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We demonstrate that in mesoscopic type II superconductors with the lateral size commensurate with
London penetration depth, the ground state of vortices pinned by homogeneously distributed columnar
defects can form a hierarchical nested domain structure. Each domain is characterized by an average
number of vortices trapped at a single pinning site within a given domain. Our study marks a radical
departure from the current understanding of the ground state in disordered macroscopic systems and
provides an insight into the interplay between disorder, vortex-vortex interaction, and confinement within
finite system size. The observed vortex phase segregation implies the existence of the soliton solution for the
vortex density in the finite superconductors and establishes a new class of nonlinear systems that exhibit the
soliton phenomenon.

V
ortex matter in the presence of structural defects forms a wide variety of phases with specific properties
depending on the relation between the vortex-vortex and vortex-defect interactions1,2. The findings of
Refs. 3, 4, which revealed significant enhancement of vortex pinning in high-temperature superconductors

by ion irradiation, broke ground for a new direction in vortex physics. Heavy ions leave the tracks of the damaged
amorphous material where superconductivity is suppressed. Thus the vortices penetrating the sample occupy
columnar defects where the vortex energy is appreciably less than in the undamaged material. A theory of the
resulting vortex Bose glass phase was developed in Refs. 5, 6, where the physics of flux lines in superconductors
pinned by columnar defects was mapped onto boson localization in two dimensions. The distribution of vortices
in the Bose glass state that forms in the infinite (i.e. thermodynamically large) samples, containing columnar
defects, is a uniform one. A question about what happens to the Bose glass in the finite samples is most natural in
view of explosively developing studies of small superconductors, i.e. superconductors with the lateral sizes Rs

comparable to the London screening length l or even with the coherence length j. Indeed even the samples
without columnar defects reveal that the properties of the homogeneous vortex state change dramatically as
Rs l. The boundaries start to affect the distribution of vortices and makes it nonuniform. Experimental study of
mesoscopic superconducting discs with the total vorticity L , 40 revealed formation of the concentric shells of
vortices7 in accord with the results of numerical simulations8. The analysis of shell filling with increasing L allowed
the authors of Ref. 7 to identify magic numbers corresponding to the appearance of consecutive new shells. At the
same time, vortex distribution over the sample remains ‘‘quasi-homogeneous’’ with the vortex density gradually
changing with the distance from the sample center. For example, the experimental and numerical studies of the
samples containing a macroscopic number of vortices showed that, almost everywhere, vortices arrange them-
selves into a nearly perfect Abrikosov lattice, containing the few disclinations necessary to match the cylindrical
symmetry of the sample. Only within a few, 2–3, shells adjacent to the surface, vortex distribution differs
noticeably from that in the bulk.

At the same time, theoretical consideration of the critical state in a superconducting slab containing a lattice of
strong pins9 predicted that instead of the expected in the critical state constant gradient in the vortex density a
terraced piecewise vortex structure structure can form. This terraced vortex distribution, unexpected from the
viewpoint of an orthodox concept of the critical state, is, formally, nothing but a standard soliton solution for the
one-dimensional commensurate structures, which appeared first as a 1D model for dislocations10,11. The physical
reason for emerging such a structure is the competition between the effect of the critical current flowing uniformly
through the slab and thus implying the constant gradient of the vortex density across the sample and the action of
the lattice of strong pinning sites that tend to trap vortices enforcing them into a regular array with the com-
mensurate period. As a result, a metastable structure forms, comprising vortex domains of a piecewise constant
vortex density. The originally uniform current is compressed into the current filaments concentrated along the
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boundaries between the domains i.e. in the narrow regions of the
maximal gradient of the vortex density. The terraced metastable
critical state, which was indeed found experimentally12, establishes
a fruitful connection between the breaking down of a vortex config-
uration into the domains, characterized by the different vortex den-
sity, and a general concept of formation of the regular patterns in
non-linear media, which often allows for a description in a general
framework of the soliton physics.

