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Abstract

Background: Impaired epithelial barrier function renders the airway vulnerable to environmental triggers associated
with the pathogenesis of bronchial asthma. We investigated the influence of protocadherin-1 (PCDHT),
a susceptibility gene for bronchial hyperresponsiveness, on airway epithelial barrier function.

Methods: We applied transepithelial electric resistance and dextran permeability testing to evaluate the barrier
function of cultured airway epithelial cells. We studied PCDH1 function by siRNA-mediated knockdown and
analyzed nasal or bronchial tissues from 16 patients with chronic rhinosinusitis (CRS) and nine patients with
bronchial asthma for PCDHT expression.

Results: PCDHT was upregulated with the development of epithelial barrier function in cultured airway epithelial
cells. Immunocytochemical analysis revealed that PCDH localized to cell-cell contact sites and colocalized with

E-cadherin at the apical site of airway epithelial cells. PCDHI gene knockdown disrupted both tight and adhesion
junctions. Immunohistochemical analysis revealed strong PCDH1 expression in nasal and bronchial epithelial cells;

promotes epithelial barrier integrity by inducing PCDHI.

hyperresponsiveness, Tight junction, E-cadherin

however, expression decreased in inflamed tissues sampled from patients with CRS or bronchial asthma.
Dexamethasone (Dex) increased the barrier function of airway epithelial cells and increased PCDHT expression.
PCDH1 gene knockdown eradicated the effect of Dex on barrier function.

Conclusion: These results suggest that PCDH1 is important for airway function as a physical barrier, and its
dysfunction is involved in the pathogenesis of allergic airway inflammation. We also suggest that glucocorticoids
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Background

Asthma is a chronic inflammatory disorder of the air-
ways characterized by inflammation, airway hyperre-
sponsiveness, and reversible airflow obstruction [1].
Several cell types have been implicated in the pathogen-
esis of asthma; airway epithelial barrier dysfunction plays
an important role [2]. Therefore, epithelial barrier func-
tion, which biologically limits the passage of foreign sub-
stances, including inhaled allergens, into the body, plays

* Correspondence: gon.yasuhiro@nihon-u.ac.jp

'Nihon University School of Medicine Division of Respiratory Disease, 30-1
Ohyaguchi-Kamicho, Itabashiku, Tokyo 173-8610, Japan

Full list of author information is available at the end of the article

( ) BiolMed Central

an important role in airway defense. In general, epithelial
barrier function is maintained through a series of cell
junctions on the apical side of cells, including tight junc-
tions (TJs) and adherence junctions (AJs) [3].

Bronchial hyperresponsiveness (BHR), the key feature
of asthma, is a functional abnormality in which airway
constriction is triggered by environmental stimuli that
otherwise do not affect healthy individuals. Although air-
way inflammation is strongly implicated in BHR, the
mechanisms underlying BHR remain unclear [4, 5].
Protocadherin-1 (PCDHI) was recently identified as a
susceptibility gene in asthma [6, 7]. Koppelman et al.
performed linkage and mapping analysis in 200 Dutch
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asthmatic patients with the goal of detecting genes on
chromosome 5q31-q33 that are associated with BHR
[6]. They found a significant relationship between
PCDHI and BHR. A follow-up study revealed the same
significant relationship between PCDHI and BHR in
seven of eight populations analyzed (Dutch, English, and
American subjects) [6].

PCDH1 belongs to the cadherin protein superfamily
and contains a 110-amino acid repeat sequence called
the cadherin motif. The cadherin superfamily includes
E-cadherin (E-cad), N-cadherin, P-cadherin, desmosomal
cadherin, and PCDH [8]. Koning et al. found that
PCDHI mRNA expression increased during differenti-
ation of cultured airway epithelial cells, which suggested
that PCDHLI is important in this process [9].

Formation of the epithelial barrier is an important
process during airway epithelial differentiation; however,
it is not clear if PCDH1 participates in epithelial barrier
formation. In this study, we tested the hypothesis that
functional abnormalities due to PCDHI1 dysregulation
may affect epithelial barrier formation and thereby con-
tribute to the pathogenesis of asthma.

