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Brain amyloid and vascular risk
are related to distinct white
matter hyperintensity patterns
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M Jorge Cardoso3,4,5, Stein H Johnsen8,9, Arvid Rongve10,11,
Dag Aarsland1,12,13, Atle Bjørnerud14,15, Per Selnes1,2 and
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Abstract

White matter hyperintensities (WMHs) are associated with vascular risk and Alzheimer’s disease. In this study, we

examined relations between WMH load and distribution, amyloid pathology and vascular risk in 339 controls and cases

with either subjective (SCD) or mild cognitive impairment (MCI). Regional deep (DWMH) and periventricular (PWMH)

WMH loads were determined using an automated algorithm. We stratified on Ab1-42 pathology (Abþ/�) and analyzed

group differences, as well as associations with Framingham Risk Score for cardiovascular disease (FRS-CVD) and age.

Occipital PWMH (p¼ 0.001) and occipital DWMH (p¼ 0.003) loads were increased in SCD-Abþ compared with Ab�
controls. In MCI-Abþ compared with Ab� controls, there were differences in global WMH (p¼ 0.003), as well as

occipital DWMH (p¼ 0.001) and temporal DWMH (p¼ 0.002) loads. FRS-CVD was associated with frontal PWMHs

(p¼ 0.003) and frontal DWMHs (p¼ 0.005), after adjusting for age. There were associations between global and all

regional WMH loads and age. In summary, posterior WMH loads were increased in SCD-Abþ and MCI-Abþ cases,

whereas frontal WMHs were associated with vascular risk. The differences in WMH topography support the use of

regional WMH load as an early-stage marker of etiology.
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Introduction

White matter hyperintensities (WMHs) visible on T2-

weighted magnetic resonance imaging (MRI) scans are

neuroimaging hallmarks of small vessel disease (SVD),1
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but WMHs are also associated with Alzheimer’s dis-
ease (AD) dementia,2,3 as well as preclinical amyloid
pathology.4,5 However, a widely accepted model for
sequential AD biomarkers does not include WMHs.6

The amyloid hypothesis for AD proposes that
amyloid precursor protein dysmetabolism and amyloid
plaques lead to neurofibrillary pathology,7 but vascular
amyloid deposits are common and were initially sug-
gested to have a mediating role.7,8 AD and cerebrovas-
cular disease (CVD) share risk factors,9 and although a
definite pathomechanistic interaction is not identified,
pertinent findings strongly support a vascular compo-
nent in AD.8,10–12

Neuropathological studies have revealed that
WMHs are of heterogeneous origin, including amyloid
angiopathy, arteriolosclerosis, activated glia and
axonal rarefaction,13–15 and thus associated with both
amyloid pathology and ischemia. Frontal WMHs were
recently related to age and vascular risk.16,17

Conversely, in sporadic AD dementia, there was a pos-
terior predilection for WMHs,18,19 and parietal WMHs
predicted time to dementia in a large longitudinal
study.20 Furthermore, in asymptomatic autosomal
dominant AD mutation carriers, occipital WMH
volume increased more than 20 years before estimated
time of symptom-onset,21 coinciding with altered levels
of amyloid beta 1-42 (Ab1-42) and tau in cerebrospinal
fluid (CSF).

This suggests that increased posterior WMHs may
be linked to AD pathology. We therefore examined
whether increased WMH load could be detected also
in preclinical sporadic AD cases and assessed the utility
of posterior WMHs as an early-stage AD marker.
Secondarily, we assessed whether frontal WMHs are
more closely related to age and vascular risk factors,
and whether the overall distribution supports an
emerging pattern of associations between regional
WMHs and underlying pathology.

Methods

Study population

Subjects were cases or controls enrolled in the
Dementia Disease Initiation (DDI) longitudinal multi-
center study in Norway in the period from December
2013 until September 2018. The criteria for inclusion
were age between 40 and 80 years at baseline and a
native language of Norwegian, Swedish or Danish.
Exclusion criteria were brain trauma or disorder,
including clinical stroke, dementia, severe psychiatric
disease, severe somatic disease that might influence
the cognitive functions, intellectual disability or other
developmental disorders.22 Cases had symptoms of
cognitive impairment reported by themselves or an

informant and were recruited mainly by advertisement
(58%), from memory clinics (24%) or from a previous
study (7%). Controls were recruited from advertise-
ment (60%) or were patients admitted to hospital for
orthopedic surgery (29%). In the advertisements,
individuals with first degree relatives with dementia
were particularly encouraged to participate in the
study. The core study protocol consisted of clinical
and neuropsychological assessment, MRI and lumbar
puncture, but individuals with incomplete assessments
were not excluded. A subgroup consisting of controls
with first degree relative with dementia and cases
underwent [18F]flutemetamol PET in addition.

