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Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter
representing the leading cause of death in cancer patients. Whilst many advances in this
area have been made in recent years, the process of cancer dissemination and the
underlying mechanisms governing invasion are still poorly understood. Cancer cells
exhibit multiple invasion strategies, including switching between modes of invasion and
plasticity in response to therapies, surgical interventions and environmental stimuli. The
ability of cancer cells to switch migratory modes and their inherent plasticity highlights
the critical challenge preventing the successful design of cancer and anti-metastatic ther-
apies. This mini-review presents current knowledge on the critical models of tumour inva-
sion and dissemination. We also discuss the current issues surrounding current
treatments and arising therapeutic opportunities. We propose that the establishment of
novel approaches to study the key biological mechanisms underlying the metastatic
cascade is critical in finding novel targets that could ultimately lead to complete inhibition
of cancer cell invasion and dissemination.

Introduction
Tumour cell migration and invasion are the key drivers of metastatic dissemination, resulting in the
development of metastatic tumours at secondary sites, and remains the primary cause of cancer-related
death [1]. Activation of invasion and metastasis is one of the primary hallmarks of cancer and involves
multiple processes, including changes in cell morphology, polarity and translocation of the cell body [2].
Invasion is one of the earliest steps in a cascade of phenotypic events that culminates in the meta-

static dissemination of tumour cells. It involves the process of malignant cells detaching from the
tumour mass, acquiring a plastic phenotype to actively move and invade the surrounding tissues.
Cancer cells have been shown to be able to adapt to different stimuli from both the surrounding

environment and therapeutic intervention. They have the exceptional ability to undergo invasion, dis-
semination and migrate in distinct modes, either individually or collectively. While single-cell migra-
tion is the primary mode of invasion into the vascular and lymphatic systems, collective migration is
the primary form of invasion and dissemination in most solid tumours [3] (Figure 1).
Understanding the dynamics of invasion and dissemination in cancers will help identify biomarkers

that could predict patients metastatic potential upfront and uncover novel targets for precision therap-
ies that can disrupt key steps in the metastatic cascade ultimately preventing metastatic disease from
progressing or possibly reversing metastatic cancer growth.

Single-cell invasion vs collective cell invasion
Invasion of tumour cells is one of the earliest steps in the metastatic cascade. It can be characterised
by either single cell or collective cell invasion. Single-cell invasion and dissemination frequently
present as two distinct movement types, mesenchymal and amoeboid, based on unique and reversible
morphological and expression patterns [4] (Figure 1). In mesenchymal invasion, degradation of the
ECM is a critical and unique feature when compared with amoeboid migration [5,6]. Cancer cells
undergoing mesenchymal invasion recruit proteases that actively remodel the ECM, enabling the gen-
eration of cell migration tracks by which mesenchymal cancers cells disseminate [5,6]. Recently, it has
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been shown targeted inhibition of these proteases can convert cells undergoing mesenchymal type invasion to
an amoeboid type, highlighting their plasticity [7]. Amoeboid movement is defined due to the changes in cell
shape and inherent plasticity in which they can move through the ECM without requiring its remodelling [8].
Additionally, they have been shown to move significantly faster in comparison with the mesenchymal type [9].
The key features defining collective cell invasion include the movement of cancer cells which remain physic-

ally grouped together through cell-to-cell junctions. The groups of cells that detach from the primary tumour
have a leading-edge comprised of leader cells with mesenchymal phenotypes [10]. These leader cells actively
remodel the ECM and drag follower cells, with epithelial phenotypes through the migration track in the ECM
[11–13]. Tumour budding is a primary feature of collective invasion, routinely identifiable at the invasive front
of tumours [14], and is regarded as an indicator of the onset of cancer invasion and metastasis and is asso-
ciated with poor prognosis in various cancers [15–18].
E-cadherin is one of the critical markers of cell-to-cell adhesion and thus is found to have high expression in

collective-cell invasion and is commonly down-regulated in single-cell invasion. In breast cancer, higher expres-
sion of E-cadherin was correlated with reduced invasion and increased metastasis due to the maintenance of
cell-to-cell adhesions [19]. In collective invasion, cell-to-cell adhesion enables disseminating clusters of cells to
migrate into the vascular system as circulating tumour cells (CTC) clusters. Detection of these cellular clusters
within the circulation indicates a worse prognosis than detecting single CTCs by single-cell invasion [20].