Methods

Cells and reagents

Transformed human bronchial epithelial cells (16HBE14_,
abbreviated as 16HBE cells [10, 11] and 1HAE,,
abbreviated as 1HAE cells [12]) were kindly provided by
Prof. Dieter C. Gruenert (Gene Therapy Center, Cardiovas-
cular Research Institute, Department of Laboratory Medi-
cine, University of California). Calu-3 cells, an airway
epithelial cell line derived from lung cancer, were obtained
from the American Type Culture Collection (Rockville,
MD, USA) [13]. Dexamethasone (Dex) and fluorescein
isothiocyanate-labeled ~dextran (FITC-dextran; 4 and
10 kDa) were purchased from Sigma Chemical Company
(St. Louis, MO, USA).

Cell culture

16HBE cells were grown in minimum essential medium
(MEM) with 10 % (v/v) fetal bovine serum (FBS). For
our experiments, these cells were passaged 20—40 times.
Calu-3 cells were maintained in a 1:1 mixture of Ham’s
F12 (Gibco Invitrogen Corp., Paisley, UK) and Dulbec-
co’s Modified Eagle Medium (Sigma), with 10 % FBS
(SAEC Biosciences, Lenexa, KS, USA), and passaged 20—
40 times before use. 1IHAE cells were grown in MEM
with 10 % (v/v) FBS and passaged 10-30 times before
use.

siRNA transfection

16HBE cells were grown in six-well plates to 50 % conflu-
ence and transfected individually with either 50-nM Silen-
cer Select Control small interfering RNA (siCtIRNA, cat.
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12935-112; Invitrogen, Carlsbad, CA, USA) or human
PCDHI siRNAs (siPCDH1_1, siPCDH1_2, and siPC
DH1 3, all obtained from Sigma-Aldrich) for 24 h using
Lipofectamine RNAIMAX (Invitrogen), according to the
manufacturer’s instructions. The transfected cells were
seeded on Transwell chambers (Corning Life Sciences,
Corning, NY, USA) before replacing the transfection
medium with complete medium with or without Dex.

RNA extraction and real-time PCR

Total RNA was extracted from 16HBE cells with the
RNAiso Reagent (TaKaRa, Japan). First-strand cDNA
was synthesized from 2 pg total cellular RNA with the
PrimeScript RT reagent Kit (TaKaRa). To amplify
PCDH1, specific primers were designed based on the
gene sequences. Gene-specific primer sets were designed
for human PCDH1 isoforms 1 and 2 as follows: PCDH1
isoform 1, 5'-GACTCTTCCAGATTGGGTCACAT-3’
and 5'-CTTGCCGCGGTCACTGA-3’; PCDHI1 isoform
2, 5'-TGCCAATGCAGAAATCGAATAC-3" and 5'-CG
GGCCCTGAACAGTGAT-3". Primers for amplification
of GAPDH were used as an internal control: 5'-
CAAGTTCAACGGCACAGTCAAG-3" and 5'-ACA-
TACTCAGCACCAGCATCAC-3". The Applied Biosys-
tems 7300 Fast Real-Time PCR System with SYBR green
PCR master mix (Applied Biosystems) were used accord-
ing to manufacturer protocols. The reactions were incu-
bated in a 96-well optical plate at 95 °C for 20 s,
followed by 40 cycles each of 95 °C for 3 s and 60 °C for
30 s. The threshold cycle (Ct) data were obtained using
default threshold settings. Ct is defined as the fractional
cycle number at which the fluorescence passes the fixed
threshold.

Measurement of transepithelial electrical resistance
16HBE and 1HAE cells were seeded onto Transwell
inserts (Costar, New York, NY, USA) at a density of
2 x 10° cells/cm?. Calu-3 cells were seeded onto Transwell
inserts at a density of 1 x 10° cells/cm®. Cell layer integrity
was evaluated by measuring transepithelial electrical re-
sistance (TER) with Millicell-ERS equipment (Millipore
Co., Bedford, MA, USA).