Here we consider an equilibrium vortex system and report that the
ground state of vortices pinned by homogeneously distributed large
columnar defects can form a hierarchical nested domain structure,
where each domain is characterized by its own filling factor, the
average number of vortices trapped at a single pinning site. In view
of the above connection between vortex phase segregation and soli-
ton description of the commensurate structures, our finding also
breaks ground to novel approach to soliton physics. Contrasting past
models where soliton structures were established by the explicit writ-
ing-down of an analytical solution to a particular nonlinear 1D equa-
tion, our work rigorously proves the principal and fundamental
existence of a soliton terraced solution for equilibrium vortex density.
Significantly, by considering a cylindrical sample with an arbitrary
base, our approach goes beyond the 1D physics. We develop our
approach in the context of vortex pinning by large columnar defects
in a small superconductor with Rs^l in the low field range H , Hc1,
where Hc1 is the lower critical field. Since the energy of trapped
vortices is less than those in the bulk, vortices penetrate the super-
conductor even in this field range. The thermodynamics of the Bose
glass at H , Hc1 was investigated in Ref. 13, where the equation of
states and the Bose-glass transition line were found, but the effects of
the finite size were not addressed. Here we show that the interplay of
vortex interaction, and pinning in a mesoscopic superconductor can
result in a hierarchical domain structure of the ground vortex state.
Importantly, after the coarse graining procedure described below,
our model becomes quasicontinuous and the discreteness (or peri-
odicity) of pinning arrays does not come explicitly into play.

Results
We consider a large but finite superconducting sample in the form of
a generalized cylinder, with a base of arbitrary shape, see Fig. 1, with
the characteristic linear size of the base Rs^l, where l?j is the
London penetration length, containing a square array (with spacing
a such that R=a=Rs) of cylindrical (columnar) vortex traps with
radii R much exceeding the vortex core size j. This is an exemplary
model system for superconductors that contain arrays of either
columnar defects or artificially engineered arrays of holes. Such sys-
tems are extensively used in studies of the so-called vortex matching
effect, one of the central avenues of contemporary vortex physics

(see, for example Ref. 14, and references therein). Since the energy
of a vortex trapped by a cylindrical defect is less then its energy in the
bulk of an undamaged material, vortices start to occupy the sample
containing CDs at fields H below than the thermodynamic lower
critical field Hc1, at which the thermodynamically stable vortices start
to exist in a superconductor without CDs13. It is this range of fields
H , Hc1 we investigate in our work.

To quantify the spatial distribution of trapped vortices we intro-
duce the coarse-grained filling factor density D(r) 5 Nva2/Ar, where r
is the coordinate perpendicular to the cylinder axis z, Ar is some area
surrounding the point r and containing many CDs, and Nv is the
number of vortex quanta trapped by CDs within this area. So if, for
example, each CD in this domain contains exactly one single-
quantum vortex, D(r) 5 1; if CDs outnumber the trapped vortex
quanta, then D(r) , 1. We show that the vortex system confined
within such a sample can break up into a sequence of the distinct
nested domains (listing from the sample border inward):
V0, V1, V2 . . .Vnmax , with the filling factors D r [ V0ð Þ~0vD1:
D r [ V1ð Þv . . . vDnmax:D r [ Vnmaxð Þ, see Fig. 2, respectively. Our
analysis shows that D can be any positive integer or a fraction,
depending on the relation between the radius of CDs, the supercon-
ducting coherence length j, and the strength of the magnetic field.
Accordingly, there exists a sequence of characteristic fields H1 , H2…

, Hn , Hc1 such that at Ha , H1 , Hc1 the superconductor retains
its vortex-free Meissner state, at H1 , Ha , H2 , Hc1, appears the
finite compact domain V1 with the filling factor D1 # 1, and so on.
The possible maximal number of the distinctly filled domains, nmax

and the corresponding maximal filling factor, Dnmax , are determined
by the maximal number of vortices which CD can trap as given by the
expression15 nmax 5 [R/2j] (nmax is derived from the condition that
the circular current around the CD due to trapped flux cannot exceed
the superconducting pair-breaking current). Using a square array of
CDs does not result in a loss of generality and ensures that the
observed vortex phase separation is an inherent property of vortex
systems that stems from the subtle balance between the confinement
and vortex-vortex and vortex-defect interactions rather then a trivial
consequence of fluctuations in the defect density.

We will be describing superconductivity of our system and the
resulting vortex state within the Ginzburg-Landau (GL) formalism.
The ground state is determined by the standard GL functional:
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Figure 1 | Square array of columnar defects in a cylindrical
superconducting sample. The superconducting sample has a form of a

generalized cylinder, with the base of an arbitrary shape with the

characteristic linear size Rs^l. The period a of the square array of holes of

the radii R?j satisfies the condition R=a=Rs.

