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Objective: This study aims to investigate the value of machine learning models based on
clinical-radiological features and multiphasic CT radiomics features in the differentiation of
benign parotid tumors (BPTs) and malignant parotid tumors (MPTs).

Methods: This retrospective study included 312 patients (205 cases of BPTs and 107
cases of MPTs) who underwent multiphasic enhanced CT examinations, which were
randomly divided into training (N = 218) and test (N = 94) sets. The radiomics features
were extracted from the plain, arterial, and venous phases. The synthetic minority
oversampling technique was used to balance minority class samples in the training set.
Feature selection methods were done using the least absolute shrinkage and selection
operator (LASSO), mutual information (MI), and recursive feature extraction (RFE). Two
machine learning classifiers, support vector machine (SVM), and logistic regression (LR),
were then combined in pairs with three feature selection methods to build different
radiomics models. Meanwhile, the prediction performances of different radiomics models
based on single phase (plain, arterial, and venous phase) and multiphase (three-phase
combination) were compared to determine which model construction method and phase
were more discriminative. In addition, clinical models based on clinical-radiological
features and combined models integrating radiomics features and clinical-radiological
features were established. The prediction performances of the different models were
evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and
the drawing of calibration curves.

Results: Among the 24 established radiomics models composed of four different phases,
three feature selection methods, and two machine learning classifiers, the LASSO-SVM
model based on a three-phase combination had the optimal prediction performance with
AUC (0.936 [95% CI = 0.866, 0.976]), sensitivity (0.78), specificity (0.90), and accuracy
(0.86) in the test set, and its prediction performance was significantly better than with the
clinical model based on LR (AUC = 0.781, p = 0.012). In the test set, the combined model
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based on LR had a lower AUC than the optimal radiomics model (AUC = 0.933 vs. 0.936),
but no statistically significant difference (p = 0.888).

Conclusion:Multiphasic CT-based radiomics analysis showed a machine learning model
based on clinical-radiological features and radiomics features has the potential to provide
a valuable tool for discriminating benign from malignant parotid tumors.
Keywords: radiomics, machine learning, multiphasic CT, parotid tumors, differentiation
INTRODUCTION

Salivary gland tumors are relatively rare and most commonly
occur in parotid glands, with benign tumors accounting for
about 75% (1, 2). Surgery is the primary treatment for parotid
tumors, but the clinical choices of surgical methods for benign
parotid tumors (BPTs) and malignant parotid tumors (MPTs)
are quite different. Local or superficial parotidectomy is the
main treatment for BPTs, while more aggressive approaches are
used in MPTs, including total or subtotal parotidectomy, even
facial nerve resection, or postoperative chemoradiation (2–4).
Therefore, accurate preoperative identification is critical to the
choice of treatment and prognosis for patients. At present,
ultrasound-guided core biopsy (CB) and fine-needle aspiration
(FNA) are the major methods for preoperative differentiation of
the types of parotid tumors, with the risk of serious surgical
complications, such as facial paralysis and tumor implantation
metastasis (5, 6). Additionally, ultrasound imaging of deep-lobe
parotid tumors is occluded by tissue structures such as the
mandible, which affects the evaluation of the tumors, thus
making sampling difficult and the accuracy of the results
largely dependendent on the operator’ experience (2). Image
examination is an important link in the achievement of
accurate preoperative diagnosis of parotid tumors. For
tumors occurring in the superficial lobe of parotid glands,
ultrasound is the preferred method of examination, with
limited value in the diagnosis of parotid tumors (7). CT and
MRI are widely applied in preoperative localization, tumor
invasion diagnoses, and differential diagnoses of parotid
tumors, but conventional image evaluation largely depends
on semantic features, and a large amount of information on
tumor heterogeneity cannot be quantitatively elucidated (8).
Although the application of multiparametric MRI in parotid
tumors has increased, such as diffusion-weighted imaging
(DWI) and dynamic contrast-enhanced MRI, its value in the
differential diagnosis of benign and malignant parotid tumors is
still controversial (9, 10).

