engagement and activation of
α2β1 integrin [63]. As integrin function as a cell surface receptor that provides several survival and
proliferation signals, and such signals such as AKT [64] and Wnt/β-catenin [65] activate stemness of
cells, it is possible that collagen in our study may, at least in part, activate stemness through integrin-
β-catenin-dependent mechanism. From the results, abalone collagen potentiates stemness properties
of keratinocytes, which are important for epidermal homeostasis and skin barrier function [66,67].
Additionally, collagen from other sources, such as sponge, has been found to stimulate and increase cell
growth, exhibit antioxidant activity, and protect cells from UV-induced death [37]. Abalone collagen,
therefore might be useful in cosmetic formulations for photoaged skin repair, as well as improvement
of skin barrier function.
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3. Materials and Methods

3.1. Materials

Abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were
supported by Phuket Collagen Co., Ltd. (Phuket Collagen Co., Ltd, Phuket, Thailand). The epidermal
growth factor (EGF) used as a positive control was purchased from Sigma-Aldrich (Sigma-Aldrich,
St. Louis, MO, USA).

3.2. Cell Culture

HaCaT cells obtained from the Cell Lines Service (Cell Lines Service, Eppelheim, Germany),
were maintained at 37 ◦C under 5% CO2 in complete DMEM containing Dulbecco’s modified Eagle’s
medium (DMEM), 10% heat-inactivated fetal bovine serum (FBS), 2 mM of L-glutamine, 100 U/mL of
penicillin, and 100 U/mL of streptomycin. DMEM medium, FBS, L-glutamine, penicillin/streptomycin,
phosphate-buffered saline (PBS), and trypsin-EDTA were purchased from GIBCO (Gibco, Grand Island,
NY, USA).

3.3. Cell Viability by MTT Assay

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to
analyze cell viability. HaCaT cells were seeded in 96-well plates at a density of 4000 cells/well and
incubated for 24 h [68,69]. Then, cells were treated with complete DMEM containing AC 1 and AC 2
with various concentrations of 1, 10, 100, 500, and 1000 µg/mL, and EGF with concentrations of 1,
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10, and 100 ng/mL, for 48 h. Then, the medium was removed and cells were added with 100 µL of
MTT (Sigma-Aldrich, St. Louis, MO, USA) at the concentration of 4 mg/mL and incubated at 37 ◦C
for 4 h. Later, the MTT solution was removed and the formazan crystals were dissolved with 100 µL
of dimethylsulfoxide (DMSO). The absorbance (Abs) of MTT product was measured at 570 nm with
650 nm as a reference absorbance using a microplate reader (BenchmarkTM plus, Bio-Rad, Hercules,
CA, USA). Percentage of cell viability was calculated by the following formula:

% cell viability = (Abs 570-650 nm of treatment/Abs 570-650 nm of control) × 100, (1)

3.4. Cell Proliferation by ATP content Analysis

HaCaT cells were seeded in 96-well plates at a density of 4000 cells/well and incubated for 24 h.
Then, cells were treated with complete DMEM containing AC 1 and AC 2 with various concentrations
of 1, 10, 100, 500, and 1000 µg/mL, and EGF with concentrations of 1, 10, and 100 ng/mL, for 48 h.
Then, the medium was removed and 100 µL of CellTiter-Glo® reagent (Promega, Madison, WI, USA)
was added. Cells were incubated at room temperature for 10 min to stabilize luminescent signal.
Luminescence was measured using microplate luminometer (SpectraMax® L luminometer, Molecular
Devices, Sunnyvale, CA, USA). Percentage of cell proliferation was calculated by the following formula:

% cell proliferation = (luminescence of treatment/luminescence of control) × 100, (2)

3.5. Cell Proliferation by DNA Assay

HaCaT cells were seeded in 48-well plates at a density of 10,000 cells/well and incubated for 24 h.
Then, cells were treated with complete DMEM containing AC 1 and AC 2 with various concentrations
of 1, 10, 100, 500, and 1000 µg/mL, and EGF with concentrations of 1, 10, and 100 ng/mL, for 48 h.
After washing the cells with 500 µL of 1X-PBS, the cells were incubated with 0.1% Triton X-100
(Sigma-Aldrich, St. Louis, MO, USA) for 10 min. DNA content was then analyzed using a dsDNA
assay kit (Quant-iTTM PicoGreen®, Molecular Probes, Eugene, OR, USA). Each experimental DNA
solution was diluted with 30 µL of TE solution (10 mM Tris and 1 mM EDTA) to a final volume of
100 µL in 96-well plates. Then, 100 µL of the Quant-iT™ PicoGreen® dsDNA reagent was added
to each sample and protected from light. Later, the fluorescence intensity was measured using a
microplate reader (Synergy™H1, BioTek, Winooski, VT, USA) with fluorescence emission at 535 nm
and excitation at 485 nm. The standard curve was used to determine the dsDNA concentration of each
sample. Percentage of cell proliferation was calculated by the following formula:

% cell proliferation = (DNA concentration of treatment/DNA concentration of control) × 100, (3)

