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Studies have established that it is possible to differentiate between the brain’s responses

to observing correct and incorrect movements in navigation tasks. Furthermore, these

classifications can be used as feedback for a learning-based BCI, to allow real or virtual

robots to find quasi-optimal routes to a target. However, when navigating it is important

not only to know we are moving in the right direction toward a target, but also to know

when we have reached it. We asked participants to observe a virtual robot performing a

1-dimensional navigation task. We recorded EEG and then performed neurophysiological

analysis on the responses to two classes of correct movements: those that moved

closer to the target but did not reach it, and those that did reach the target. Further,

we used a stepwise linear classifier on time-domain features to differentiate the classes

on a single-trial basis. A second data set was also used to further test this single-trial

classification. We found that the amplitude of the P300 was significantly greater in cases

where the movement reached the target. Interestingly, we were able to classify the EEG

signals evoked when observing the two classes of correct movements against each

other with mean overall accuracy of 66.5 and 68.0% for the two data sets, with greater

than chance levels of accuracy achieved for all participants. As a proof of concept, we

have shown that it is possible to classify the EEG responses in observing these different

correct movements against each other using single-trial EEG. This could be used as

part of a learning-based BCI and opens a new door toward a more autonomous BCI

navigation system.

Keywords: EEG, classification, BCI, human machine interaction, neurophysiology, P300, navigation, target

recognition

1. INTRODUCTION

Studies concerning robotic movement and navigation tasks have previously used
electroencephalography (EEG) to investigate the brain’s responses to observing correct and
erroneous movements. These studies have shown that it is possible to classify the responses
to correct movements against erroneous ones on a single-trial basis (Chavarriaga et al., 2014;
Iturrate et al., 2015; Zander et al., 2016; Kim et al., 2017). Furthermore, a few recent studies
have demonstrated the feasibility of using such correct-vs-error classification as feedback for
reinforcement-learning-based Brain-Computer Interfaces (BCI) (Iturrate et al., 2015; Zander et al.,
2016; Kim et al., 2017). Additionally, some studies have shown that different erroneous conditions
can be classified against each other (Iturrate et al., 2010; Spüler and Niethammer, 2015; Wirth et al.,
2019). These interesting advances have created the possibility of systems in which machines can
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control the low-level action decisions in order to navigate
semi-autonomously toward a target, with feedback provided
via implicit communication with a user through brain signals
spontaneously generated while observing the task (Iturrate et al.,
2015; Zander et al., 2016).

However, none of these previous studies have investigated
whether it is possible to classify EEG responses to different types
of correct actions against each other. In most navigation tasks, it
is crucial not only to know that you are moving in the correct
direction, but also to recognize when you have reached your
destination. As such, it is highly important to consider whether
there are significant neurophysiological differences between the
brain’s responses to observing different correct movements: those
that get closer to a target, compared to those that actually reach it.

To address this question, we evaluated data from a virtual
robotic navigation task. Participants were asked to observe
a virtual robot, represented by a cursor, navigating in a 1-
dimensional space and attempting to reach a target. We then
investigated the EEG responses to movements that reached the
target (hereafter referred to as the “TR condition,” short for
“target reached”), in contrast to the responses to movements
toward the target, but not reaching it (hereafter referred to as the
“TT condition,” short for “toward target”).

To explore neurophysiologicial distinctions between the TT
condition and the TR condition, we used time domain features
to compare the latency and amplitude of key features of
the event related potentials (ERPs). We also examined the
spatial distribution of EEG responses to each condition, using
topographical maps.

Our main focus was on the P300: a positive peak in an ERP
at ∼300 ms (Smith et al., 1970; Picton, 1992), known to be
elicited in the brain when a subject recognizes a target stimulus
in a sequence containing both target and non-target stimuli
(Polich et al., 1991, 1996; Picton, 1992). The P300 has been
successfully utilized in BCI, notably in spelling devices (Farwell
and Donchin, 1988; Sellers and Donchin, 2006; Krusienski et al.,
2008; Gugera et al., 2009; Fazel-Rezai et al., 2012). In these cases,
the “target” stimulus is the specific character the user wishes to
type. Each potentially desired character is typically highlighted a
number of times, with each time being referred to as a “subtrial.”
These subtrials are then averaged to increase the robustness of
classification (Farwell and Donchin, 1988; Sellers and Donchin,
2006; Lotte et al., 2007; Krusienski et al., 2008; Gugera et al.,
2009; Fazel-Rezai et al., 2012). Similar systems have also been
developed for the control of robots (Lüth et al., 2007; Bell et al.,
2008; Johnson et al., 2010; Bhattacharyya et al., 2014), cursors
(Polikoff et al., 1995; Li et al., 2010; Kanoh et al., 2011), and
wheelchairs (Rebsamen et al., 2006; Iturrate et al., 2009).