In recent years, the application of radiomics to tumor
diagnosis and treatment has been extensively studied. With the
characteristics of high-throughput extraction of quantitative data
from medical images in a noninvasive manner to explain the
tumor heterogeneity, radiomics has rapidly developed into an
emerging field in precision medicine (11). A previous study on
the application of conventional CT radiomics to the
differentiation of lympho-associated benign and malignant
lesions of the parotid gland showed that it has a high
2

differential ability (12). Another study demonstrated that dual-
energy CT-based radiomics has a potential value in the
differentiation of Warthin tumors from pleomorphic adenoma
(13). However, this study only discussed the differential diagnosis
of benign parotid tumors, and the sample size was relatively
small. Xu et al. constructed a machine learning model based on
the radiomics features extracted from plain and arterial phase
scanning CT images to distinguish BPTs from MPTs (14), but
only one machine learning classifier was utilized in their study.
To the best of our knowledge, no studies have reported which
phases, feature selection methods, and classifiers or their possible
combinations are more discriminating in BPTs and MPTs. This
will help in guiding the selection of the best model and phase for
future multicenter studies of large datasets. This study aims to
establish and validate machine learning prediction models based
on CT radiomics features, clinical-radiological features, and a
combination of the two types of features, and investigate their
value in differentiating benign and malignant parotid tumors. At
the same time, the prediction ability of differently combined
radiomics models for BPTs and MPTs in the single-phase and
multiphase were compared.
MATERIALS AND METHODS

Patient Cohorts
This retrospective study was approved by the institutional review
board of our hospital (approval ID: 2020080), and the
requirement for obtaining written informed consent from
patients was waived.

Multiphasic enhanced CT images of patients with
pathologically confirmed BPTs and MPTs from January 2014
to October 2021 were collected through a picture archiving and
communication system (PACS). The inclusion criteria were as
follows (1): patients with complete clinical and imaging data
(2); contrast-enhanced CT examination was performed within
14 days before operation; and (3) patients did not receive any
treatment prior to CT examination. The exclusion criteria were
as follows (1): patients with recurrent tumor (2); CT images
with obvious artifacts (3); patients with a maximum tumor
diameter of less than 5 mm. Finally, 312 patients with parotid
tumors were included, including 205 cases of BPTs and 107
cases of MPTs. The flowchart of patient recruitment is
presented in Figure 1. Supplementary Table S1 provides
details of the pathological types of all patients with
parotid tumors.
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CT Image Acquisition
Axial three-phase scanning (including plain scan, arterial phase,
and venous phase) was performed on each patient by a multislice
spiral CT scanner. The CT scanners were as follows (1):
Discovery CT750 HD (GE Healthcare, Milwaukee, WI, USA)
(2), SOMATOM Definition Flash (Siemens Healthcare,
Forchheim, Germany), and (3) SOMATOM Definition Force
(Siemens Healthcare, Forchheim, Germany). The scan was
performed from the skull base to the thoracic entrance. After
the completion of plain scanning, the contrast agent iohexol
(300 mg/ml) was injected at a flow rate of 3~4 ml/s, followed by
30 ml of normal saline with the dosage of contrast agent (1.5 ml/
kg). Arterial and venous phase images were acquired 35 and 60 s
after the contrast injection, respectively. The acquisition
parameters of the above different devices are introduced in
detail in Supplementary Table S2.

Clinical-Radiological Feature Evaluation
Univariate analysis was used to determine the statistically
significant clinical-radiological features used for clinical model
establishment. Clinical factors were collected, including, gender,
age, and smoking history. The qualitative analysis of CT
radiological features was evaluated by radiologists with 5 and
10 years of working experience (radiologists A and B,
respectively), without knowing the pathological results of
tumors. In the case of inconsistent evaluation results, the final
results were obtained by a consensus between the two readers.
Frontiers in Oncology | www.frontiersin.org 3
The evaluation included the following radiological features (1):
size (maximum tumor diameter in axial position) (2); tumor
location (superficial or deep lobe was determined according to
the main part of the tumor; the superficial and deep lobes are
demarcated by a virtual line drawn from the lateral border of the
posterior belly of the digastric muscle and retromandibular vein
to the lateral edge of the mandible (15) (3); scope (localized or
diffused; tumor involving local or whole parotid gland) (4);
number (single or multiple) (5); shape (regular or irregular)
(6); tumor margin (well-defined or ill-defined) (7); cystic or
necrotic areas (CNA; absent or present) (8); infiltration of
surrounding tissue (IST, absent or present; tumors involve
surrounding muscles, bone, skin, or subcutaneous tissue (3)
(9); lymphatic metastasis (LM; absent or present; obvious
density change in cervical lymph nodes or short axis diameter
>10 mm) (10); CT value at each phase (the solid section of the
tumor was measured three times, and the average was calculated)
(11); enhancement degree in P-A phase (difference in CT values
between arterial and plain phases); and (12) enhancement degree
in A-V phase (difference in CT values between venous and
arterial phases).