Paracellular FITC-dextran fluxes

The permeability of cell monolayers was determined by
FITC-dextran fluxes across the cell layer. A solution con-
taining FITC-dextran of 4 or 10 kDa (1 mg/ml) was added
to the apical compartment. Samples (100 pl) were removed
from the basal compartments 60 min after addition of
FITC-dextran and measured by a PTI fluorometer at
492 nm (excitation) and 520 nm (emission).
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Apoptosis assay

The Annexin V/FITC and propidium iodide (PI) apop-
tosis detection kit (Becton-Dickinson, Franklin Lakes,
NJ, USA) was used to quantitatively measure the phos-
phatidylserine in apoptotic cells. Briefly, transfected
cells (siCtl, siPCDH1) (5 x 10° per well) were seeded
into 6-well plates. After 24 h, the cells were harvested
and washed three times with ice-cold phosphate-
buffered saline (PBS) (pH 7.2). After washing, each
sample was centrifuged at 1300 rpm for 3 min at 4 °C.
Annexin V/FITC and PI double-staining were per-
formed according to manufacturer instructions. Apop-
tosis was analyzed on a FACScan flow cytometer
(Becton-Dickinson, Heidelberg, Germany) and Annexin
V-positive, PI-negative cells were scored as apoptotic
(Fig 4). Double-stained cells were considered to be nec-
rotic or late apoptotic.

Immunofluorescence microscopy

After the indicated culture period on Transwells, cells
were fixed with 4 % paraformaldehyde for 30 min at
37 °C. Anti-human ZO-1 mAb (Zymed Laboratories
Inc., San Francisco, CA), anti-human E-cad rabbit mAb
(Cell Signaling Technology, MA), or anti-human
PCDHI1 mAb (Santa Cruz) was used as a primary anti-
body, and Alexa 488-conjugated anti-mouse IgG was
used as a secondary antibody. An FV1000-D laser scan-
ning confocal microscope with a 60x objective lens was
used to investigate expression.

Patients

Sixteen patients with chronic rhinosinusitis (CRS) and
nine asthmatic patients were enrolled. Tissue samples
were obtained during surgical biopsies from the patients.
CRS and asthma were defined by the criteria established
by the American Academy of Otolaryngology—Head and
Neck Surgery Chronic Rhinosinusitis Task Force [14]
and the Global Initiative for Asthma guidelines [1], re-
spectively. The subjects’ clinical characteristics are
shown in Tables 1 and 2. All ethmoid sinus tissues were
collected during surgery to remove nasal polyps. We
used nasal tissues from the patients who underwent sur-
gery for nasal septal deviation as a control for CRS. Five
lung tissue samples from patients with asthma were

Table 1 Clinical characteristics of patients with chronic
rhinosinusitis (CRS)

non-CRS (n=9) CRS (n=16) p-value
Sex (M/F) 6/3 10/6
Age (years), median (range) 57.7 (19-82) 57 (24-70) 0.145073
Blood eosinophil (/ul)? 122 345 0.030078
Smoking (%) 444 333

?Data are expressed as mean values
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Table 2 Clinical characteristics of patients with asthma

Nonasthma (n=9) Asthma (n=9) p-value
Sex (M/F) 9/0 8/1
Age (years), median 348 456 0.114272
(range)
FEV1.0 (% predicted)? 593
FVC (% predicted)® 65.1
Blood eosinophil (/ul)* 173 518 0.006926
Smoking (%) 66.6 333

?Data are expressed as mean values

collected during surgery for pneumothorax, one sample
was collected by pneumonectomy for lung cancer, and
three samples were collected during autopsy. We used
lung tissues from the patients who underwent surgery
for pneumothorax or lung cancer as a control for
asthma. The study was approved by the Nihon University
Itabashi Hospital Ethics Committee, and written informed
consent was obtained from all patients.