3.6. Cell Proliferation by Total Cellular Protein Content Assay (SRB Assay)

HaCaT cells were seeded in 96-well plates at a density of 4000 cells/well and incubated for 24 h.
Then, cells were treated with complete DMEM containing AC 1 and AC 2 with various concentrations
of 1, 10, 100, 500, and 1000 µg/mL, and EGF with concentrations of 1, 10, and 100 ng/mL, for 48 h.
The cells were fixed with 100 µL of cold 40% trichloroacetic acid (TCA) solution (Sigma-Aldrich,
St. Louis, MO, USA) and incubated at 4 ◦C for 1 h. Then, cells were rinsed with water several times
and plates were air-dried. Sulforhodamine B (SRB) solution (0.04% w/v) was added to each well and
cells were allowed to stain at room temperature for 1 h. Then, the cells were rinsed quickly with 1%
acetic acid and allowed the plate to air-dry. Later, 100 µL of 10 mM Tris base (Biorad, Hercules, CA,
USA) was added to each well. The absorbance (Abs) was measured at 510 nm using a microplate
reader (Synergy™ H1, BioTek, Winooski, VT, USA). Percentage of cell proliferation was calculated by
the following formula:

% cell proliferation = (Abs 510 nm of treatment/Abs 510 nm of control) × 100, (4)
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3.7. Cell Migration (Wound Healing) by Scratch Test

HaCaT cells were seeded in 96-well plate at the density of 50,000 cells/well and allowed to grow
until confluent for 24 h. A 200-µL pipette tip was used to create a straight line scratch wound on the
monolayer of cells. The cells monolayer was washed twice with 100 µL of 1X-PBS and replaced with
100 µL of complete DMEM containing AC 1 (100 µg/mL), AC 2 (100 µg/mL), and EGF (10 ng/mL).
The cells were incubated at 37 ◦C for 24 h. Evidence of cells migrating into the wound space were
captured at 0, 6, 12 and 24 h after wounding by an inverted microscope (CKX41-E-330, Olympus,
Tokyo, Japan). Images were analyzed using Image J software (Version 1.45, National institute of Health,
Bethesda, MD, USA). Percentage of wound covered was obtained by the following formula:

% wound covered = 100 − (Width of treatment wound/Width of control wound × 100), (5)

3.8. Spheroid Formation

HaCaT cells were seeded at a density of 1000 cells/well into 96-well ultra-low-attachment plates
(Costar-Corning, Corning, NY, USA) with 100 µL of DMEM and 1% FBS. AC 1 (100 µg/mL), AC 2
(100 µg/mL), and EGF (10 ng/mL) was mixed in the media for this experiment. Then, 20 µL of media
was added every 2–3 days. Spheroids were imaged with an inverted microscope (CKX41-E-330,
Olympus, Tokyo, Japan) on days 2, 7, and 14. Images were quantitatively analyzed using Image J
software and calculated for relative diameters.

3.9. Stem Cell Marker Quantification by Western Blot Analysis.

HaCaT cells were seeded at a density of 2.5 × 105 cells/dish onto 60 × 15 mm dishes (SPL life
sciences, Gyeonggi-do, Korea) for 24 h and cultured with complete DMEM containing AC 1 (100µg/mL),
AC 2 (100 µg/mL), and EGF (10 ng/mL) for 48 h. After washing the cells twice in 1X-PBS, the cells were
incubated with ice-cold lysis buffer containing Ripa lysis buffer (Amresco®, Solon, OH, USA), 0.5%
Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA), water, and protease inhibitor cocktail (Amresco®,
Solon, OH, USA) for 20 min on ice. Protein content was then analyzed using bicinchoninic acid
(BCA) and a protein assay kit (Sigma-Aldrich, St. Louis, MO, USA). Equal amounts of proteins
(1500 µg) were heated at 95 ◦C for 5 min with blue loading buffer (New England Biolabs, Beverly,
MA, USA). The protein samples were loaded on 10% SDS-PAGE gels (Mini-PROTEAN® TGX™,
Bio-Rad, Hercules, CA, USA) before transferred to 0.2 um PVDF membranes (Bio-Rad, Hercules,
CA, USA). Next, the transferred membranes were blocked in TBST buffer (25 mM Tris-HCl (pH 7.5),
125 mM NaCl, and 0.1% Tween-20) containing 5% nonfat dry milk powder (Bio-Rad, Hercules, CA,
USA) for 1 h and incubated overnight with specific primary antibodies against keratin 19, β-catenin,
ALDH1A1, and β-actin (Cell Signaling Technology, Boston, MA, USA). Later, membranes were washed
three times with TBST and incubated with horseradish peroxidase labeled secondary antibodies goat
anti-rabbit IgG (Invitrogen Life Technologies, Carlsbad, CA, USA) for 1–2 h at a room temperature.
The membranes were washed three times in TBST and the immune complexes were analyzed by
using HPR chemiluminescent substrate reagent kit (Invitrogen, Carlsbad, CA, USA) and detected by
digital imaging with a charge-coupled device (CCD) camera-based imager (AmershamTM Imager 600,
GE Healthcare, Buckinghamshire, UK). A relative band density was measured using Image J program,
calculated for a normalization factor as a ratio of β-actin in the corresponding samples. The densities
of the samples were quantitatively compared using western blot analysis.

3.10. Statistical Analysis

All experiments were performed in three independent experiments. Each experiment was carried
out in triplicate. Results from images were quantified by Image J analysis. Results were expressed
as mean ± standard deviation (SD), which were subjected to statistical comparison using one-way
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ANOVA with post-hoc test at a significance level (α) of 0.05 (IBM SPSS version 21, IBM corp, Armonk,
NY, USA ).

4. Conclusions

A smaller size of abalone collagen extract with a molecular weight of 3 kDa could significantly
stimulate cell proliferation, migration, spheroid formation, and the expression levels of stem cell
markers, which are key factors for functional keratinocyte stem cells. Abalone collagen extract,
therefore, is a potential alternative source of collagen for cosmeceutical industry.
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