Radiomics Feature Extraction
and Selection
The CT images of all patients were loaded into the open-source
image processing platform ITK-SNAP software (version 3.6.0,
http://www.itksnap.org) in DICOM format. The 3D volume of
FIGURE 1 | Flowchart of patient recruitment. BPTs, benign parotid tumors; MPTs, malignant parotid tumors; SMOTE, the synthetic minority oversampling technique.
June 2022 | Volume 12 | Article 913898
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interest (VOI) of the tumor was formed by manual delineation
layer by layer along the contour of the tumor on the plain scan,
arterial phase, and venous phase CT images by radiologist A. In
order to evaluate the reproducibility of features, 30 cases of CT
images from each phase were randomly selected to evaluate
intra- and interobserver agreement of radiomics features.
Radiologist A performed the second tumor VOI segmentation
at intervals of 1 week after the first tumor VOI segmentation, and
radiologist B performed the tumor VOI segmentation
independently. The intraclass correlation coefficient (ICC) was
used to evaluate the intra- and interobserver agreement, and ICC
values greater than 0.75 indicated good agreement.

PyRadiomics version 3.0 was used for feature extraction and
image preprocessing. In order to reduce the influence of different
scanning devices, the images were resampled to a voxel spacing
of 1 × 1 × 1 mm³. The gray value discretization of the image was
performed by the use of a fixed bin width of 25 HU to normalize
image intensity and reduce image noise. In total, 851 features
were extracted from each VOI, including the following four types
of features (1): first-order statistics (18 features) (2), shape-based
(14 features) (3), texture classes (75 features), and (4) wavelet
features (744 features). The features of CT phase extraction at
each phase were recorded in Supplementary Excel S1. The
calculation formula and definition of the above features were
provided in PyRadiomics documentation (https://pyradiomics.
readthedocs.io/en/latest).

Before feature screening, all patients were randomized 7:3
into training and test sets. Feature selection plays an important
Frontiers in Oncology | www.frontiersin.org 4
role in reducing the task difficulty of the model and preventing
model overfitting. The Mann–Whitney U test (p < 0.05) was used
to initially screen the radiomics features (ICC >0.75). Before
further feature screening, all features were normalized by the use
of a Z-score to reduce the influence of different dimensions
among features. In addition, in order to alleviate the impact of
sample imbalance, the synthetic minority oversampling
technique (SMOTE) was adopted to balance minority samples
in the training set, thus leading to a sample proportion of 1:1.
The algorithm has been proven to be helpful in avoiding
overfitting of the model in the unbalanced data set and
improve the overall generalization ability (16–18). On the
balanced data set, least absolute shrinkage and selection
operator (LASSO), mutual information (MI), and recursive
feature extraction (RFE) were applied for radiomics feature
further screening. Figure 2 shows the workflow of
radiomics analysis.

Radiomics Model Establishment
and Validation
The clinical model served as the baseline model for the
comparison between different models in our study. Radiomics
models based on the CT radiomics features in each phase and
combined models were also established. The combined model
was established by the integration of the clinical-radiological
features and radiomics features screened by LASSO in
the arterial phase. There are significant differences in
the prediction performance of models among different
FIGURE 2 | Workflow of the radiomics analysis. LASSO, least absolute shrinkage and selection operator; MI, mutual information; RFE, recursive feature elimination;
SVM, support vector machine; LR, logistic regression.
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combinations of various machine learning classifiers and feature
selection methods (19–21). Based on the radiomics features
extracted from the plain scan, arterial, venous, and combined
phase CT images, two common machine learning classifiers,
support vector machine (SVM) and logistic regression (LR), were
combined in pairs with three feature selection methods (LASSO,
MI, and RFE) to generate a total of 24 models to determine the
best performing radiomics model. In the training set,
GridSearchCV (CV = 5, namely, 5-fold cross-validation) was
used to optimize the hyperparameters of the model to reduce its
training error and generalization one. For each model, the
prediction performance of the machine learning model was
evaluated by sensitivity, specificity, accuracy, and the area
under the receiver operating characteristic (ROC) curve
(AUC). In addition, the calibration curve was plotted to assess
the calibration of models in the test set.

Statistical Analysis
Python version 3.7.3 and R version 3.6.0 were used to complete
model establishment and statistical analysis. Quantitative
variables were expressed as mean ± standard deviation (SD) or
median and interquartile range (IQR), and categorical variables
were expressed as numbers. An independent samples t-test or
Mann–Whitney U test was adopted for quantitative variables,
and the chi-square test or Fisher’s exact test was used for
categorical variables. The comparison of AUC differences
between different models was completed by the Delong test.
The level of significance was set at p < 0.05. The “imbalanced
learn version 0.8.1” package was applied for data balancing in the
training set. The feature screening and machine learning
classifier construction were performed by the “scikit learn
version 1.0.1” package.
Frontiers in Oncology | www.frontiersin.org 5
RESULTS