Western blotting

Stimulated cells were washed twice with ice-cold PBS
and lysed in Tris-buffered saline containing 1 % Nonidet
P-40, 60 mM octyl-B-glucoside, 2 mM phenylmethylsul-
fonylfluoride, 10 pg/ml aprotinin, 2 pug/ml leupeptin and
pepstatin A, 50 mM NaF, and 1 mM sodium orthovana-
date for 30 min on ice. The lysates or immunoprecipi-
tates were centrifuged for 15 min at 14000g. The
samples for polyacrylamide gel electrophoresis (PAGE)
analysis were mixed with 4x XT sample buffer (Bio-Rad,
Hercules, CA) and boiled for 4 min and separated on
10 % sodium dodecylsulfate-PAGE and transferred onto
an Immobilon-P membrane (Millipore, Bedford, MA).
The membrane was incubated with anti-human ZO-1
mAb (Zymed), anti-human OCLN rabbit mAb (Zymed),
anti-human E-cad rabbit mAb (Cell Signaling), and anti-
human PCDH1 mAb (Santa Cruz) as a primary antibody
and an appropriate secondary horseradish peroxidase-
conjugated antibody (Fig. 6). Signals were detected using
enhanced chemiluminescence (GE Healthcare, Little
Chalfont, UK).

Immunohistochemistry

We focused on PCDHI expression in ciliated airway epi-
thelial cells (CECs) from the noninflamed region (NR),
where there are few infiltrated inflammatory cells and
CECs are histologically intact. We also examined inflamed
regions (IR) where inflammatory cells such as eosinophils
and lymphocytes had infiltrated the submucosa and where
histology indicated that the CECs had sustained damage
such as partially shed epithelium or separation of cell
junctions. The lung and nasal tissues were paraffin em-
bedded and then cut into sections. These sections were
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deparaffinized and rehydrated. After antigen retrieval, the
endogenous peroxidase was inactivated by 3 % hydrogen
peroxide in methanol. Then, these sections were incu-
bated with the primary antibody against PCDH1 (1:500) at
room temperature for 1 h for 30 °C at room temperature.
Staining was performed with 3,3’-diaminobenzidine, and
counterstaining was performed using hematoxylin.

Sections were dehydrated in absolute ethanol and
dehydrated in an absolute ethanol series and xylene.
After mounting, the sections were observed by light mi-
croscopy. The primary antibody was replaced with
phosphate-buffered saline (PBS) in the negative controls.
All sections were scored in a semiquantitative manner
by considering the intensity of cell staining. Intensities
were classified as 0 (no staining), +1 (weak staining), +2
(distinct staining), and +3 (very strong staining).

Statistical analysis

Normally distributed data were expressed as means +
standard errors, and differences between groups were
analyzed by Student’s t-test. Where not normally distrib-
uted, data were summarized using the median and
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interquartile range and were evaluated by nonparametric
Wilcoxon rank sum or Mann—Whitney U test. All data
were analyzed by Prism (GraphPad Software, La Jolla, CA).

Results

Expression of PCDH1 in airway epithelial barrier
development

The biological roles of PCDHI1 in airway epithelium
were investigated using polarized 16HBE human airway
epithelial cell monolayers. When grown on Transwell fil-
ters, 16HBE cells spontaneously polarized and formed
TJs [15, 16]. As we previously reported, TER increases
steadily and reaches a maximum after 3-5 days [15, 16].
We examined expression of PCDHI1 protein during the
development of TER in 16HBE monolayers. Consistent
with a previous report, PCDH1 protein was detected as
two bands, a 170-kDa band that represents the full-
length protein (isoform 2) and a 150-kDa band that rep-
resents the alternative splicing isoform 1, which lacks
exon 2 and thus has no cytoplasmic domain [7]. As
shown in Fig. 1a, expression levels of PCDH1 isoform 1
were unchanged over the course of 3 days. However, the
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Fig. 1 Expression of protocadherin-1 (PCDH1) protein in human bronchial epithelial (16HBE) cells. a Time course of PCDH1 protein expression in
16HBE cells. Cell lysates were harvested at the indicated time points. Western blot with anti-PCDH1 antibody showed two bands (150 and

170 kDa) corresponding to PCDH1 isoforms 1 and 2, respectively. 3-Actin was used as an internal standard. b Graphs showing densitometric
quantification of the PCDH1 isoform 1 or 2 bands on western blots, relative to 3-actin. ¢ Immunocytochemical analysis of PCDH1 (red) and cellular
nuclei (blue) in 16HBE cells cultured for 24 and 72 h. The data represent the mean of three independent experiments
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expression of PCDH1 isoform 2 markedly increased at
days 2 and 3 and overlapped with the increase in
TER.We next performed immunocytochemistry to deter-
mine PCDH1 localization in 16HBE airway epithelial
cells. PCDH1 expression was observed at the sites of
cell-cell contacts on day 3 but was undetectable at these
sites on day 1 (Fig. 1b).