Unlike these previous studies utilizing the P300 for robotic
control, and similar applications, in our study each stimulus
(i.e., each movement) was only presented once, and so our
classification phase required single-trial classification. Single-
trial P300 classification is challenging, due in part to the low
signal-to-noise ratio of EEG data (Jansen et al., 2004; Lotte
et al., 2007), hence many systems presenting a number of
subtrials. One study investigated the effects of different numbers
of subtrials, and, while high accuracy was achieved with many

subtrials, classification accuracy of <50% was reported based
on a single subtrial, and 3 subtrials were required to achieve
over 60% accuracy (Lenhardt et al., 2008). More recently, studies
focusing on single-trial P300 classification have shown success,
with some reporting accuracies over 80% (Finke et al., 2009;
Korczowski et al., 2015; Lin et al., 2017). These studies were
classifying the presence of a P300 against its absence. Our goal
was to differentiate the P300s elicited in response to two slightly
different desired actions. This presents an extra challenge, as we
can expect the signals of the conditions to be more similar to
each other.

In one previous study, one version of a task presented 80%
standard stimuli and 20% target stimuli with all targets being
identical to each other, while another version presented 80%
standard stimuli and 20% target stimuli, with a pool of 25
different target stimuli; the latter case was found to elicit a
broader P300 (Breton, 1988). While the responses to the different
target stimuli were not compared to one another, this finding
suggests that the P300 is affected by how often a specific stimulus
appears in a task. Indeed, other literature has reported that
P300 amplitude increases for larger target-to-target intervals
(Gonsalvez and Polich, 2002). As well as this, the P300 has been
shown to be associated with positive outcomes (Hajcak et al.,
2005), and its amplitude has been shown to be affected by reward
magnitude (Yeung and Sanfey, 2004; Sato et al., 2005; Wu and
Zhou, 2009).

In this study, the desired stimulus is either a movement
toward the target or, in cases when the virtual robot is adjacent
to the target location, a movement that reaches the target. We
hoped to identify and exploit differences between responses to
these stimuli, arising from both the experimental differences
(i.e., reaching the target occurs less frequently than other correct
moves) and the participants’ cognitive response to the two
conditions (i.e., reaching the target may be considered more
important than other correct moves). We then aimed to use the
identified neurophysiological differences in order to classify the
EEG responses to the two conditions against each other on a
single-trial basis.

In order to classify responses to the conditions against each
other, we implemented a stepwise linear discriminant analysis
strategy, using time domain features from six electrode sites to
generate subject-specific classification models. A second publicly
available data set (Chavarriaga and Millán, 2010), gathered
from participants observing a similar 1-dimensional navigation
paradigm, was used to further validate the efficacy of the
classification strategy.We tested our approach using data from 10
healthy young adults from the first task, and a further five healthy
young adults from the second task.

2. METHODS

This study uses data from two tasks. Neurophysiological
analysis and single-trial classification were performed on data
from Task 1. These data were recorded at the University of
Sheffield, UK. Data from a Task 2 were used in order to
further validate the single-trial classification section of the study.
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FIGURE 1 | Task 1 paradigm. Participants were asked to observe as a blue cursor attempted to navigate toward, and select, a marked target square. If the cursor

was on the target, possible actions were either to select it by drawing a yellow box around the square, or take 1 step away from the target. If the cursor was not on

the target, possible actions were either to move 1 step toward the target, move 1 step further away from the target, or erroneously select the current square as the

target by drawing a yellow box around it. “TT” condition refers to “toward target,” i.e., movements toward, but not reaching, the target. “TR” condition refers to “target

reached,” i.e., movements that did reach the target.

This was an open access data set, obtained under a Creative
Commons Attribution—Non Commercial—No Derivatives 4.0
International license, based on a study by Chavarriaga andMillán
(2010).