Figure 2 | Phase separation in distribution of vortices captured by the
columnar defects. Instead of homogeneous distribution all over the

sample the vortices form a nested sequence of the domains characterized by

the filling factor of the defects which grows from the borders towards the

center of the sample. Namely, the vortex system breaks up into a sequence

V0,V1,V2 . . .Vnmax , with the filling factors D r [ V0ð Þ~0vD1:
D r [ V1ð Þv . . . vDnmax:D r [ Vnmaxð Þ, correspondingly, where D is the

average number of vortices per columnar defect in the respective domain.
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where the cylindrical sample and the applied magnetic field Ha are
aligned with the z-axis,Y(r) is the superconducting order parameter,
r is the coordinate vector in the plain perpendicular to the z-axis, m
and –e are electron mass and charge, respectively, A(r) is the vector
potential related to the magnetic induction by B 5 curl A, and the
integration is taken over the sample volume V. The coherence length
and London penetration length are expressed through the coeffi-
cients of the GL functional as j2 5 2/(4mjaj) and l2 5 (mc2b)/
(8pe2jaj), respectively. The properties of a superconducting material
are characterized by the Ginzburg-Landau parameter k 5 l/j. We
consider an extreme type II superconductor such that k?1. As usual
in the GL analysis, it is convenient to introduce the dimensionless
order parameter u 5 Y/Y0, where Y0~{

ffiffiffiffiffiffiffiffi
a=b

p
, and measure

lengths in the units of l and the magnetic fields in the units of
2Hc1/ln k 5 W0/(2plj). The dimensionless columnar defect radius
is r~R=l=e~a=l=rs~Rs=l^1.

To determine the conditions for the emergence of the vortex
domain structure, we require that the CD spacing is not extremely
small such that 1=e2=ln k. Further we let the CD radius be very
small and parametrize it as r 5 exp(2c/e 2), where c is a constant
of the order of unity. This means that the characteristic lengths
separation is exponentially stronger as compared to the condition
r=e. And, finally, we parametrize the dimensionless magnetic field
as h 5 s/e2, where s^1. The key point of our approach is the
observation that under the chosen relations between the character-
istic parameters of our system, for the purpose of the determination
of the vorticity the amplitude of the order parameter can be taken juj
5 1 everywhere in the bulk of the sample except in CDs. This implies
that the (dimensionless) GL free energy (depending solely on the
distribution of the magnetic field h 5 curl A) can be reduced to
the following form [see Supplementary Information (SI) section]:

FG u, A½ �~ 1
2

ð
V

+{iAð Þuj j2z curl A{hað Þ2
� �

d2rdz, ð2Þ

which we call the harmonic map functional. In other words, the
distribution of vortices, derived by the minimization ofFG coincides
with that obtained by the minimization of F . Varying Eq. (2) with
respect to h and taking into account the boundary conditions at the
boundaries of CDs, one finds the equation for the magnetic field:

{Dhzh~2pm rð Þ, ð3Þ

where m rð Þ~
P

j djd r{rj

	 

, rj is the coordinate of the j-th CD, and

dj is its corresponding vorticity which can also be zero if there are no
flux trapped at the particular CD. The remaining task is finding the
configuration of the field, i.e. the unknown numbers dj which min-
imize the free energy FG. To implement this we coarse grain Eq. (3)
over the distances exceeding the CD spacing. As a results the r.h.s. of
the equation for the coarse grained field �h will assume the form
2pD(r), where the average vorticity introduced above can now be
rigorously defined as D(r) 5 limeR0m(r). The boundary conditions
for the field now become simply �h~s at the sample’s boundary. The
phase separation picture emerges from exploring the dependence of
D(r) on the parameter s, characterizing the magnitude of the mag-
netic field. Our main finding can be formulated as follows (see
Methods for more detail). Let the radii of the holes (in dimensionless
units) be r 5 exp(2c/e2) and the applied magnetic field be ha 5 s/e2.
There exists a strictly increasing sequence of the critical values scrj, j
5 1, 2… such that if scrj , s , scr(j11), then the average vorticity
assumes the constant values in domains Vk, where Vk ; Vk(s), k 5

0, 1, 2, …, j are strictly nested sets characterized by distinct vorticities.
Namely, the vorticity D(r) 5 0 in V0 and D(r) 5 k in Vk, k # j 2 1.
We further show that when r [ Vj one of the two possibilities can
realize: (i) if s , 2pj 1 (j 2 1/2)c, then j 2 1 , D(r) , j, otherwise (ii)
D(r) 5 j.