siRNA silencing of PCDH1 impairs 16HBE airway epithelial
barrier formation

To investigate the roles of PCDH1 in epithelial barrier
formation, we specifically depleted PCDH1 by siRNA-
mediated silencing. For these experiments, subconfluent
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16HBE cells were transfected with siRNAs and then
added to Transwell filters at higher density to minimize
the influence of cell growth and accelerate epithelial
polarization. PCDHI mRNA was reduced by > 70 % with
one of the three independent siRNAs (siPCDHI_1,
siPCDH1_2, and siPCDH1_3) 24 h after addition to
Transwell filters (Fig. 2a). Both PCDHI mRNA (Fig. 2b)
and protein levels (Fig. 2¢,d) were transiently suppressed
between 24 and 48 h, after which PCDHI1 levels slowly
began to increase.

Over the 3-day period, TER in the PCDHI-knockdown
16HBE cell monolayers was approximately 60 % lower
than that in the control cell monolayers (Fig. 3a. left).
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Fig. 2 Gene knockdown efficacy of protocadherin-1 (PCDH1)-specific siRNAs. Quantification of PCDHT mRNA by real-time polymerase chain
reaction. a mRNA was purified from the cells harvested at 24 h after transfection of the control (siCtl) or PCDH1-specific siRNAs (siPCDH1_1,
siPCDH1_2, and siPCDH1_3). Results are expressed relative to the control value (siCtl-treated cells) and are mean + SD values; n = 3 independent
samples. Asterisks indicate a statistically significant difference (p < 0.05) in the result between that of cells treated with siCtl. b Time course of PCDH1
mMRNA expression after PCDH1 siRNA transfection. mRNA was purified from cells harvested at indicated time points after the transfection of siCtl or
SIPCDH1_1. Results are expressed relative to the control value (siCtl-treated cells at day 1) and are mean + SD values; n = 3 independent samples. ¢
Time course of PCDH1 protein expression after PCDH1 siRNA transfection. Cell lysates were harvested at the indicated time points after siCtl or
SIPCDH1_1 transfection and western blotted with anti-PCDH1 antibody. The data represent the mean from three independent experiments (upper
photograph). The lower graph shows densitometric quantification of PCDH1 bands on western blots, relative to 3-actin. Results are expressed as a
relative density compared to the control value (siCtl-treated cells) and are mean + SD values; n = 3 independent samples. Asterisk indicates a
statistically significant difference (p < 0.05) in the result between that of cells treated with siCtl. NS: not significant
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Fig. 3 siRNA knockdown of protocadherin-1 (PCDHT) impairs epithelial barrier formation. Effect of PCDH1 knockdown on barrier development.
Human bronchial epithelial (16HBE) cells were transfected with control (siCtl) or PCDH I1-specific siRNAs (siPCDH1_1, siPCDH1_2, and siPCDH1_3).
After 24 h, cells were seeded onto the Transwell inserts, and transepithelial electrical resistance (a. left) and dextran permeability (a. right) were
measured at day 3. Results are expressed as a percentage of the control value (siCtl-treated cells) and are mean + SD values; n =3 independent
samples. Asterisk indicates a statistically significant difference (p < 0.05) in the result between that of cells treated with siCtl. THAE and Calu-3 cells
were transfected with control (siCtl) or PCDH1-specific siRNAs (siPCDH1_1). After 24 h, cells were seeded onto the Transwell inserts, and TER

(b. left) and dextran permeability (b. right) were measured at day 3. Results are expressed as a percentage of the control value (siCtl-treated cells)
and are mean + SD (n = 3). Asterisks indicate a statistically significant difference (P < 0.05) compared to cells treated with siCtl
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TER is influenced by paracellular and/or intracellular
flux of ions [17]. Measurement of the permeability of
PCDHI1-knockdown 16HBE cell monolayers with the
nonionic macromolecular tracer, FITC-dextran, which
can only pass through the cell monolayer via the para-
cellular route, was examined (Fig. 3a. right). At day 3,
the permeability of siPCDH1_1-transfected cell mono-
layers evaluated by FITC-dextran influx assay was in-
creased relative to that of siCtl-transfected 16HBE cell
monolayers. Similar effects were observed in two differ-
ent airway epithelial cell lines, Calu-3 and 1-HAE,
(Fig. 3b).