2.1. Participants
Ten healthy adults (4 female, 6 male, mean age 27.30 ± 8.31)
were recruited to participate in Task 1. All of these participants
were included in all aspects of the study. All participants had
normal or corrected-to-normal vision. They reported no history
of psychiatric illness, head injury, or photosensitive epilepsy.
Written informed consent was provided by all participants
before testing began. All procedures were in accordance with the
Declaration of Helsinki, and were approved by the University
of Sheffield Ethics Committee in the Automatic Control and
Systems Engineering Department.

Six healthy adults (1 female, 5 male, mean age 27.83 ± 2.23)
performed Task 2. 1 participant was excluded from this study as
too few trials were available after artifact rejection.

2.2. Experimental Setup
2.2.1. EEG Setup
For Task 1, eight channels of EEG were recorded at 500 Hz using
an Enobio 8 headset. The electrode sites recorded were Fz, Cz,
Pz, Oz, C3, C4, P07, and PO8. A further reference electrode was
placed on the earlobe.

For Task 2, 64 channels of EEG were recorded at 512 Hz
using a BioSemi ActiveTwo system, and were referenced to the
common average. Electrodes were placed using the 10–20 system.

2.2.2. Task 1
In Task 1, participants were seated in front of a screen and
asked to observe a computer controlled cursor. Participants were
presented with nine squares, arranged in a horizontal line, on
a black background, as seen in Figure 1. The cursor’s current
square was colored blue. The target square was identified by a red
bullseye symbol on a white background. All other squares were
plain white.

At the beginning of each run, the cursor appeared 2 or 3
squares away from the target location, either to the left or the
right. Every 2 s, either the cursor would move to an adjacent

square, or a yellow box would be drawn around the cursor’s
current position in order to identify that the computer believed
that it had reached the target. Such target identification could
occur correctly or erroneously. Actions occurred with preset
probabilities, which depended on whether or not the cursor was
on the target. These probabilities are shown in Table 1.

After the target was identified, either correctly or erroneously,
the run finished and the screen was cleared. After 5 s, the next
run began. A beep sounded 1 s before the start of each run.
Participants were asked to refrain from movement and blinking
during each run, but told that they could move and blink freely
between runs, while the screen was blank. This process repeated
until the end of the block, with each block lasting∼4 min.

Each participant performed a single session of observations.
Participants were asked to observe blocks, with breaks of as
long as they wished between blocks, until they reported their
concentration levels beginning to decrease. Most participants
observed six blocks of trials. However, two participants observed
only 2 blocks. On average, Task 1 participants observed a total of
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TABLE 1 | Action probabilities for Tasks 1 and 2.

Task Cursor location Action Probability

Task 1

Not on target

Move toward target 0.7

Move further from target 0.2

Identify location as target 0.1

On target
Identify location as target 0.67

Step off target 0.33

Task 2 Not on target
Move toward target 0.8

Move further from target 0.2

Note that each run in Task 2 ended once the cursor reached the target. As such there were

no moves from an on-target position in Task 2. In both tasks, both TT and TR conditions

occurred as a result of “move toward target” actions. If these actions occurred when

the cursor was adjacent to the target, the result would be reaching the target (i.e., TR

condition). If the cursor was not adjacent to the target prior to the action, the result would

be moving closer to the target, but not reaching it (i.e., TT condition).

149.2 ± 40.0 (mean ± standard deviation) TT condition trials,
and 82.3± 20.0 TR condition trials.

2.2.3. Task 2
In Task 2, participants were similarly asked to observe the 1-
dimensional movement of a computer-controlled cursor. Twenty
locations were arranged in a horizontal line across a screen. The
cursor was displayed as a green square. The target was displayed
as a blue square when it appeared to the left of the cursor, or a red
square when it appeared to the right of the cursor.

At the beginning of a run, the target was drawn no more
than three positions away from the cursor. Every 2 s, the
cursor would move either toward or away from the target with
preset probabilities, shown in Table 1. Unlike Task 1, no target
identification was required by the computer. Instead, each run
ended when the cursor reached the target. After this, the cursor
stayed in its existing location, and a new target was drawn, again
no more than three positions away from the cursor. This process
repeated until the end of the block, with each block lasting 3 min.

Participants each performed two sessions of observations.
Each session consisted of 10 blocks. The number of days between
sessions varied between participants, from a minimum of 50
days to a maximum of more than 600 days. On average, Task 2
participants observed a total of 620.2 ± 10.6 TT condition trials,
and 277.7± 14.1 TR condition trials.