To illustrate this we consider the evolution of the distribution of
the trapped vortices upon increasing magnetic field. Let sk 5 2pk 1

c/2, k 5 0, 1, 2…. One can show now, that if 0 , s , scr1 ; c/(2 max
jf1j), where f1 is the solution to the equationDf1 2 f1 5 1, r [ V, and f1

5 0 if r [ LV, where hV means the boundary of the sample, D(r) 5 0
and there are no trapped vortices at all (see, Fig. 3a). If c is such that
scr1 , s1, then for scr1 , s , s1 the superconductor breaks up into
two phases, see Fig. 3b: the vortex-free phase in V0 and the phase of
trapped vortices with 0 , D(r) , 1 in the domainV1. If now c is such
that max{scr1, s1} , s , scr2 (the procedure for deriving scrk is
described in the Methods section), then in the filled phase D(r) 5

1 (i.e. each columnar defect traps exactly one vortex), see Fig. 3c.
Continuing this process we find that if c is such that scr2 , s2 then
for scr2 , s , s2 the superconductor comprises three nesting hier-
archical phases: V0, with no vortices in it, D(r) 5 0, V1, where D(r) 5

1, andV2, where 1 , D(r) , 2. The latter means that some of the CDs
in the ‘‘interior’’ trapped double-quanta vortices, but some CDs have
only a single vortex captured, so the average filling factor in V2 is less
then 2, see Fig. 3d. And if c is such that max{scr2, s2} , s , scr3, then
the three nesting phases have the vorticity D(r) 5 0, 1, and 2 respect-
ively. That is all the CDs of the internal phase are filled with double-
quanta vortices. This process can be continued till the maximal pos-
sible multi-quanta vortices appear. The maximal multiplicity is
determined by the condition nmax 5 [R/2j].

Finally, to complete our consideration we have to check the
stability of the established domain structure. To this end we first
estimate the typical sizes RD of our domains. Considering for brevity
the circular domain V 5 B(0, 1) and determining the dimensionless
radius ~RD of a subdomain V1 in the case when there are just two
phases D(r) 5 0 and 0 , D(r) # 1 (in the radially symmetrical case
V1 is also a ball), one finds, coming back to dimensional units (see SI)

RD<0:567l: ð4Þ

Now we have to check that density of the current Js, circulating
within the interface between the domains does not exceed the pair-
breaking current density J0^W0

�
l2j
	 


. Evaluating the current, we
take into account that the width of the interface between the adjacent
domains is of the order of the defect spacing a. Now, let us take a
single central domain of the linear size L, containing the traps that
capture exactly one vortex and make use the expression vs 5 n /2mr
for the Cooper pair velocity around the vortex at distances r?j.
Then employing the definition of the supercurrent Js 5 nsevs, one
easily arrives at the estimate Js , J0RDj/a2. This implies that for the
domain to be stable the inequality

Figure 3 | Sequential vortex domain formation upon increasing magnetic
field. At smallest fields vortices are not trapped at all, upon increasing field

the central domain where D , 1, i.e. where part of the defects captured one

vortex forms. With further increasing field, all the traps in the central

domain get filled by one vortex each; then, finally, the sequence of domains

with D 5 0, D 5 1, and 1 , D , 2, forms.
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RDj
�

a2
v1 ð5Þ

must hold. Now let us write down the chain of inequalities which
constitute the base of our consideration:

j=R:l exp {l2c
�

a2
� 

=
a2

l
, ð6Þ

i.e. a2=j?l. Therefore

Lvl=
a2

j
ð7Þ

so the condition (5) of the stability of the domains automatically
follows from the assumed hierarchy of the lengths involved.
Therefore, the domains are stable. This analysis can be straightfor-
wardly generalized to an arbitrary number of domains.

Discussion
We have demonstrated that the equilibrium ground state of a cylin-
drical superconductor with a base of arbitrary shape, containing
uniformly distributed columnar pins, can develop an hierarchical
structure of nesting domains, where each distinct vortex domain is
characterized by a sequence of different filling factors. This result
takes us beyond the frontiers of conventional soliton physics, where
soliton structures resulted from explicit solutions of a particular 1D
nonlinear equation. For example, the terraced vortex distribution
found in a nonequilibrium (metastable) distribution of vortices in
a critical state carries a direct analogy with the soliton structure
derived for a 1D system of atoms adsorbed on a periodic substrate16.
Also, the obtained domain structure differs fundamentally from the
nonuniform vortex distribution found in17, which is generated by the
nonuniform arrangement of pinning sites.