Role of EMT in single and collective invasion
The process of epithelial-mesenchymal transition (EMT) is thought to be a critical component that enables
cancer cells to initiate invasion and dissemination [21]. EMT is the reversible process in which immotile

Figure 1. Invasion and dissemination of cancer cells.

Diagram showing an overview of individual and collective invasion.
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epithelial cells, tightly bound with one another and the surrounding ECM, develop the ability to transition
towards a more mesenchymal phenotype [22,23]. This epithelial-mesenchymal plasticity enables tumour cells
to invade, acquire therapy resistance, and disseminate. EMT is induced by molecular changes in cancer cells
and their secretion of cytokines and growth factors in the tumour microenvironment (TME) [24].
In the early stages of invasion and dissemination single tumour cells will lose cell-to-cell adhesion and

undergo EMT [25]. Inducing EMT in tumour cells requires cross-talking with stromal cells, in particular with
cancer-associated fibroblasts (CAFs). CAFs are one of the most abundant cell types within the TME, and
higher levels of CAFs are associated with poor prognosis [26]. Although EMT is a programme that causes cells
to transition from an epithelial phenotype to a mesenchymal phenotype, there is evidence that collective invad-
ing cells do not lose their epithelial phenotypes completely [19].
Tumour cell clusters in collective migration undergo a hybrid EMT process, characterised by the co-existence

of epithelial and mesenchymal traits. Recently studies have shown that subpopulations of cancer cells associated
with a hybrid EMT state have an advantageous ability for progressing with invasion and dissemination than a
complete mesenchymal state and contribute to malignant phenotypes [27,28]. Additionally, the role of a hybrid
EMT state as the central role of collective invasion has been supported by identifying core EMT transcription
factors in multiple cancers. In pancreatic ductal adenocarcinoma, ZEB1 is expressed in the tumour bud, and
head and neck squamous cell carcinoma SNAIL is critically involved in collective cell migration [29,30].
Furthermore, in cell line models of breast cancer, it has also been shown in leader cells with a hybrid EMT
state are involved in collective invasion with high expression of core EMT transcription factors including
TWIST-1, ZEB1 and ZEB2 [31,32]. Furthermore, a recent study has shown that the hybrid EMT state is
acquired through stromal CAFs-mediated paracrine signalling through induction of ZEB1 [33].
Following EMT tumour cells have been shown to have further plasticity by gaining the ability to acquire

amoeboid features and thus enhancing invasion and dissemination. It has shown to increase the invasiveness of
many cancers [34]. For example in lymph node-negative breast cancers it has been shown to have a potential
in assessing early stage metastatic risk [35].
Additionally, compared with the non-EMT cancer cells, cells with EMT phenotype have more developed

anti-apoptotic systems and show more resistance to therapy [36]. Whilst EMT is involved in multiple stages of
invasion and dissemination, it is a topic of great debate whether it plays a critical role in metastasis and chemo-
therapy resistance. In lung and pancreatic cancers, there is growing evidence that EMT might not be the main
programme underlying metastasis, instead, it has been shown to be a key driver of chemoresistance in these
cancers [37–40]. Amidst these questions around the critical role of EMT in the initiation of tumour dissemin-
ation, the opposite process of mesenchymal-epithelial transition (MET) is a vital component of metastatic pro-
gression and the development of metastatic tumour formation [41]. Nevertheless, further research is required
to fully uncover the exact role of EMT entirely in cancer invasion, dissemination and chemoresistance.