Cases with normal performance on standardized
tests were classified as SCD, as defined in the frame-
work by the working group of SCD.23 The NIA-AA
criteria for MCI were used for cases with lower perfor-
mance than expected in one or more cognitive domains,
but yet preserved independence in functional ability
and not fulfilling the criteria of dementia, as defined
in NIA-AA guidelines.24,25 The cutoff values for SCD
versus MCI were results less than 1.5 standard devia-
tion below normative mean on either CERAD word
list (delayed recall), VOSP silhouettes, TMT-B or
COWAT,22 and the same criteria were used to classify
participants with no self-reported symptoms of cogni-
tive decline as cognitively normal (NC) or abnormal
controls.

All subjects gave their written consent, and the
Regional Committee for Medical and Health
Research Ethics South-East evaluated (based on the
Norwegian Health and Research Act and the
Helsinki Declaration of 1964; revised 2013) and
approved the study. All further study conduct was in
line with these guidelines.

MRI assessment and image analysis

MRI images were obtained on eight different scanners
on five centers, but two of the scanners had only been
used for one and three of the subjects in the study,
respectively, and they were excluded. The acquisition
protocol and frequency repartition on the six remaining
scanners are detailed in Supplementary Table S1.

WMHs were segmented using an automatic algo-
rithm presented elsewhere.26 In short, using rigidly
co-registered FLAIR and T1 sequences, a Gaussian
mixture model with dynamically evolving number of
components is fit to the data, modelling simultaneously
healthy and non-expected observations such as pathol-
ogy. Anatomical information is introduced to the
model through subject-specific statistical atlases
obtained from a label-fusion automated framework
(Geodesic Information Flows GIF).26 After conver-
gence, the model is used to select candidate lesion
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voxels whose aggregation in connected components

is automatically classified as lesion or artifacts.

All segmentations were visually inspected. In order to

characterize the lesion location, as described previous-

ly,27 the white matter was further separated in

four equidistant layers between the ventricular surface

and the cortical GM/WM interface, while the

cortical lobar separation obtained from the label-

fusion parcellation was propagated onto the

WM volume to distinguish lobar sectors. The basal

ganglia and thalamic regions were considered separate-

ly. See Figure 1 for the illustration of volumetric

division.

CSF analysis

Lumbar puncture was performed and CSF handled as

described.22 CSF Ab1-42, total tau and phosphorylated

tau were determined using ELISA (Innotest b-Amyloid

(1-42), Innotest hTau Ag and Innotest Phospho-Tau

(181 P), Fujirebio, Ghent Belgium).

Amyloid PET

[18F]flutemetamol PET images were obtained from a

GE Discovery 690 PET/CT scanner. A bolus injection

of 185 MBq (5mCi) was followed by rest before posi-

tioning the subject head-first supine in the scanner.

Prior to PET acquisition, a low-dose CT scan for atten-

uation correction was acquired. PET scanning in

3D-mode started 90min after injection of [18F]fluteme-

tamol. PET data were acquired for 20min (four frames

of five minutes). The PET detector was cylindrical,

700mm in the xy-plane and 153mm in the z-plane,

and there were 47 slices. The matrix was 192� 192.

Slice thickness was thus 3.27mm, original (xy plane)

pixel size 3.64mm� 3.64mm.

APOE genotyping

APOE genotyping was performed on EDTA blood

samples at Akershus University Hospital (Gene

Technology Division, Department of Interdisciplinary

Laboratory Medicine and Medical Biochemistry)

Figure 1. WMH segmentation. Example of the brain segmentation for one of the SCD-Abþ cases, a 72-year-old woman. The
segmentation of WMHs is coloured green in the 2nd column. In the 3rd and 4th columns, the layers and lobes are shown, respectively.
The inner and outer two layers were added to estimate periventricular and deep WMHs, respectively.
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according to the laboratory’s routine protocol
using real-time PCR combined with a TaqMan assay
(Applied Biosystems, Thermo Fisher Scientific,
Waltham, USA).