Clinical-Radiological Factors and
Clinical Models
The baseline table of clinical-radiological features of patients is
shown in Table 1. In the training and test sets, there were
significant differences in size, scope, shape, margin, IST, and LM
between BPT and MPT groups (p < 0.05). Although the tumor
location was not significantly different in the training set, a meta-
analysis showed that tumor location (superficial lobe or deep
lobe) may be a useful marker to help distinguish BPTs and MPTs
(22). Therefore, the abovementioned seven clinical-radiological
features were applied to the establishment of clinical models. In
the established clinical models based on SVM and LR, the overall
efficiency of the LR-based model was higher than that of the
SVM-based one. The prediction performance of the LR-based
model: in the training set, the AUC was 0.769 [95% CI = 0.716,
0.817], sensitivity was 0.50, specificity was 0.91, and accuracy was
0.71; in the test set, the AUC was 0.781 [95% CI = 0.684, 0.860],
sensitivity was 0.53, specificity was 0.89, and accuracy was 0.77;
the details of clinical models are shown in Table 2. The results
showed that the prediction ability of clinical models for
malignant parotid tumors was relatively low. Figure 3A shows
the ROC curve of the clinical model in the test set.

Radiomics Feature Selection and
Radiomics Models
Among the 851 radiomics features extracted from each phase,
there were 680 highly repeatable features in the plain scan, 651
in the arterial phase, and 667 in the venous phase, respectively
(ICC >0.75). The ICC analysis results are shown in
Supplementary Excel S2. After preliminary screening by the
TABLE 1 | Clinical-radiological features of the training and test sets.

Clinical-radiological features Training set (n = 218) Test set (n = 94)

BPTs (n = 143) MPTs (n = 75) p-value BPTs (n = 62) MPTs (n = 32) p-value

Gendera (M/F) 75/68 39/36 0.950 37/25 17/15 0.543
Ageb (year) 55.00 (15.00) 48.00 (24.50) 0.023 53.69 (14.34) 51.38 (16.54) 0.483
Smokea (absent/present) 81/62 47/28 0.391 34/28 21/11 0.315
Sizeb (mm) 19.77 (8.43) 23.09 (12.01) 0.003 20.84 (8.46) 28.83 (14.70) 0.001
Locationa (superficial/deep lobe) 111/32 50/25 0.080 57/5 16/16 <0.001
Scopea (localized/diffuse) 143/0 65/10 <0.001 62/0 23/9 <0.001
Numbera (single/multiple) 136/7 73/2 0.669 59/3 31/1 1.000
Shapea (regular/irregular) 96/47 36/39 0.006 51/11 14/18 <0.001
Margina (well-defined/ill-defined) 123/20 44/31 <0.001 57/5 17/15 <0.001
CNAa (absent/present) 77/66 39/36 0.795 42/20 23/9 0.681
ISTa (absent/present) 137/6 44/31 <0.001 57/5 17/15 <0.001
LMa (absent/present) 143/0 68/7 0.001 62/0 28/4 0.021
CT valueb (HU)
Plain 42.00 (15.00) 45.00 (16.50) 0.524 43.15 (11.94) 43.97 (13.26) 0.761
Arterial 84.00 (41.00) 79.00 (38.50) 0.591 86.69 (36.32) 84.31 (26.36) 0.743
Venous 86.00 (29.00) 87.00 (31.50) 0.961 86.94 (23.71) 89.50 (26.85) 0.636
Art-Pl 38.00 (36.50) 34.00 (30.00) 0.209 34.00 (39.50) 33.00 (24.75) 0.886
Ven-Art 3.07 (23.72) 5.03 (18.21) 0.499 6.00 (28.75) 8.00 (16.75) 0.330
June 20
22 | Volume 12 | Article
aCategorical data as numbers (n).
bQuantitative data are mean (standard deviation) or median (quartile). p-value was calculated with independent samples t-test or Mann–Whitney U test. p-value was calculated with the c2

or Fisher’s exact test. BPTs, benign parotid tumors; MPTs, malignant tumors; F, female; M, male; CNA, cystic or necrotic areas; LM, lymphatic metastasis; CT, computed tomography; Art,
arterial phase; Pl, plain scan; Ven, venous phase.
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Mann–Whitney U test, SMOTE was adopted to balance the
minority class for samples in the training set, with the
proportion of samples in the training set adjusted to 1:1
(BPTs = 143, MPTs = 143). Three feature screening methods
(LASSO, MI, and RFE) combined with two machine learning
Frontiers in Oncology | www.frontiersin.org 6
methods (SVM and LR) were then used to establish 24
radiomics models in the plain scan, arterial phase, and
venous phase, as well as a three-phase combination. The
results of different feature screening methods in each phase
are shown in Supplementary Table S3.
TABLE 2 | Diagnostic performance of the clinical, radiomics, and combined models.