Extracellular matrix remodelling
The extracellular matrix (ECM) is the primary structural component of the tumour microenvironment, consist-
ing of networks of interconnected macromolecules that are present in multiple tissue types and cancers [42].
However, the ECM primary role is not solely as structural support, it plays a critical role in cell–cell communi-
cation and invasion of tumour cells [43].
Cellular mechanosensing, in which cells identify mechanical signals, through the activation of mechanosen-

sors, play a critical role in tumour cell invasion through the ECM [44]. Invading tumour cells favour a stiffer
ECM, which is detected by mechanosensors, including integrins and focal adhesions (FA),to trigger a series of
mechanotransductions [45–48]. For example, Durotaxis, a form of cell invasion in which the cell migration is
directed by a gradient of ECM-stiffness, is thought to play a key role in EMT and tumour invasion [49,50].
Studying how tumour cells sense increased ECM stiffness and why they discriminately migrate within a stiffer
ECM could result in a greater understanding of tumour cell invasion and the identification of novel therapeu-
tics. A recent study developed a computation model of directed cell migration toward a stiffer ECM and found
that they are primarily guided by filopodial mechanosensing. Additionally they highlighted that the abundance
of short and abundant filopodia correlates with a more aggressive phenotype [51]. Fascin protein is the main
actin-binding protein in filopodia and is elevated expression in metastatic tumours [52], and inhibition using
fascin-specific small-molecules reduces tumour cell migration and tumour metastasis in mouse models [53].
In carcinoma in situ, tumour cells are prevented from invading into the surrounding tissue by a basement

membrane. The ability for cancer cells to disseminate requires the degradation of the ECM by several ECM
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remodelling events. Proteolytic degradation is the primary step in breaking down the basement membrane and
enabling invasion of surrounding tissue. This is achieved through the secretion of target-specific proteases such as
matrix metalloproteinases (MMPs) and additional target-specific proteases. These target-specific proteases are sig-
nificantly overexpressed in multiple cancers and are frequently correlated with worsened survival outcomes [54,55].
CAFs are thought to act as leader cells of tumour cell invasion by clearing the ECM through proteolytic and

force mediated remodelling processes [56] (Figure 2). CAFs have been shown to further drive
MMP-independent invasion of tumour cells through the basement membrane [57]. Additionally CAFs interact
with integrins and promote Rho-mediated regulation of myosin light chain activity to apply force to the ECM
and align collagen fibres [58,59]. In particular, the Rho family of small guanosine triphosphatases (GTPases)
have been shown to be involved in EMT and thus are critical for cell motility and facilitate the dissemination
of tumour cells [60,61]. Furthermore, the binding of fibronectin to CAF integrins forces the self-assembly of
dimers resulting in the opening of gaps in the ECM to further facilitate migration [62].
In contrast, amoeboid cells have the ability to pass through the ECM in the absence of ECM remodelling via

proteolytic processes [34]. Amoeboid tumour cells exhibit bleb-like protrusions which enable faster movement
due to the lack of adhesion [63]. ECM stiffness is has been observed to regulate the switch for mesenchymal to
amoeboid migration and is facilitated by activation of the ROCK-myosin II pathway via Rho GTPase regulation [64].
The diversity in which tumour cells can invade and disseminate through the ECM enables them to retain

their migratory ability across varying environmental pressure. Thus, targeted therapeutics and biomarkers
which can detect and prevent ECM could hold the potential for improving patient outcomes.

Role of nerves in the invasion and dissemination of cancer
cells
The dissemination of solid tumours is historically classified by three main processes, direct invasion into sur-
rounding tissue lymphatic and vascular systems. However, an additional function, the dissemination of cancer
cells through nearby nerves, is less understood [65–68]. The TME plays a key role in cancer initiation, progres-
sion, and dissemination. Interestingly, nerves, consisting of various cells such as neurons and neuroglia, have

Figure 2. Role of cancer associated fibroblasts in ECM remodelling.