The essential feature of our model that ensures a sequence of
nested domains is the large radii, R?j, of columnar defects which
enable them to capture a large number of flux quanta. The formation
of the multiply quantized vortices in the forest of large CDs was
already discussed in18, although the possibility of the formation of
distinct domains with different multi-vorticity was not explored. The
phase separation discussed above arises as a result of the subtle
balance between the different logarithmic contributions to energy
of the vortex system: repulsive interaction between the vortices
favouring homogenization of their spatial distribution, Meissner cur-
rents pushing vortices towards the center of the sample, and inter-
actions of vortices with their images that appear both outside the
sample and within the columnar cavities. This suggests that although
our results were proved in a mathematically rigorous way, only for
specific parameters, one should expect that the main conclusion
about vortex phase separation retamains valid well beyond the

restrictions of the particular model. Note, in this connection, an
interesting experimental work19 where the formation of the vortex
clusters and multiquanta vortices was observed. Note that as we have
already mentioned, the effect of vortex phase separation can realize
in the vortex matching systems with regular arrays of large, R?j,
holes and with CD spacing still much exceeding R. In this respect,
direct scanning tunneling microscopy and spectroscopy (STM/STS)
experiments, that have revealed strong confinement effects on the
vortex arrangements in extreme type II superconductors and enabled
to discriminate between the multi-vortex and multi-quanta vortex
formations20, seem to be a very adequate approach for the search of
the vortex phase separation. Furthermore, in the case where vortices
are pinned by weak point defects in the collective pinning regime,
one can view a pinned vortex line as confined within the slightly
curved tube-like potential well of radius j, which arises self-consis-
tently from the interplay between the pinning and elastic energies1.
One thus can anticipate that pinned vortices may cluster together to
form an array of compact domains of pinned vortices separated by
distances well exceeding the size of a domain. The remarkable pos-
sibility of searching for segregation of localized phases can be realized
in the7Li atomic gas21,22 where the interaction strength can be tuned
by a Feshbach resonance, thus achieving the required balance
between the competing repulsive, pinning, and confining forces.

Methods
The central point of our consideration is minimizing the free energy functional (2)
with respect to vorticity numbers dj, given the constraint (3). The first step in this
process is the coarse graining procedure introducing the coarse-grained vorticity D(r)
and magnetic field �h. Then the problem reduces to minimization of the coarse-
grained energy functional

�F D rð Þð Þ~ 1
2

ð
V

+�h
�� ��2z �h{s

	 
2
� �

d2rzpc

ð
V

W D xð Þð Þd2r, ð8Þ

where

W Dð Þ~ 2pz1ð Þ Dj j{p2{p, when pƒ Dj jvpz1, p~0,1,2, . . . , ð9Þ

is a piecewise parabolic function, see Fig. 3, under the constraint {D�hz�h~2pD rð Þ,
r [ V, and �h~s on hV. Making use of the Legendre transform of the function pcW(D/
2p) such that W*(f) 5 2p supD[Df 2 (c/2)W(D)], one arrives at the effective energy
functional

�F Dð Þ~ 1
2

ð
V

+fj j2zf 2
	 


d2rz
ð
V

W� fð Þzsf½ �d2r, ð10Þ

which is to be minimized with respect to the auxiliary field f dual to �h{s so that for
minimizing the configuration fm~�hm{s. Function W* is a piecewise linear function
of f enveloped by a parabola, see Fig. 4.

Now one can follow the evolution of the solution upon increasing s. It follows from
(10) that f 5 0 for s 5 0 and therefore f [ {c=2,0ð ÞwhereW*5 0 for sufficiently small
s. The variation with respect to f in (6) leads to Df 2 f 5 s with f 5 0 for r [ LV. Since
2pD(r) 5 2Df 1 f 1 s, we have D(r) 5 0. Function W* remains zero until min f
reaches value 2c/2, which defines scr1 5 c/(2 max jf1j). Upon further increase in s

Figure 4 | Sequential phase segregation as a function of the auxiliary field f. The stages of the domain formations are the same as in the Fig. 3.
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beyond scr1, W* acquires the first oblique linear piece, and (10) leads to the energy

�F~

ð
V

1
2

+fj j2zf 2
	 


zsf z2p fj j{c=2ð Þz
� �

d2r: ð11Þ

Disregarding for the moment the gradient term in (11) (which only penalizes var-
iations of f) we see a competition of the positive term f2 1 4p(jfj 2 c/2)1 and the
negative one 2sf (note that always f # 0). Now if scr1 , 2p 1 c/2, then the com-
petition eliminates f , 2c/2 for scr1 , s , 2p 1 c/2. Then we get f 5 2c/2 for r [ V1,
where we obtain 0 , D(r) , 1. If scr1 $ 2p 1 c/2, then the negative term wins for f ,

2c/2 that corresponds r [ V1, where we have Df 2 f 5 s 2 2p, and we get D(r) ; 1.
The continuation of this procedure further generates a sequence of critical values of s
and defines the corresponding sequence of nested domains with the increasing
(towards to the inner part of the sample) vorticity as described in the main text. The
evolution of the CD filling and formation of the spatially inhomogeneous vortex state
with the increase of the reduced field s is illustrated in Fig. 4.
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