Model AUC (95%CI) Sensitivity Specificity Accuracy p-value

Training set
Clinical model (LR) 0.769 (0.716 to 0.817) 0.50 0.91 0.71 –

Clinical model (SVM) 0.871 (0.827 to 0.908) 0.66 0.93 0.80 <0.001
Radiomics model 1 0.951 (0.919 to 0.973) 0.84 0.92 0.88 <0.001
Radiomics model 2 0.991 (0.972 to 0.999) 0.96 0.97 0.96 <0.001
Combined model (LR) 0.950 (0.918 to 0.972) 0.85 0.94 0.90 <0.001
Combined model (SVM) 0.978 (0.854 to 0.992) 0.92 0.97 0.95 <0.001
Test set
Clinical model (LR) 0.781 (0.684 to 0.860) 0.53 0.89 0.77 –

Clinical model (SVM) 0.744 (0.644 to 0.828) 0.69 0.85 0.80 0.539
Radiomics model 1 0.924 (0.850 to 0.968) 0.78 0.89 0.85 0.012
Radiomics model 2 0.936 (0.866 to 0.976) 0.78 0.90 0.86 0.013
Combined model (LR) 0.933 (0.862 to 0.974) 0.75 0.85 0.82 0.006
Combined model (SVM) 0.928 (0.856 to 0.971) 0.81 0.87 0.85 0.009
June 2
022 | Volume 12 | Article
The p-value was calculated by the Delong test. AUC, area under the receiver operating characteristic curve; CI, confidence interval; SVM, support vector machine; LR, logistic regression.
Radiomics model 1, the best radiomics model based on a single phase (arterial-LASSO-SVM). Radiomics model 2, the best radiomics model based on the multiphasic phase (three-
LASSO-SVM).
A CB

D FE

FIGURE 3 | ROC curve of the clinical, radiomics, and combined models in the test set, respectively. (A) ROC curve of Clinical models. (B–E) ROC curve of
radiomics models (different combinations of 3 feature selection methods and 2 classifiers) based on the plain scan, arterial phase, venous phase, and three-phase
combination. (F) ROC curve of combined models. ROC, receiver operating characteristic; LASSO, least absolute shrinkage and selection operator; MI, mutual
information; RFE, recursive feature elimination; SVM, support vector machine; LR, logistic regression.
913898
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TABLE 3 | Diagnostic performance of the radiomics models.

Model SVM LR

Training Test Training Test

Arterial phase
LASSO
AUC (95% CI) 0.951 (0.919 to 0.973) 0.924 (0.850 to 0.968) 0.936 (0.901 to 0.961) 0.919 (0.845 to 0.966)
Sensitivity 0.84 0.78 0.86 0.81
Specificity 0.92 0.89 0.90 0.94
Accuracy 0.88 0.85 0.88 0.89

ML
AUC (95% CI) 0.896 (0.855 to 0.929) 0.901 (0.822 to 0.953) 0.881 (0.838 to 0.916) 0.896 (0.816 to 0.950)
Sensitivity 0.78 0.75 0.81 0.78
Specificity 0.88 0.85 0.81 0.79
Accuracy 0.83 0.82 0.81 0.79

RFE
AUC (95% CI) 0.909 (0.869 to 0.940) 0.914 (0.838 to 0.962) 0.904 (0.863 to 0.935) 0.896 (0.816 to 0.950)
Sensitivity 0.81 0.84 0.80 0.72
Specificity 0.90 0.87 0.87 0.84
Accuracy 0.86 0.86 0.84 0.80

Venous phase
LASSO
AUC (95% CI) 0.959 (0.929 to 0.979) 0.920 (0.846 to 0.966) 0.918 (0.880 to 0.947) 0.906 (0.828 to 0.957)
Sensitivity 0.89 0.69 0.82 0.78
Specificity 0.87 0.87 0.82 0.87
Accuracy 0.88 0.81 0.82 0.84

ML
AUC (95% CI) 0.856 (0.810 to 0.894) 0.831 (0.739 to 0.900) 0.829 (0.780 to 0.871) 0.807 (0.713 to 0.882)
Sensitivity 0.75 0.81 0.73 0.75
Specificity 0.78 0.74 0.74 0.73
Accuracy 0.77 0.77 0.73 0.73

RFE
AUC (95% CI) 0.926 (0.889 to 0.954) 0.915 (0.839 to 0.963) 0.909 (0.869 to 0.940) 0.872 (0.787 to 0.932)
Sensitivity 0.80 0.72 0.81 0.69
Specificity 0.89 0.95 0.83 0.87
Accuracy 0.85 0.87 0.82 0.81