2.3. Neurophysiological Analysis
Data from Task 1 were used for neurophysiological analysis.
As we did not have control over the experimental paradigm
for Task 2, and so did not have a precisely detailed picture
of how the stimuli were presented, we opted not to perform
neurophysiological analysis on Task 2 data, instead using these
only to further validate the classification phase of this study.

Raw data from Task 1 were resampled to 64 Hz, and
then band-pass filtered from 1 to 10 Hz, using a zero-phase
Butterworth filter. TT and TR Trials were extracted from a time
window of 0 to 1,000 ms, relative to the movement of the cursor.
All extracted trials were baseline corrected relative to a period of
200 ms immediately before the movement of the cursor. Artifact
rejection was performed by discarding any trials in which the

range between the highest and lowest amplitudes, in any channel,
was >100µV.

Grand average time domain event related potential (ERP) data
were plotted using the extracted trials, showing the mean voltage
± 1 standard error, comparing responses to the TT condition
with those to the TR condition.

Peak analysis was performed in order to identify the latencies
at which the P300 occurred in the ERP data. Visual inspection
of time domain ERP and topographical plots indicated that
the highest P300 amplitude in this study occurred at electrode
site Cz, and that there was a difference in P300 amplitudes in
response to the two conditions at this site. As such, Cz was
chosen as the most suitable channel for peak analysis. This peak
analysis was carried out on the grand average ERP for responses
to each condition. Subsequently, the P300 was identified as
the highest positive peak, occurring between 200 and 500 ms.
This time window was selected based on a visual inspection of
the grand average time-domain data. To check for statistically
significant differences in peak latencies, the same analysis was
carried out to find the P300 peak in the average responses of each
individual participant, for both conditions. According to one-
sample Kolmogorov-Smirnov tests, we could not assume the data
to be normally distributed. Therefore, a Wilcoxon signed-rank
test was performed to compare the peak latencies identified for
the two conditions.

To check whether there was a statistically significant difference
in peak amplitude between responses to the two conditions,
the mean amplitude was calculated in the responses the average
responses of each individual participant, in a time window from
200 to 500 ms in order to encapsulate the full breadth of the
P300. According to one-sample Kolmogorov-Smirnov tests, we
could not assume the data to be normally distributed. Therefore,
a Wilcoxon signed-rank test was performed to compare the
amplitudes identified for the two conditions.

Topographical maps were then plotted for responses to each
condition, using a 50 ms window surrounding the P300 latency
(from peak −25 ms to peak +25 ms) as identified in the
pooled data from all trials of both conditions combined. All
topographical maps used the same scale, from the minimum
value to the maximum values across all grand averages.

2.4. Single-Trial Classification
Single-trial classification was performed on data from both tasks.
The same classification protocol was followed for both data sets,
and is described in this section.

2.4.1. Pre-processing and Feature Extraction
Data from six electrode sites were used for single-trial
classification: Fz, Cz, Pz, Oz, PO7, and PO8. These channels were
selected based on visual inspection of grand average time domain
ERPs, and considering prior knowledge related to these sites. The
P300 has shown to peak inmidline electrodes (Polich et al., 1997),
and posterior sites, such as PO7 and PO8 are associated with
visual processing (Deutsch et al., 1988; Wolber and Wascher,
2005; Schneider et al., 2012). As with the neurophysiological
analysis, data were resampled at 64 Hz, trials were baseline
corrected to a period of 200 ms immediately before presentation
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of the stimulus, and artifact rejection was performed to remove
any trials with a range of>100µV between the highest and lowest
amplitude in any channel. For the classification phase, data were
band-pass filtered between 1 and 32 Hz. This band was selected
after visual inspection of event-related spectral perturbation
(ERSP) data which showed that, while most activity occurred at
low frequencies, some potentially useful activity was also present
in higher frequencies (see Supplementary Figure 1). Trials were
extracted from 200 to 700 ms relative to the movement of the
cursor. This window was selected based on visual inspection of
grand average time domain ERPs. Selecting this window results in
33 samples per channel. Thus, in total, each trial was represented
by 198 (6× 33) features.

Previous literature has suggested that a minimum of 20 trials
are required to provide stability in the P300 (Cohen and Polich,
1997). As such, we implemented a minimum cut-off of 20
artifact-free trials per class, in order to ensure we had enough data
to produce a reliable training set. One participant was excluded
from the single-trial classification phase of this study due to
this cutoff.