Data analysis

In a previous study comparing CSF Ab1-42 levels with
[18F]flutemetamol uptake, a cutoff of 708 pg/ml classi-
fied subjects as amyloid positive (Abþ) or negative
(Ab�) with sensitivity and specificity of 93%,28 and
we used this cutoff in this study. For three individuals
without CSF samples, Ab status was determined by
clinical evaluation of [18F]flutemetamol PET images.
Based on this, the NC, SCD and MCI groups were
further divided in Abþ and Ab� groups (NC-Ab�,
NC-Abþ, SCD-Ab�, SCD-Abþ, MCI-Ab� and
MCI-Abþ). Abnormal controls and NC-Abþ were
not included in group comparisons, due to small
sample sizes.

The simple Framingham Risk Score for cardiovas-
cular disease (FRS-CVD) was calculated for each sub-
ject, based on information about age, systolic blood
pressure (SBP), use of antihypertensive medication,
body mass index (BMI) and history of type 2 diabetes
mellitus (DM). Because age has a large contribution to
the score, it was calculated with and without the age
component (FRS-CVDwoa), to be used as parameters
of vascular risk.29

Demographic information for continuous variables
with normal distribution (age, SBP, FRS-CVD, FRS-
CVDwoa and CSF Ab1-42) was described by mean and
standard deviation, and group differences were
assessed with independent samples t-tests, comparing
NC-Ab� with SCD-Ab�, SCD-Abþ, MCI-Ab� and
MCI-Abþ. Similarly, continuous variables with non-
normal distribution (MMSE, Geriatric Depression
Scale, BMI, CSF total tau and CSF phosphorylated
tau) were described by median and interquartile
range, and groups were compared with Mann–
Whitney U tests. Categorical variables (sex, hyperten-
sion treatment, current smoking, APOE-e4 status and
DM) were described by frequencies and percentages
and compared with Pearson’s Chi square tests across
groups. APOE-e4 status was defined as positive with
either one or two e4 alleles. DM was defined as positive
if either diagnosis or anti-diabetic medication was con-
firmed in medical history or HbA1c was measured
>6.5%.

Global WMH load was calculated as the sum of
WMH volumes in frontal, parietal, occipital and tem-
poral lobes, normalized against the sum of the lobar
brain volumes. Regional periventricular (PWMH) and
deep white matter WMH (DWMH) loads in the fron-
tal, parietal, occipital and temporal lobes were

computed by adding the inner two or the outer two
layers, respectively, in these lobes, and then normalized

by dividing with the corresponding regional white
matter volumes. Due to right-skewed distributions,
global and regional WMH loads were log-
transformed. To avoid log transformation of zero

values, we added 1 to the global and all regional
WMH volumes.

We compared the global and regional WMH loads

between Ab� and Abþ stage groups by linear mixed
model regression. Global or regional WMH loads were
dependent variables, and age and group dummy
variables were fixed independent variables, thereby

comparing NC-Ab� with SCD-Ab�, SCD-Abþ,
MCI-Ab� and MCI-Abþ, adjusting for age.

We also checked for group differences in global and
regional brain volumes, by using a linear mixed model
with the brain volumes as dependent variables and
group dummy variables and age as fixed independent

variables, to assess whether possible differences due to
brain atrophy contributed to the results.

To assess the associations with age and vascular

risk, we performed linear mixed model regression
with global or regional WMH loads as dependent var-
iables with age and FRS-CVDwoa as fixed independent
variables, both separately in univariable models and

together in a multivariable model.
There were six scanners at five clinical centers, and

we treated scanners as random effect with random
intercept in all models to account for scanner and
center effects. Sex was added as a covariate in the anal-
yses of global WMH load, but having non-significant
coefficients it was omitted as covariate in all analyses.

We inspected the residuals to check the validity of
the regression analysis.

Because the dependent variables were correlated, we
used spectral decomposition to estimate the effective

number of tests,30 in order to correct for multiple test-
ing. We used R version 3.6.2 (R core team 2019,
Vienna, Austria) and the package “poolr” for this esti-
mation.31 Stata version 15 (College Station, Texas,
USA) was used in all other statistical analysis.

Data availability

Data from this study are available upon request.

Results

Participant characteristics

Among the 649 individuals recruited between
December 2013 and September 2018, 589 fulfilled the

inclusion criteria and none of the exclusion criteria. 3D
FLAIR sequence was available for 343 of them, but
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four were excluded as they were scanned on two rarely
used scanners, making them unsuitable for scanner cor-
rection. Clinical data were complete to compute the
FRS-CVD score for 323 of these subjects, and amyloid
status along with complete clinical and neuropsycho-
logical assessment, required for the group classifica-
tion, was further known for 303 of them. A flowchart
of the data selection is presented in Figure 2.