Plain scan
LASSO
AUC (95% CI) 0.991 (0.972 to 0.998) 0.909 (0.832 to 0.959) 0.991 (0.972 to 0.998) 0.892 (0.811 to 0.947)
Sensitivity 0.94 0.72 0.96 0.81
Specificity 0.95 0.90 0.94 0.90
Accuracy 0.94 0.84 0.95 0.87

ML
AUC (95% CI) 0.900 (0.859 to 0.932) 0.899 (0.819 to 0.951) 0.904 (0.864 to 0.935) 0.848 (0.759 to 0.914)
Sensitivity 0.77 0.75 0.84 0.62
Specificity 0.86 0.87 0.85 0.84
Accuracy 0.81 0.83 0.84 0.77

RFE
AUC (95% CI) 0.933 (0.897 to 0.959) 0.898 (0.819 to 0.951) 0.921 (0.884 to 0.950) 0.882 (0.799 to 0.939)
Sensitivity 0.81 0.78 0.85 0.78
Specificity 0.90 0.92 0.84 0.87
Accuracy 0.85 0.87 0.84 0.84

Three-phase combination
LASSO
AUC (95% CI) 0.991 (0.972 to 0.999) 0.936 (0.866 to 0.976) 0.994 (0.977 to 1.000) 0.931 (0.859 to 0.973)
Sensitivity 0.96 0.78 0.97 0.75
Specificity 0.97 0.90 0.97 0.94
Accuracy 0.96 0.86 0.97 0.87

ML
AUC (95% CI) 0.912 (0.873 to 0.942) 0.903 (0.824 to 0.954) 0.914 (0.875 to 0.943) 0.890 (0.809 to 0.945)
Sensitivity 0.81 0.69 0.83 0.75
Specificity 0.86 0.84 0.86 0.84
Accuracy 0.84 0.79 0.85 0.81

RFE
AUC (95% CI) 0.908 (0.869 to 0.939) 0.887 (0.805 to 0.943) 0.909 (0.870 to 0.940) 0.883 (0.800 to 0.940)

(Continued)
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The discrimination indicators of all radiomics models are
shown in Table 3. Figures 3B–E show the ROC curve of all
radiomics models in the test set. The AUC values of all radiomics
models ranged from 0.819 to 0.994 in the training set and 0.807
to 0.936 in the test set (Figure 4). Among all radiomics models,
LASSO-SVM models based on three-phase combination had the
highest discrimination efficiency: in the training set, the AUC
was 0.991 [95% CI = 0.972, 0.999], sensitivity was 0.96, specificity
was 0.97, and accuracy was 0.96; in the test set, the AUC was
0.936 [95% CI = 0.866, 0.976], sensitivity was 0.78, specificity was
0.90, and accuracy was 0.86; in the test set, the prediction
performance was significantly better than that of the LR-based
clinical models (p = 0.012, Delong test). Among the three feature
screening methods, the efficiency of LASSO combined with SVM
or LRmachine learning classifier was generally better than that of
MI and RFE feature screening methods.

The Performance of Phases and
Combined Model
For single phase, the performance of models based on the arterial
phase was generally better than that in the venous and plain scan
phases. LASSO-SVM model based on the arterial phase has the
highest prediction performance: in the test set, the AUC was
0.924 [95% CI = 0.850, 0.968], sensitivity was 0.78, specificity was
Frontiers in Oncology | www.frontiersin.org 8
0.89, and accuracy was 0.85. It is worth noting that although the
prediction performance of the radiomics models based on the
plain scan was generally lower than that of those based on arterial
and venous phases, it also achieved a high one. The AUC of
LASSO-SVMmodels based on plain scan in the test set was 0.909
[95% CI = 0.832, 0.959], which was significantly higher than that
of LR-based clinical model (AUC = 0.781, p = 0.045, Delong test).
For multiphase, the LASSO-SVM model based on a three-phase
combination achieved the best prediction performance in all
phases, which was constructed with 62 radiomics features
obta ined from mult iphase sequences ( three-phase
combination) by LASSO. However, too many features will
increase the complexity of the model. Therefore, in order to
avoid overfitting caused by more features, we chose to integrate
21 radiological features from the single phase (arterial phase) by
LASSO with clinical-radiological features to establish
combined models.