Cancer associated fibroblasts induce EMT, facilate ECM stiffness, and create migrating tracts for invading cells.
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been shown to emerge in the TME and the presence of which has been well-established for multiple cancers
and has been shown to associate with significantly poorer outcomes [69–71].
In recent years perineural invasion (PNI) has increasingly to been associated as a significant pathological

feature of many cancers and its presence is associated with worsened overall survival and disease-free survival
in head and neck, prostate and pancreatic cancers [72–74]. The dissemination of cancer cells through this
process is thought to occur through similar processes in which they move through the vascular and lymphatic
systems. In which cancer cells migrate along and around nerves following infiltration into the perineural space
[75]. Critically, this process has been identified before invasion into both the vascular and lymphatic systems
[76,77]. Evidence of this movement has been detected in pancreatic ductal adenocarcinoma, where disseminat-
ing cancer cells were shown to migrate into the spinal cord along sensory neurons [65].
This additional mode of invasion and dissemination provides a unique opportunity to identify novel biomar-

kers which could detect metastatic cancer before invasion into the vascular and lymphatic systems. However,
the understanding of crucial PNI mechanisms underlying invasion and dissemination remains limited, mainly
due to a lack of an applicable model in which to explore and replicate the extensive interactions between
tumour cells and nerves.

Surgical intervention potentially initiates tumour invasion
and dissemination
Surgical removal remains one of the primary methods to treat and control the progression of most solid
tumours. Whilst surgical removal of primary tumours is typically associated with increased survival, the
primary cause of metastasis following surgery is due to the presence of dormant cancer cells which have
already migrated to secondary sites before surgery and evaded elimination by the patients’ immune system [78].
Additionally, there is evidence that following surgical excision cancer cells have the ability to survive by retaining

their ability to invade leading to the acceleration of tumour recurrence. The unavoidable damage to the patients’
tissues during excision and manipulation of the tumour being resected and its vasculature have been shown to dis-
seminate tumour cells into the blood and lymphatic circulation [79]. Circulating tumour cells (CTCs) in the blood
are an indicator for diagnosis, prognosis, and therapeutic response in multiple cancers [80–83]. Following surgery,
CTCs have been observed to increase and are associated with an increased chance of patients developing residual
disease [84–87]. However, this needs to be further explored to determine the direct clinical relevance.
It has been suggested that the anaesthetics administered to patients during surgical excision can potentially

increase the rate of metastasis. In ovarian, melanoma and colon cancers there have been contradictory findings
with associating residual disease potential and whether they received general or localised anaesthetics [88,89].
These findings have also been shown to have similar outcomes in in vitro models of breast cancer, where the
anaesthesia sevoflurane is associated with increased proliferation, migration and invasion [90,91].
Both experimental and clinical evidence supports the idea that surgery intended to be a curative option to

remove and reduce tumour mass may unfortunately also increase invasion and dissemination of cancer cells.
Suppose one can address those factors in the peri-operative period, which foster the capture and promotion of
metastases. In that case, the immediate post-operative period may become a unique window to control and
target residual malignant cells.

Therapeutic interventions for metastatic disease
Despite extensive efforts to understand the key driving factors of tumour invasion, dissemination, and meta-
static disease, the identification of metastatic sites continues to be associated with the worst possible outcomes
for patients. Although prevention of invasion and dissemination has been demonstrated to have a benefit pre-
clinically, the characterisation and development of novel therapeutics have been unsuccessful [92–94]. One of
the key hurdles in designing metastatic treatments is patient selection in clinical trials. They are normally
advanced staged metastatic and therapy-resistant patients, due to exhaustion of all other therapy options. Due
to this, many therapies’ effectiveness cannot be tested in this short timeframe [95].

Potential implications of chemotherapy in triggering invasion and
dissemination
Unlike primary tumours, metastasis is a systemic disease, where tumours cells have usually already dissemi-
nated to secondary sites [93]. To date, there is a lack of targeted therapies which account for this systemic issue
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and have ultimately been unable to prevent or reverse metastatic progression in patients. Unfortunately surgical
excision of the secondary tumours having little benefit in patient outcomes, so metastatic patients are subjected
to treatment regimens that are aimed to control further metastatic spread through the administration of sys-
temic treatments including chemotherapy, radiotherapy and immunotherapy [96].
Whilst chemotherapy has been shown to have a great clinical utility in the treatment of primary tumours,