2.4.2. Classification With Stepwise Linear

Discriminant Analysis
In order to classify the data based on the most relevant subset
of features, stepwise linear discriminant analysis was chosen as
our classification approach, as previous literature has shown this
strategy to be effective at both feature selection and classification
of both P300 (Donchin et al., 2000; Krusienski et al., 2006,
2008; Sellers and Donchin, 2006; Lotte et al., 2018) and motion-
onset visual evoked potential (mVEP) EEG data (Guo et al.,
2008). An individual classification model was generated for each
participant, using only the data from that individual participant’s
responses to the task. Firstly, for a given participant, an initial
subset of features was selected. The amplitudes of the training
trials for each condition were compared in each feature (i.e.,
each combination of channel and time point) using an unequal
variances t-test. Features whose p-value was<0.05 were included
in the initial feature set. The stepwise procedure was then
performed to select which features would be included in the final
model. At each step, a regression analysis was performed on
models with and without each feature, producing an F-statistic
with a p-value for each feature. If the p-value of any feature was
<0.05, the feature with the smallest p-value would be added.
Otherwise, if the p-value of any features already in the model had
risen to > 0.10 at the current step, the feature with the largest p-
value would be removed from the model. This process continued
until no feature’s p-value reached the thresholds for being added
to, or removed from, the model. If no features were added to
the model at all, a single feature with the smallest p-value would
be selected. Training and test trials were then reduced to the
selected features.

The training set for the condition with the fewest training
trials was oversampled in order to ensure that training occurred
with an equal number of trials per condition. A linear
classification model was then trained and tested. All classifiers
were trained and tested using leave-one-out cross validation.
To test statistical significance of the classification, a right-tailed
Fisher’s exact test was performed on the confusion matrix of each

participant’s results. In order to test whether the classification was
significant at a group level, individual p-values were combined
into a group p-value using Fisher’smethod (Loughin, 2004; Heard
and Rubin-Delanchy, 2018).

3. RESULTS

3.1. Neurophysiological Distinctions
In the responses to both conditions, grand average time
domain ERPs showed a broad P300 peak, as can be seen in
Figure 2A. Figures 2B,C show examples of time domain ERPs
from individual participants (1 and 10, respectively). In both
conditions, the shape of the broad P300 featured a peak shortly
prior to 300 ms, followed by a slight drop in amplitude, and
then a secondary peak, shortly after 400 ms. In responses to
the TR condition, the earlier peak was found to have the
highest amplitude, at a latency of 265 ms. The secondary peak
marked the highest amplitude in grand average responses to
the TT condition, with a latency of 420 ms. However, the
Wilcoxon signed-rank test did not find a significant difference
between the P300 peak latencies of responses to the two
conditions (p = 0.81).

A distinction was seen between the P300 amplitudes of
responses to the two conditions. The TR condition was observed
to elicit a P300 with a greater amplitude than that generated in
response to the TT condition. The Wilcoxon signed-rank test
comparing the amplitudes of the two conditions, based on a time
window from 200 to 500 ms in order to encapsulate the breadth
of the P300, found this difference in amplitude to be statistically
significant (p = 0.004).

Grand average time domain data for all eight electrode sites
recorded for Task 1 are shown in Supplementary Figure 2.

Topographical maps plotted at the P300 peak latency showed
the main activation to occur in the central midline, in response to
both conditions, as can be seen in Figure 3.

We observed some features in the ERP responses to both
conditions which may be related to motion-onset visual evoked
potentials (mVEP). Such mVEPs occur when users percieve the
beginning of movement of an object or symbol on a screen (Kuba
et al., 2007; Guo et al., 2008; Marshall et al., 2013; Beveridge et al.,
2019). Three main peaks have been identified inmVEP: a positive
peak (P1), followed by a negative deflection (N2), then another
positive peak with a latency of 240–500 ms (Kuba et al., 2007;
Guo et al., 2008; Marshall et al., 2013; Beveridge et al., 2019),
which has been described as a P2 (Kuba et al., 2007; Guo et al.,
2008; Marshall et al., 2013) or P300 (Beveridge et al., 2019). The
movements considered in this study were instantaneous steps
from one location to the next. However, along with the P300,
small P1 and N2 peaks were visible, with latencies of 78 and
125 ms, respectively, relative to the movement of the cursor.
These peaks did not appear to differ between responses to the
two conditions.