In the training and test sets, the prediction performance of the
combined model was better than that of the clinical model. The
prediction performance of LR-based combined model in the test
set was as follows: the AUC was 0.933 [95% CI = 0.862, 0.974],
sensitivity was 0.75, specificity was 0.85, and accuracy was 0.82.
The diagnostic efficiency of the LR-based combined model was
significantly better than that of the LR-based clinical model
TABLE 3 | Continued

Model SVM LR

Training Test Training Test

Sensitivity 0.81 0.69 0.82 0.72
Specificity 0.89 0.85 0.85 0.89
Accuracy 0.85 0.80 0.84 0.83
June 2022 | Volum
AUC, area under the receiver operating characteristic curve; CI, confidence interval; SVM, support vector machine; LR, logistic regression; LASSO, least absolute shrinkage and selection
operator; MI, mutual information; RFE, recursive feature elimination.
A B

FIGURE 4 | The predictive performance (AUC) of radiomics models (3 feature selection methods and 2 classifiers) based on different phases in the training set (A)
and test set (B). LASSO, least absolute shrinkage and selection operator; MI, mutual information; RFE, recursive feature elimination; SVM, support vector machine;
LR, logistic regression.
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(AUC = 0.933 vs. 0.781, p = 0.006, Delong test); however, the
prediction performance of the LR-based combined mode
(AUC = 0.933 vs. 0.936, p = 0.888, Delong test) was similar to
that of the three-phase combined LASSO-SVM radiomics model
(Table 2). Figure 3F depicts the ROC curve of combined models
in the test set. A comparison of the ROC curve between different
models (clinical models, the optimal radiomics models base on
single-phase and multiphase, and combined modes) in the
training set (A) and test set (B) is shown in Figure 5.
The calibration curves of the LASSO radiomics model based on
the arterial phase, the LASSO radiomics model based on a three-
phase combination, and the combined models are shown in
Figure 6. These models all showed good calibration performance.
DISCUSSION

In this study, prediction models of benign and malignant parotid
tumors based on clinical-radiological features, radiomics
features, and combined features were established and validated.
Among the 28 established prediction models, radiomics
models and combined ones achieved outstanding performance.
More specifically, in the independent test set, the LASSO-SVM
radiomics model (AUC = 0.936) based on a three-
phase combination and the LR-based combined model
(AUC = 0.933) had higher prediction accuracy in the
differentiation of BPTs from MPTs compared with the optimal
clinical model based on LR (AUC = 0.781, p = 0.012, p = 0.006),
and they showed better calibration ability. This suggested that
the developed models may be helpful to the preoperative
diagnosis of BPTs and MPTs.

In conventional image diagnosis, diffuse tumor growth
patterns, irregular shape, ill-defined margin, deep lobe lesions,
surrounding tissue involvement, and lymphatic metastasis are
considered to be more common in MPTs (22–24). The results of
Frontiers in Oncology | www.frontiersin.org 9
this study are consistent with those of previous studies. A meta-
analysis showed that the sensitivities of US, CT, and MRI in the
differentiation of benign and malignant tumors of salivary glands
were 0.66, 0.70, and 0.80, respectively (25). Another conventional
MRI analysis showed that the sensitivities of the diagnosis of
MPTs only by infiltration of surrounding tissue and irregular
shape were 0.68 and 0.16, respectively (23). These showed that
the overlapping imaging features between BPTs and MPTs are
the main limitations of conventional radiology diagnoses. In this
study, the AUC values of SVM and LR clinical models based on
clinical-radiological features (size, scope, shape, margin, location,
IST, and LM) were 0.744 and 0.781 respectively, in the test set,
but the sensitivities to the two models were only 0.69 and 0.53,
respectively, which suggested that the prediction model
established only by clinical-radiological features cannot
differentiate BPTs from MPTs well. The radiomics features can
reflect subtle differences between tumors that cannot be
recognized by the naked eye. The diagnostic efficiency of
established radiomics models (AUC = 0.807~0.936,
sensitivity = 0.62~0.84) in the test set was better than that of
the clinical models (AUC = 0.744, 0.781, sensitivity = 0.69, 0.53),
and the overall prediction accuracy for malignant tumors
significantly improved. For combined models, although the
prediction performance of the optimal LR combined model
(combined with 7 clinical factors and radiomics features
screened by LASSO in the arterial phase) had no improvement
on that of LASSO-SVM radiomics models based on a three-
phase combination (AUC = 0.933 vs. 0.936), it had a great
improvement on that of the LASSO-LR radiomics model based
on the arterial phase (AUC = 0.933 vs. 0.919). This suggests that
the mutual complementation of clinical-radiological features and
radiomics ones has the greatest benefit for the diagnosis of BPTs
and MPTs, which may benefit from important extratumoral
features such as lymphatic metastasis and tumor infiltration into
the surrounding tissue.
A B