this cannot be said for the treatment of metastatic disease, even for chemotherapy-treated patients with control
of the primary tumour [97]. This issue could be in part related due to the pre-existence of chemoresistant
clones which following chemotherapy remain and have the distinct ability to metastasise to distant sites and
propagate the growth of chemoresistant metastatic tumours [98–100]. Additionally, whilst the TME plays a key
role in each stage of invasion and dissemination of tumour cells it also has been shown to have a fundamental
role in chemotherapy resistance [101–103]. In particular, following chemotherapy, specific subsets of resistant
cancer cells can persist and expand, driving disease progression. [98]. Resistant cells features are largely overlap-
ping with the phenotype and properties of cancer stem cells (CSCs) including self-renewal ability, metastatic
capability and cell plasticity [104,105]. EMT can be considered the link between chemoresistance and metastatic
potential in this context. However, this connection might be more complex than initially imagined, and several
aspects still need to be thoroughly investigated [106]. Besides the direct cytotoxic or damaging effect on
tumour cells, or indirect anti-tumour immune stimulatory effects resulting from cells undergoing multiple
forms of cell death, chemotherapy may also induce host-mediated pro-metastatic changes through systemic
release of cytokines and chemokines, mimicking an injury-like response as typically detected in wound healing
and inflammation processes [107,108]. This release of chemokine/cytokines, for example by VEGFR-1 expres-
sing endothelial cells in lung cancer [109], is thought to initiate the expansion of a subset of non-canonical
regenerative CSCs that can promote tumour relapse and stimulate metastasis-receptive niches by establishing
an environment of supportive stromal cells at distant sites [108,110]
Accumulating pre-clinical evidence suggests that chemotherapy can disrupt each step of the metastatic

cascade and induce intra-tumoral and systemic changes that can promote cancer cell survival/proliferation,
ultimately fostering dissemination to distant organs [108,111,112]. In a recent study it was shown that neoadju-
vant chemotherapy increases the intravasion of tumour cells. Groups of macrophages, endothelial and tumour
cells, termed TME of metastasis, where shown to enable the movement of tumour cells into the vasculatory
system and where elevated following chemotherapy [113]. An additional mechanism in which chemotherapy
can contribute to metastasis is through the increased expression of Lysyl oxidase (LOX) in CD8+ T cells. In
mouse models of breast cancer, it was recently shown that expression of LOX in CD8+ T cells resulted in ECM
remodelling in the lungs and enabled seeding for circulating tumour cells [114]. Interestingly they have shown
that inhibiting LOX reverses the increased risk of metastatic tumour formation following chemotherapy, high-
lighting that a greater understanding of the key mechanisms which drive metastasis hold the potential for treat-
ing the disease.
One of the critical unmet needs in cancer therapy is the treatment of metastatic disease. Due to metastatic

disease being associated with chemoresistance it is vital to gain an understanding of the key mechanisms
underlying invasion and dissemination following treatment. At the same time, the identification and validation
of predictive biomarkers for high risk chemoresistant and metastatic patients is vital to progress personalised
treatments and improve clinical outcomes.

Current efforts to target tumour invasion and dissemination
Whilst the therapeutic benefits of chemotherapy are well documented they have been shown to have paradox-
ical effects in the treatment of metastatic cancer, however there are few alternatives in the clinical setting. Thus,
the current challenge to unravel the key mechanisms in which chemotherapy resistance and metastasis develop
is fundamental in the development of strategies to improve chemotherapy response and target or reverse meta-
static disease.
Multiple studies have focussed on attempting to disrupt the pathways driving tumour invasion and dissemin-

ation. However, inhibition of a single pathway ultimately leads to resistance [115]. Matrix metalloprotease inhi-
bitors have been shown to prevent mesenchymal types of migration but unfortunately could not prevent
invasion overall [116]. Although resistance of singular inhibition can be explained due to the redundancy of
many intracellular signalling processes, there remains the potential for precise targeting of novel pathways
[117]. Such as Cyclin-Dependent Kinase 4/6 (CDK4/6) Inhibitors which have been shown to have a promising
clinical outcomes in breast cancer [118]. Additionally in metastatic prostate cancer, androgen receptor
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inhibitors in metastatic prostate cancer, have been shown to be positively correlated with survival. However,
unfortunately in metastatic breast cancer, they have had little improvements towards patient survival [119,120].
Compared with single pathway inhibition, it has been demonstrated that targeting multiple pathways simul-