Silencing of PCDH1 does not affect cell growth or viability
We next determined if the reduced TER in PCDHI-
knockdown 16HBE monolayers was caused by reduced
cell proliferation or increased apoptosis. Proliferation as-
says revealed that there were similar cell numbers in
PCDHI1-knockdown and control 16HBE monolayers
(Fig. 4. left). Annexin V and propidium iodide staining
revealed that PCDHI knockdown did not lead to apop-
totic cell death (Fig. 4. right). These results indicated
that neither decreased cell proliferation nor reduced cell
viability accounted for the defective epithelial barrier
function in PCDH1-depleted monolayers.

PCDH1 knockdown in airway epithelial cells inhibits
formation of intercellular junctions

To evaluate the role of PCDHI on epithelial barrier for-
mation, we assessed formation of AJs and TJs in
PCDH1-silenced and control 16HBE cell monolayers by
confocal immunofluorescence microscopy. After 3 days,
cells were fixed and stained for AJs and TJs with anti-E-
cad-specific antibodies and anti-zonula occludens-1
(ZO-1) antibodies, respectively. E-cad and ZO-1 were
strongly expressed and localized as junction proteins at
the cell-cell contact sites in the control cell monolayers
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(Fig. 5a,b, left). In contrast, in PCDHI-knockdown
monolayers, most of the cells showed substantial reduc-
tion of E-cad and ZO-1 staining at the apical surface of
cell-cell contact sites (Fig. 5a,b, right). Western blotting
revealed similar expression of E-cad, ZO-1, or occludin
(OCLN) in the cytosol of PCDHI-knockdown and con-
trol cells after 3 days (Fig. 6). We compared the
localization of PCDH1 and E-cad protein in 3-day cul-
tures of 16HBE cells and found that although PCDH1
expression was low and was mainly co-localized with E-
cad at the apical site of cell junctions (Fig. 5).

Dex enhances epithelial barrier integrity via induction of
PCDH1

We previously demonstrated that glucocorticoids strongly
enhance epithelial barrier integrity in 16HBE airway epi-
thelial cells [15]. Therefore, we determined if PCDH1 was
involved in the increased epithelial barrier integrity
afforded by the glucocorticoid Dex. Western blotting re-
vealed that Dex increased expression of PCDH1 isoform 2
in 16HBE cells. However, the expression of PCDH1 iso-
form 1 was not altered by Dex (Fig. 7a). Real-time poly-
merase chain reaction (RT-PCR) revealed an increase in
PCDHI1 isoform 2 transcripts in 16HBE cells cultured
with Dex (Fig. 7b), whereas the level of PCDH1 isoform 1
did not change (Fig. 7b). Furthermore, PCDHI knock-
down in 16HBE cells inhibited Dex-dependent increases
in TER and alleviated the suppressive effect of Dex on
dextran flux (Fig. 7c).

Expression of PCDH1 in CRS nasal epithelium and asthma
airway epithelium

To study the expression of PCDHI in the nasal epithelia
of patients with CRS, we performed immunohistochemi-
cal staining with anti-PCDHI1 antibodies. As shown in
Figure 8a, PCDH1 expression in the nasal mucosa was
mainly observed in CECs and basal cells. There are no
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Fig. 4 Silencing of PCDH1 does not affect cell growth or apoptosis. 16HBE cells were transfected with control (siCtl) or PCDH1-specific siRNA
(SiPCDH1_1). Results are mean + SD. (n = 3). (left) The number of live cells was counted daily for 3 days using trypan blue. (right) Apoptosis was
detected by Annexin V/PI staining at day 3 after transfection. The x-axis shows AnnexinV-FITC binding and the y-axis pertains to the results for
staining with the vital dye propidium iodide. Cells in the lower left quadrant are viable, cells in the lower right are apoptotic, and those in the
upper right are late stage apoptotic/dead cells
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Fig. 5 Protocadherin-1 (PCDHT) knockdown in airway epithelial cells inhibits the formation of adherence junctions and tight junctions.