3.2. Classification
3.2.1. Classification of Task 1
The classification accuracies of each individual participant of
Task 1 are shown in Table 2. The mean overall accuracy for all
Task 1 participants was 66.5%. The mean accuracy for the TT
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FIGURE 2 | Time domain ERPs at electrode site Cz, from Task 1. Time shown is relative to movement of the cursor. Central lines represent mean signals. Shaded

areas cover 1 standard error. Blue lines show TT condition data. Green lines show TR condition data. (A) Shows grand average data from all Task 1 participants, (B)

shows data from participant 1, and (C) shows data from participant 10.

condition was 68.8%, and themean accuracy for the TR condition
was 62.4%. Statistically significant separation of the conditions
(p < 0.05) was found for all Task 1 participants. At a group level,
the classification results for Task 1 were found to be statistically
significant (p = 2.8× 10−54).

3.2.2. Classification of Task 2
The classification accuracies of each individual participant of
Task 2 are shown in Table 3. The mean overall accuracy for all
Task 2 participants was 68.0%. The mean accuracy for the TT
condition was 70.5%, and themean accuracy for the TR condition
was 61.0%. As with Task 1, statistically significant separation of
the conditions (p < 0.05) was found for all Task 2 participants.

At a group level, the classification results for Task 2 were found
to be statistically significant (p = 9.6× 10−62).

4. DISCUSSION AND CONCLUSION

4.1. Neurophysiological Distinctions
Between the Conditions
In this study, the key neurophysiological difference that
we identified between the two conditions was in the
amplitude of the P300. The amplitude of the P300 was
found to be greater in response to the TR condition (i.e.,
movements that reached the target) than the TT condition
(i.e., movements that were correct, but did not reach

Frontiers in Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 66

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wirth et al. You Have Reached Your Destination

FIGURE 3 | Grand average topographical maps of Task 1 data. Maps were

plotted based on a 50 ms window surrounding the peaks identified as P300

from grand average data across all participants, and both conditions. Plots

shown represent (A) responses to the TT condition, and (B) responses to the

TR condition.

the target). This distinction was found to be statistically
significant (p = 0.004).

As discussed in section 1, a number of studies have reported
that P300 amplitude is affected by reward magnitude (Yeung
and Sanfey, 2004; Sato et al., 2005; Wu and Zhou, 2009). It
should be noted that, in this study, participants were not directly
rewarded based on the virtual robot’s performance. However, it
is certainly feasible that they regarded moves that reached the
target as being more important than moves that did not reach
it, which could be considered analogous to the TR condition
having a higher reward magnitude. Reports have been mixed
regarding the effects of valence on the P300. Some studies have
reported amplitude being affected by positive valence (Cano
et al., 2009; Wu and Zhou, 2009), while others have reported
valence either having no effect (Carretié et al., 1997; Yeung
and Sanfey, 2004), or an effect only in the case of negative
valence (Conroy and Polich, 2007). P300 amplitude has also
been shown to be dependent on whether feedback was expected
or unexpected (Hajcak et al., 2005), and on target-to-target
interval, with amplitude increasing when targets appeared less
frequently (Gonsalvez and Polich, 2002).

Taking into consideration previous findings on the P300,
and the experimental setup of our task, there are a number of
potential causes of this increase in amplitude for responses to the
TR condition, compared to the TT condition. It may represent a
cognitive response recognizing that amove that reaches the target
is a more important step than other correct moves. Alternatively,
while this study was designed as a navigation observation task,
it could also conceptually be considered as an oddball paradigm.
That is to say, the TR condition occurs less frequently than the
TT condition. Therefore, it is possible that the increased P300
amplitude is due to the relative rarity of the TR condition. It is
quite possible that the difference in amplitude may be the result
of a combination of these factors.

We also briefly investigated frontal theta power, and
asymmetry in alpha power, as these have been reported to vary
with regard to valence (Reuderink et al., 2013). However, no
significant differences in these markers were identified between
the conditions. It is certainly feasible that participants would not
have had a strong emotional reaction to reaching the target. In
Task 1, the goal was not fully achieved until the target was not
only reached but also identified. Furthermore, users knew they
were not controlling the virtual robot, and were not rewarded if it
performed well. It may be interesting to investigate whether these
valence markers indicate different reactions in future on-line
experiments, in which participants’ responses affect the actions
of the virtual robot.