taneously seems vital in countering the significant features of metastatic tumour cells [121]. For example in
HER2 positive metastatic breast cancer patients, a combination treatment of tucatinib, trastuzumab, and capeci-
tabine has been reported to improve patient outcomes [122]. Additionally, in melanoma patients with meta-
static disease, a combination immunotherapy of Nivolumab and ipilimumab has been shown to have
significantly positive effect on clinical outcomes [123].
In recent years nanotechnology-based approaches hold a significant promise in the improvement of

anti-cancer and anti-invasion therapies [124]. In particular, the advent of nanotherapeutics have the potential
to overcome many of disadvantages of chemotherapy and traditional therapeutic modalities by encapsulating
anti-cancer agents and enable site specific targeting of primary and metastatic tumours [125] (Figure 3). In
hepatocellular carcinoma a MRI visable Non-Coding-RNA-based EMT/CSC Inhibitory nanotherapeutic
designed to target STAT3, successfully inhibited tumour growth, invasion, and migration [126]. Additionally,
in cervical cancer a Nanoquinacrine not only reduced the invasion and proliferation of CSCs, but also sensitises
5-FU resistant CSCs [127].
The combination of nanotheraputics and chemotherapy have been shown to overcome chemotherapy resist-

ance and metastasis in breast cancer cell lines. The theranostic nanocomposite (Ag-TF@PDOX), consisting of
silver nanoparticles and doxorubicin, has been shown to increase cytotoxicity. Additionally, not only did it
reverse chemotherapy resistance it also revers metastasis at the subcellular level. It primary achieves this
through the down-regulation of P-glycoprotein via an increase in ATP-consuming chaperones [128].
Overall, tumour invasion and dissemination is a complex challenge, highlighted by despite extensive study,

there have been no approved targeted therapies to prevent or reverse metastatic disease. The identification of
biomarkers that could potentially predict early-stage cancer patients metastatic potentially could offer a unique
opportunity to target invasion and dissemination before metastatic disease develops through the use of
nanotherapeutics.

Figure 3. Nanotheraputics in primary and metastatic cancer.

Nanotherapeutic containing chemotherapy which following entry into the vascular system can target primary and metastatic

tumour cells resulting in targeted cell death.
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Conclusions
The migration and metastasis of cancer cells to peripheral sites remain the primary cause of cancer-related
deaths [129]. Whilst Chemotherapy is the standard treatment for many patients with metastatic cancer it too
can elicit negative consequences such as chemoresistance and pro-metastatic responses. Owing to the complex-
ity of metastatic disease, a complete understanding of the molecular mechanisms which underly invasion and
dissemination remains a significant challenge. Due to in part there are a lack prospective studies with long
patient follow-up and current in vitro methods cannot replicate the metastatic process efficiently [130,131].
A more comprehensive analysis of the underlying mechanisms and long-term response to current treatments

is paramount to enable the identification of predictive biomarkers for therapy response and metastatic poten-
tial. This greater understanding will enable the identification of high-risk patients at earlier disease stages and
may enable the identification of novel therapeutics to overcome resistance and reverse or prevent the progres-
sion of metastatic disease.

Perspectives
• Tumour cell migration and invasion is the key driver of metastatic dissemination and the

primary cause of death in cancer.

• The key biological underpinnings which govern tumour invasion and dissemination is currently
lacking, resulting in a lack of targeted therapeutics and biomarkers which can treat and detect
metastatic disease in its early stages. Chemotherapy remains the standard treatment whilst
the potential for immunotherapy and targeted nanotherapeutics to treat metastatic disease are
still a main focus of research.

• Novel methods to explore the evolution of tumour invasion and dissemination are required to
enable better characterisation and assessment of therapeutic interventions. Additionally,
future development of nanotherapeutics hold a great potential in targeted treatment of primary
and metastatic tumours.
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