Immunocytochemical analysis of E-cadherin (E-cad) (a) and zonula occludens-1 (b) in PCDHI-knockdown cells. Human bronchial epithelial (16HBE)
cells were transfected with control (siCtl) and PCDH1-specific siRNA (siPCDH1_
with antibodies specific to E-cad (green) or PCDH1 (green). The images represent data from three independent experiments. a Colocalization of

PCDH1 and E-cad. 16HBE cells were cultured for 3 days and stained with anti-PCDH1 and anti- E-cad antibodies. Expression of PCDH1 was mainly
co-localized with E-cad at the apical site of cell junctions (upper panel); however, the expression level of PCDH1 was relatively low (lower panel).
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1). After 48 h, cells were subjected to immunocytochemical analysis

differences in the expression levels of PCDHI1 between
normal mucosa in control and NR in CRS. In the nasal
tissues of CRS, PCDHI1 expression was observed in
CECs in the NR but not in the IR, as reflected by a sig-
nificantly higher (p=0.0002) mean staining score
(Fig. 8ab). As shown in Figure 8c, PCDH1 was
expressed in CECs from the NR of asthmatic airways
and in endothelial cells in the normal region of asth-
matic and control airways but was very low or absent in
CECs from the IR of asthmatic airways. There are no
differences in the expression levels of PCDHI1 between
normal mucosa in control and NR in asthma. The

difference in PCDH1 expression between the two com-
partments was statistically significant (p = 0.034; Fig. 8d).

Discussion

To our knowledge, this study is the first to demonstrate
that PCDHI, which has been identified as an airway
hyperreactivity-susceptibility gene, has an important role
in the formation and maintenance of the intercellular
junctions that comprise the airway epithelial barrier. Epi-
thelial barrier dysfunction contributes to the pathogen-
esis and development of bronchial asthma and CRS [18].
Our study suggests that reduced PCDH1 expression and
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function is related to the pathogenesis of allergic airway
inflammation in bronchial asthma and CRS.

Epithelial barrier function is maintained by TJs and
AJs. AJ formation is considered to be especially import-
ant in epithelial polarization, which in turn facilitates T]
formation. TJs are required to restrict the nonselective
passage of small molecules between cells once contacts
have been formed. TJs connect cells firmly to each other
by OCLN and members of the claudin family of trans-
membrane proteins [19]. TJs are linked to the actin cyto-
skeleton through complexes containing various
intracellular proteins such as ZO-1, ZO-2, and ZO-3
[20]. AJs are composed of a transmembrane protein, E-
cad, which is linked indirectly to actin through several
proteins, including p-catenin [21]. TJ formation is
closely related to epithelial cell polarization and requires
AJ formation [16].

TJ structures in the airway of asthmatic patients are
disrupted [22]. Furthermore, primary cultured airway epi-
thelial cells obtained from asthmatic patients exhibit im-
mature barrier function in differentiation in vitro and are
more prone to damage from cigarette smoke than are
healthy individuals [23]. Epithelial barrier development in

asthmatic patients may be impaired by genetic factors,
virus infection, inhaled allergens, or air pollution [22, 24].

PCDHI1 co-localized with E-cad at the apical surface of
the epithelial cell monolayer, and PCDHI knockdown
reduced both TJ formation and AJ formation in intercel-
lular spaces at the apical surface in immortalized normal
human airway epithelial cell lines (Fig. 7 and Fig. 3b).
This suggests that PCDHI1 facilitates E-cad assembly,
and its loss would inhibit T] formation through direct or
indirect mechanism. Consistent with this, proliferation,
apoptosis, or E-cad total levels were not affected by
PCDHI1 knockdown (Fig. 5). A limitation of our study is
that we did not study the effect of PCDHI knockdown
on primary cultured epithelial cells because of technical
difficulties in achieving sustained siRNA delivery into
primary cells.