FIGURE 5 | Comparison of ROC curve between different models in the training set (A) and test set (B). ROC, receiver operating characteristic; SVM, support vector
machine; LR, logistic regression. Radiomics model 1, the best radiomics model based on a single phase (arterial-LASSO-SVM); Radiomics model 2, the best radiomics
model based on a multiphasic phase (three-LASSO-SVM).
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Among the screened radiomics features by three feature
selection methods, the sphericity based on shape features was
considered to be highly related to the diagnosis of BPTs and
MPTs. Sphericity is a dimensionless metric that is independent
of scale and orientation and may be applied to estimate the
roundness of the shape of the tumor region relative to a circle;
the closer the value is to 1, the closer the tumor is to the perfect
sphere. A previous study showed that among the radiomics
features extracted from T2WI images, the volume density AEE
value related to sphericity was higher in Warthin tumors than in
MPTs (26). In this study, the sphericity in the arterial phase was
significantly different between BPTs and MPTs (p < 0.05, Mann–
Whitney U test), with the value in BPTs generally higher. This
quantitative index showed that the morphology of BPTs is more
regular compared with MPTs. In addition, wavelet features had
the highest weight in the radiomics labels screened by different
feature screening methods, which indicates that wavelet features
Frontiers in Oncology | www.frontiersin.org 10
may reflect the spatial heterogeneity of tumors on several scales
(27, 28).

In recent years, there have been many radiomics studies
focused on the diagnosis of parotid tumors and the prediction
of side effects related to radiotherapy (12–14, 29), but they are
mainly based on MRI radiomics. Zheng et al. extracted the
radiomics features of benign and malignant parotid tumors
from TWI and T2WI sequences and established the radiomics
nomogram model by multivariate logistic regression analysis
(30). The AUC value of this model reached 0.938 in the
differentiation of BPTs from MPTs, which was close to the
prediction performance of our optimal model (AUC = 0.936).
In addition, some scholars have also applied CT radiomics to the
differentiation of benign and malignant lymph-related lesions of
parotid glands and benign parotid tumors (12, 13), which have
both shown excellent predictive performance. Xu et al.
established an SVM-based combined prediction model based
on the radiomics features extracted from plain CT scan and
arterial phase combined with conventional CT image features to
differentiate benign and malignant parotid tumors, and in the
test set, model diagnosis results of BPTs and MPTs were:
accuracy, 0.84; specificity, 0.74; and sensitivity, 0.82 (14). In
contrast, the diagnostic efficiency of LASSO-SVM radiomics
model based on three-phase combination (accuracy, 0.86;
specificity, 0.90; sensitivity, 0.78) was relatively high. In
contrast to the above research, in this study, the SMOTE
algorithm was adopted to balance minority class samples in
the training set and achieve a better class balance. At the same
time, GridSearchCV was applied to the optimization of the
model hyperparameters. All these methods effectively reduced
the training error of models in the training set and improve
overall prediction performance in the test set, which have also
been validated in other studies (16–18). In addition, in this study,
a variety of feature screening methods and machine learning
classifiers were used. The results showed that the overall
efficiency of the LASSO-SVM-based model was outstanding.
Moreover, the prediction performances of different radiomics
models were compared in different phases. The results showed
that in the single phase, the prediction performance of the
models based on the arterial phase was generally better than
that of those based on plain scan and venous phase. It is worth
mentioning that although the prediction performance of
radiomics models based on the plain scan was lower than that
of those based on the arterial phase, it was significantly better
than that of clinical models. This research result may be
beneficial to the popularization of the prediction model in
patients with parotid tumors, especially for those who are not
suitable for enhanced scanning.

Our study has limitations. First, this study was limited by the
single-center studies and low incidence rate of parotid malignant
tumors, with a small sample size of included parotid
malignancies. Second, in this study, an independent internal
test set was used to verify the reliability of the model without
being supported by the external test set, and the generalization
ability of models still needs to be further validated by multicenter
prospective research. Third, deep learning has developed rapidly
A

B

C

FIGURE 6 | Calibration curves of radiomics and combined models in the test
sets. (A) Calibration curves of radiomics models based on arterial phase. (B)
Calibration curves of radiomics models based on a three-phase combination.
(C) Calibration curves of combined models. LASSO, least absolute shrinkage,
and selection operator; SVM, support vector machine; LR, logistic regression.
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in the medical field, which has the ability to process image
information more efficiently compared with the traditional
machine learning classifier. In the future, deep learning could
be applied to the multiclassification task of parotid tumors.
Finally, the multiomics combination is the development trend
of radiomics in the future, including radiogenomics,
radiopathomics, and multiradiomics combinations based on
different medical images. In future studies, the application of
multiomics combined models to the diagnosis and treatment of
parotid tumors can be explored.
CONCLUSION

In conclusion, the radiomics models and the combined ones
established in this study showed high prediction accuracy in the
diagnosis of benign and malignant parotid tumors, with obvious
advantages compared with conventional image diagnosis, which
may provide a valuable tool for clinical decision-making of
patients with parotid tumors.
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