4.2. Single-Trial Classification
Previous studies have successfully classified the brain’s responses
to correct movements against responses to erroneous movements
in navigation tasks, such as the ones explored in this study.
The original study for which the data of Task 2 were generated
reported classification accuracy of 75.8 and 63.2% for the correct
and erroneous movement classes, respectively (Chavarriaga and
Millán, 2010). Another study reported correct vs. erroneous
movement classification accuracy, in three similar navigation
tasks, of 73.8, 72.5, and 74.3% (Iturrate et al., 2015). It is
reasonable to expect that the classification of two different correct
movements against each other would be more challenging than
the classification of correct movements against erroneous ones;
we would expect to see more pronounced differences in the
brain’s responses in the latter case.

In this study, classifying EEG responses to correct movements
toward the target (but not reaching it) against responses to
movements that reached the target, we achieved mean overall
classification accuracy of 66.5 and 68.0% for the two tasks.
Indeed, these were only slightly below the levels previously
reported for erroneous vs. correct movements in similar tasks.
Interestingly, overall accuracy reached a high of 83.7% in the
best case. Crucially, statistically significant separation of the two
conditions (p < 0.05) was achieved for all participants from both
tasks, and highly significant separation of the classes was shown
at the group level (p = 2.8 × 10−54 and p = 9.6 × 10−62 for the
Task 1 and Task 2, respectively).

As a proof of concept, we have shown that it is possible
to classify responses to these two classes of correct movement
against each other using single-trial EEG. As discussed in
section 2.4.2, we chose to apply stepwise linear discriminant
analysis in this study, as it has previously been shown to be
successful in classifying similar data types (Donchin et al., 2000;
Krusienski et al., 2006, 2008; Sellers and Donchin, 2006; Guo
et al., 2008; Lotte et al., 2018). However, it is possible that
other methodologies, which could be explored in future, may
be able to provide further increases in classification accuracy. In
potential future systems, classifications of the human observer’s
EEG responses could be used to guide the movement of a real
or virtual robot, with the user being explicitly rewarded for good
performance of the robot. In such systems, adding information
from more frontal electrodes may be able to provide an increase
in classification accuracy, as the frontal cortex has been shown to
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TABLE 2 | Single-trial classification results of Task 1 data.

Subject
# TT # TR Mean # Features TT TR Overall

p-value
trials trials selected accuracy (%) accuracy (%) accuracy (%)

1 162 86 35.0 64.8 55.8 61.7 1.4× 10−3

2 73 40 44.8 68.5 60.0 65.5 3.1× 10−3

3 157 93 10.3 60.5 51.6 57.2 4.2× 10−2

4 163 89 50.9 76.1 70.8 74.2 4.1× 10−13

5 63 39 30.4 65.1 53.8 60.8 4.7× 10−2

6 155 88 6.3 67.7 63.6 66.3 1.9× 10−6

7 154 85 16.6 59.7 52.9 57.3 4.0× 10−2

8 156 81 15.9 67.3 61.7 65.4 1.7× 10−5

9 145 76 40.0 73.1 72.4 72.9 7.5× 10−11

10 169 89 37.7 85.2 80.9 83.7 5.0× 10−26

All < 0.05,

Mean 139.7 76.6 28.8 68.8 62.4 66.5 group p-value:

p = 2.8× 10−54

Overall accuracy calculated as the percentage of trials, of either class, correctly classified. Number of features selected calculated as the mean of all iterations of leave-one-

out cross-validation.

TABLE 3 | Single-trial classification results of Task 2 data.

Subject
# TT # TR Mean # Features TT TR Overall

p-value
trials trials selected accuracy (%) accuracy (%) accuracy (%)

1 448 105 44.3 75.0 60.0 72.2 1.9× 10−11

2 585 180 89.2 74.2 66.7 72.4 7.3× 10−23

3 259 128 64.7 67.6 60.9 65.4 8.4× 10−8

4 201 93 31.5 61.7 51.6 58.5 2.2× 10−2

5 603 250 71.8 74.0 66.0 71.6 1.4× 10−27

All < 0.05,

Mean 419.2 151.2 60.3 70.5 61.0 68.0 group p-value:

p = 9.6× 10−62

Overall accuracy calculated as the percentage of trials, of either class, correctly classified. Number of features selected calculated as the mean of all iterations of leave-one-

out cross-validation.

code prediction and reward (Schultz et al., 1997; Schultz, 2001;
McClure et al., 2004).