Demographics are presented in Table 1. The SCD-
Abþ, MCI-Ab� and MCI-Abþ groups were

significantly older than the NC-Ab� group. All symp-
tom groups (SCD-Ab�, SCD-Abþ, MCI-Ab� and
MCI-Abþ) had higher Geriatric Depression Scale
score than the NC-Ab� group. Compared to NC-
Ab�, there were more APOE e4 carriers in the SCD-
Abþ and MCI-Abþ groups, and these groups had
lower levels of CSF Ab1-42 and higher levels of CSF
total tau and phosphorylated tau. Both MCI-Ab� and
MCI-Abþ had higher FRS-CVD score than NC-Ab-,
but only MCI-Ab� had higher FRS-CVDwoa. As

Figure 2. Flow chart of subject selection.
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expected, both MCI-Ab� and MCI-Abþ had lower

MMSE score than NC-Ab�.

Group differences in global and regional

WMH loads

We found that global (p¼ 0.012), occipital DWMH

(p¼ 0.003), occipital PWMH (p¼ 0.001), parietal

DWMH (p¼ 0.008), parietal PWMH (p¼ 0.033), tem-

poral DWMH (p¼ 0.030) and frontal DWMH

(p¼ 0.037) loads were increased in SCD-Abþ com-

pared with NC-Ab�, see Table 2 and Figure 3.
Comparing MCI-Abþ with NC-Ab�, we found

increased global (p¼ 0.003), occipital DWMH

(p¼ 0.001), occipital PWMH (p¼ 0.012), parietal

DWMH (p¼ 0.005), parietal PWMH (p¼ 0.021),

temporal DWMH (p¼ 0.002), temporal PWMH
(p¼ 0.024) and frontal DWMH loads (p¼ 0.014).

The difference between MCI-Ab� and NC-Ab� in
frontal DWMHs was borderline significant (p¼ 0.054).
For frontal PWMHs, there were no differences across
groups.

In these analyses, there were nine dependent varia-
bles (global and regional WMH) with four group com-
parisons in each regression model. Because the
dependent variables were correlated, we used spectral
decomposition to estimate that the effective number of
tests was 16 (4� 4), yielding a multiple testing signifi-
cance threshold of p � 0.0031. The differences between
SCD-Abþ compared with NC-Ab� in occipital
DWMH and occipital PWMH survived multiple test-
ing correction, as did the differences between

Table 1. Demographic data for the total cohort and the clinical groups.

Total

N¼ 339

NC-Ab�
N¼ 64

SCD-Ab�
N¼ 105

SCD-Abþ
N¼ 24

MCI-Ab�
N¼ 45

MCI-Abþ
N¼ 37

Age 63.7 (9.2) 61.0 (8.6) 61.8 (8.6) 68.6 (7.0)* 65.9 (10.2)* 70.1 (7.2)*
Female/total 187/339

55.2%
29/64

45.3%
65/105*

61.9%
11/24

45.8%
25/45

55.6%
14/37

37.8%
MMSE 29.0 (2.0) 29.0 (1.5) 30.0 (1.0) 29.5 (1.5) 29.0 (1.0)* 27.0 (3.0)*
APOE e4 carriers 151/338

44.7%
21/63

33.3%
42/105

40.0%
16/24*

66.7%
12/45

26.7%
27/37*

73.0%
Geriatric depression scale 1.0 (3.0)

(N¼ 327)
0.0 (1.0)
(N¼ 62)

2.0 (3.0)*
(N¼ 101)

2.0 (3.0)*
(N¼ 24)

3.0 (4.0)*
(N¼ 44)

2.0 (3.0)*
(N¼ 37)

Systolic blood pressure 140.9 (18.7)
(N¼ 331)

139.4 (16.8)
(N¼ 64)

137.7 (16.2)
(N¼ 101)

141.3 (17.5)
(N¼ 24)

145.5 (19.7)
(N¼ 45)

148.6 (21.6)*
(N¼ 37)

Hypertension treatment 99/338
29.3%

17/64
26.6%

29/105
27.6%

7/24
29.2%

19/45
42.2%

11/37
29.7%

History of diabetes mellitus II 22/338
6.5%

2/64
3.1%

8/105
7.6%

0/24
0.0%

3/45
6.7%

4/37
10.8%

Body mass index 25.2 (6.0)
(N¼ 329)

26.0 (6.7)
(N¼ 63)

24.1 (5.7)*
(N¼ 100)