Local administration of glucocorticoids is the most ef-
fective current therapy for bronchial asthma. Recently,
we reported that glucocorticoids ameliorated the condi-
tions associated with impaired airway epithelial cell bar-
rier function. Here, we found that the addition of Dex
strongly induced expression of PCDH1 isoform-2. This
isoform has a long cytoplasmic region, which suggests
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that it possesses outside-in-signal transduction function-
ality. Conversely, isoform 1 has no long cytoplasmic re-
gion and only has an extracellular region, which suggests
that its function differs from that of isoform 2. We also
found that the increase in epithelial barrier function was
accompanied by an increase in the expression of isoform
2 relative to that of isoform 1. Together, these data sug-
gest that PCDH1 isoform 2 has a positive effect on epi-
thelial barrier formation and that the integrity of barrier
function and elevated PCDHI expression caused by glu-
cocorticoids are probably functionally related events. We
will focus on the differences between the functions of in-
dividual PCDHI variants in future studies.

To clarify the contribution of PCDHI to the pathogen-
esis of bronchial asthma and CRS, we analyzed the dis-
tribution of PCDHI expression in the airways and nasal
mucosal tissue obtained from patients with bronchial
asthma and CRS. Human nasal and airway mucosal epi-
thelium mainly is composed of basal cells and CECs.
The histological appearance of these epithelia is similar.

Here, PCDH1 was mainly expressed in CECs in the airway
or nasal epithelium. Considering that the biological barrier
function of the epithelium is especially important in the air-
way, which is constantly in contact with foreign substances,
it is not surprising that PCDHI is highly expressed in the
mucosal epithelium of these tissues. We could not compare
the expression levels of PCDH1 and other TJs/AJs proteins.
But, interestingly, in both asthma and CRS patients, low
PCDH]1 expression levels in the airway epithelium were ob-
served in regions containing inflammatory cells, large-scale
epithelial detachment, and widened intercellular spaces.
This suggests that the low PCDHI expression in this area is
associated with increased damage and vulnerability of the
epithelial barrier function. We used several sources of lung
sections, including autopsy samples obtained from fatal
asthmatic patients. All patients were relatively severe
asthmatic patients with airflow limitation. In future
studies, it will be important to study the expression and
function of PCDHI in larger numbers of subjects with
varying asthma severity.
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region (b) in the nasal tissues of CRS. Arrow shows ciliated airway epithelial cells (CECs) in the inflamed region. b. Immunohistochemistry score for
PCDH1 expression in CECs of patients with CRS (n = 16). The graph shows the expression level of PCDH1 in the normal region and inflamed region.
The horizontal bars represent the mean values of the expression score. An asterisk indicates a statistically significant difference (p < 0.05). ¢ A
representative image of PCDH1 expression in the airway of a patient with asthma (a,b). Normal region (a) and inflamed region (b) in the airway tissues
of an individual with asthma. Arrow shows asthma in the inflamed region. Arrowhead shows endothelial cells. d Immunohistochemistry score for
PCDH1 expression of CECs in asthmatic patients (n = 9). The graph shows the expression levels of PCDH1 in the normal region and inflamed region of
the lung tissues. EDC stands for endothelial cells. Horizontal bars represent mean value expression scores. Asterisks indicate a statistically significant
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It is likely that PCDHI, which has been identified as
an airway hyperreactivity-susceptible gene, plays an im-
portant role in epithelial barrier function. In addition,
the results of this study make it clear that expression of
this type of gene can be induced by glucocorticoids,
which are the most effective agents for bronchial
asthma. These results improve our understanding of the
relationship between epithelial barrier function and aller-
gic airway inflammation. We have demonstrated that the
regulation of epithelial barrier function is mediated
through PCDH1 and shown that PCDHI is downregu-
lated in allergic inflammation. Together, these results
suggest that restoration of PCDHI levels and/or func-
tion should be a potential therapeutic strategy for the
treatment of bronchial asthma or CRS. Thus, the results
of our study may contribute to the development of new
treatment methods for allergic airway inflammation.

Conclusions

These results suggest that PCDHI is important for air-
way function as a physical barrier, and its dysfunction is
involved in the pathogenesis of allergic airway inflamma-
tion. We also suggest that glucocorticoids promotes epi-
thelial barrier integrity by inducing PCDH1I.
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