4.3. Implications for BCI
The P300 has a history of successful use in BCI, as discussed
in section 1. In particular, there have been many studies,
dating back over 30 years, regarding the use of P300 signals in
BCI spelling devices (Farwell and Donchin, 1988; Sellers and
Donchin, 2006; Krusienski et al., 2008; Gugera et al., 2009; Fazel-
Rezai et al., 2012). These systems have often been able to improve
the robustness and accuracy of their classifications by using
paradigms that allowed each stimulus to be presented multiple
times, and the responses to be averaged. P300-based BCIs have
also been created for other applications, such as video games
(Finke et al., 2009; Kaplan et al., 2013), virtual reality (Bayliss,
2003), and control of robots (Lüth et al., 2007; Bell et al., 2008;
Johnson et al., 2010; Bhattacharyya et al., 2014), cursors (Polikoff
et al., 1995; Li et al., 2010; Kanoh et al., 2011) and wheelchairs

(Rebsamen et al., 2006; Iturrate et al., 2009). Furthermore, the
P300 has been utilized alongside other modalities, such as motor
imagery (Su et al., 2011) and steady-state visual evoked potentials
(SSVEP) (Yin et al., 2013) to create hybrid BCIs (Pfurtscheller
et al., 2010; Müller-Putz et al., 2011; Amiri et al., 2013). The
navigation scenarios presented in this study provided a further
challenge compared to many previous P300-related systems, as
each stimulus (i.e., movement) was only presented once. This was
an important aspect of the paradigm, as we wished to simulate the
observation of real navigation, with a view to future applications
in which classifications could be made solely based on users’
responses to the actions they observe. In such real navigation,
each action occurs only once. While accurate single-trial P300
classification is challenging due to the low signal-to-noise ratio
of EEG (Jansen et al., 2004; Lotte et al., 2007), some recent studies
have shown that it can be achieved. One study using a video game
context reported mean offline classification accuracy of 85%,
and online accuracy of 66% (Finke et al., 2009). Another study
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reported single trial P300 classification accuracy of 70% (Jansen
et al., 2004). In other cases, the area under the receiver operating
characteristic curve (AUC) was reported for various possible
classifier parameters, rather than the classification accuracy for
a specific trained and optimized model. An AUC of over 0.8
has been reported for many participants (Korczowski et al.,
2015; Lin et al., 2017). In this study, rather than classifying
a condition eliciting a P300 against a condition that did not
elicit a P300, we were classifying two P300-generating conditions
against each other. As such the fact that statistically significant
separation of two different correct conditions was achieved for all
participants is encouraging for the use of the P300 in single-trial
BCI scenarios.

In recent years, there have been interesting advances in BCIs
based on signals that are generated spontaneously in the brain,
without the need of a conscious effort to generate them on
the part of the user. These systems, making use of implicit
communication, have been described in two groups, referred to
as “reactive BCI,” in which a spontaneous response is triggered
by a stimulus, and “passive BCI,” whereby arbitrary mental states
are measured (Zander et al., 2010, 2014; Zander and Köthe,
2011). Some particularly interesting recent studies have been
those exploring reactive BCI in robotic movement and navigation
tasks. Classification of error-related potentials (ErrP) in order
to differentiate correct movements from erroneous ones has
been combined with reinforcement learning in order to allow
machines to perform a desired action (Kim et al., 2017) or
navigate toward a desired target (Chavarriaga and Millán, 2010;
Iturrate et al., 2015; Zander et al., 2016). By obtaining more
detailed information from spontaneously generated signals, we
can provide these systems with more context, and allow them to
learn more efficiently and act more appropriately. The ability to
classify when a target has been reached specifically and separately
from other correct movements, as has been demonstrated in this
study, would be an important aspect of a navigation system, and
thus could enhance the usability and effectiveness of navigation-
based BCI.

4.4. Conclusion
In this study, we compared the ERPs generated in EEG data,
in response to observing two types of correct movements by a
virtual robot: those that moved the robot closer to the target
without reaching it, and those in which the robot reached the
target. We were able to show that both correct movement

conditions elicited a P300, and we identified a significantly higher
P300 amplitude in cases in which the target was reached.

Interestingly, we were able to classify the responses to these
two types of correct actions against each other with mean overall
accuracies of 66.5 and 68.0% for two tasks, achieving statistically
significant separation of the conditions for all participants. This
single-trial classification could be used as part of a learning-based
BCI, and opens a new door toward a more autonomous BCI
navigation system.
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