24.9 (4.7)
(N¼ 24)

26.1 (7.1)
(N¼ 45)

24.5 (4.5)*
(N¼ 37)

Current smoking 48/330
14.5%

6/64
9.4%

15/103
14.6%

1/24
4.2%

13/45*
28.9%

4/37
10.8%

FRS-CVD 15.0 (5.0)
(N¼ 323)

13.9 (4.4)
(N¼ 63)

14.0 (4.9)
(N¼ 97)

15.8 (3.8)
(N¼ 24)

17.1 (5.2)*
(N¼ 45)

17.3 (3.9)*
(N¼ 37)

FRS-CVDwoa 3.6 (3.4)
(N¼ 323)

3.1 (2.8)
(N¼ 63)

3.2 (3.4)
(N¼ 97)

2.8 (2.6)
(N¼ 24)

5.1 (3.6)*
(N¼ 45)

4.1 (3.1)
(N¼ 37)

CSF Ab1-42 969.1 (292.7)
(N¼ 302)

1101.8 (208.8)
(N¼ 64)

1099.7 (200.2)
(N¼ 103)

556.8 (105.1)*
(N¼ 23)

1108.9 (211.9)
(N¼ 45)

556.5 (97.1)*
(N¼ 37)

CSF total tau 315.0 (185.0)
(N¼ 302)

287.5 (168.0)
(N¼ 64)

280.0 (151.0)
(N¼ 103)

425.0 (192.0)*
(N¼ 23)

320.0 (231.0)
(N¼ 45)

440.0 (532.0)*
(N¼ 37)

CSF phosphorylated tau 52.0 (26.0)
(N¼ 302)

48.0 (22.0)
(N¼ 64)

49.0 (19.0)
(N¼ 103)

67.0 (34.0)*
(N¼ 23)

52.0 (23.0)
(N¼ 45)

66.0 (63.0)*
(N¼ 37)

Note: Demographic information for continuous variables with normal distribution (age, systolic blood pressure, FRS-CVD, FRS-CVDwoa and CSF Ab1-
42) was described by mean and standard deviation, and group differences were assessed with independent samples t-tests. Continuous variables with

non-normal distribution (MMSE, Geriatric depression scale, body mass index, CSF total tau and CSF phosphorylated tau) were described by median

and interquartile range, and group differences were assessed with Mann–Whitney U tests. Categorical variables (age, sex, hypertension treatment,

current smoking, APOE-e4 status and diabetes mellitus II) were described by frequencies and percentages, and group differences were assessed with chi

square tests. SCD-Ab�, SCD-Abþ, MCI-Ab� and MCI-Abþ were compared with NC-Ab�. *p< 0.05 compared to NC-Ab-
NC-Ab-: amyloid negative cognitively normal control; SCD-Ab-: amyloid negative subjective cognitive decline; SCD-Abþ: amyloid positive subjective

cognitive decline; MCI-Ab-: amyloid negative mild cognitive impairment; MCI-Abþ: amyloid positive mild cognitive impairment; MMSE: Mini-Mental

State Examination; FRS-CVD: The simple Framingham Risk Score for cardiovascular disease; FRS-CVDwoa: The simple Framingham Risk Score for

cardiovascular disease without the age component.
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Table 2. Comparison of global and regional WMH loads across clinical groups.

Group comparison Difference 95% C.I. p value

Global WMHs

NC-Ab� SCD-Ab� �0.096 (�0.358, 0.166) 0.474

NC-Ab� SCD-Abþ 0.509 (0.110, 0.907) 0.012

NC-Ab� MCI-Ab� 0.290 (�0.034, 0.614) 0.079

NC-Ab� MCI-Abþ 0.536 (0.182, 0.890) 0.003

Frontal periventricular WMHs

NC-Ab� SCD-Ab� �0.192 (�0.493, 0.108) 0.209

NC-Ab� SCD-Abþ 0.368 (�0.090, 0.825) 0.115

NC-Ab� MCI-Ab� 0.255 (�0.116, 0.626) 0.178

NC-Ab� MCI-Abþ 0.267 (�0.139, 0.673) 0.197

Frontal deep WMHs

NC-Ab� SCD-Ab� �0.068 (�0.374, 0.238) 0.664

NC-Ab� SCD-Abþ 0.497 (0.029, 0.964) 0.037

NC-Ab� MCI-Ab� 0.372 (�0.007, 0.751) 0.054

NC-Ab� MCI-Abþ 0.521 (0.106, 0.935) 0.014

Parietal periventricular WMHs

NC-Ab� SCD-Ab� �0.213 (�0.632, 0.205) 0.318

NC-Ab� SCD-Abþ 0.692 (0.057, 1.328) 0.033

NC-Ab� MCI-Ab� 0.293 (�0.224, 0.810) 0.267

NC-Ab� MCI-Abþ 0.664 (0.099, 1.229) 0.021

Parietal deep WMHs

NC-Ab� SCD-Ab� �0.066 (�0.466, 0.333) 0.746

NC-Ab� SCD-Abþ 0.820 (0.213,1.428) 0.008

NC-Ab� MCI-Ab� 0.407 (�0.087, 0.901) 0.106

NC-Ab� MCI-Abþ 0.765 (0.225, 1.305) 0.005

Occipital periventricular WMHs

NC-Ab� SCD-Ab� 0.008 (�0.231, 0.248) 0.946

NC-Ab� SCD-Abþ 0.595 (0.232, 0.958) 0.001

NC-Ab� MCI-Ab� 0.139 (�0.157, 0.435) 0.356

NC-Ab� MCI-Abþ 0.415 (0.092, 0.738) 0.012

Occipital deep WMHs

NC-Ab� SCD-Ab� �0.003 (�0.256, 0.250) 0.982

NC-Ab� SCD-Abþ 0.577 (0.194, 0.960) 0.003

NC-Ab� MCI-Ab� 0.091 (�0.221, 0.404) 0.567

NC-Ab� MCI-Abþ 0.563 (0.222, 0.905) 0.001

Temporal periventricular WMHs

NC-Ab� SCD-Ab� �0.112 (�0.437, 0.213) 0.498

NC-Ab� SCD-Abþ 0.328 (�0.165, 0.821) 0.192

NC-Ab� MCI-Ab� 0.225 (�0.177, 0.626) 0.272

NC-Ab� MCI-Abþ 0.504 (0.066, 0.943) 0.024

Temporal deep WMHs

NC-Ab� SCD-Ab� �0.051 (�0.387, 0.284) 0.764

NC-Ab� SCD-Abþ 0.567 (0.056, 1.078) 0.030

NC-Ab� MCI-Ab- 0.365 (�0.050, 0.780) 0.085

NC-Ab� MCI-Abþ 0.716 (0.262, 1.170) 0.002

Note: We compared global and regional WMH loads between Ab� and Abþ stage groups by linear mixed model regression with group dummy

variables as fixed independent variables, comparing NC-Ab� with SCD-Ab�, SCD-Abþ, MCI-Ab� and MCI-Abþ adjusting for age. Scanner differ-

ences were treated as random effect with random intercept. Bold font denotes p< 0.05.

NC-Ab�: amyloid negative cognitively normal control; SCD-Ab�: amyloid negative subjective cognitive decline; SCD-Abþ: amyloid positive subjective

cognitive decline; MCI-Ab�: amyloid negative mild cognitive impairment; MCI-Abþ: amyloid positive mild cognitive impairment; WMHs: white matter

hyperintensities.
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MCI-Abþ compared with NC-Ab� in global WMH,

occipital DWMH and temporal DWMH.
There were no differences in global or regional brain

volumes between any symptom groups compared with

NC-Ab�, except for temporal periventricular brain

volume in the MCI-Ab� group (p¼ 0.031, data now

shown).

Linear regression analysis of global and regional

WMHs with age and vascular risk

There were significant associations between age and

global and all regional WMH loads, with the highest

coefficient for parietal PWMHs (b¼ 0.0832, p< 0.001)

and the lowest value for occipital PWMHs (b¼ 0.0329,

p< 0.001), and this did not change much in the multi-

variable model correcting for FRS-CVDwoa, see

Table 3 and Figure 4.
FRS-CVDwoa was significantly associated with

global and all regional WMH loads, but after correct-

ing for age, only the associations with global WMHs

(b¼ 0.0346, p¼ 0.017) as well as frontal PWMHs

(b¼ 0.0484, p¼ 0.003), frontal DWMHs (b¼ 0.0466,

p¼ 0.005) and parietal PWMHs (b¼ 0.0462,

p¼ 0.046) remained significant.
There were nine dependent variables (global and

regional WMH) with two independent variables in

the regression models. Bu using spectral decomposi-
tion, we estimated the effective number of tests to be
8 (4� 2), yielding a multiple testing significance thresh-

old of p � 0.0063. In the multivariable model, the asso-
ciation with age survived multiple testing corrections in
global and all regional WMHs, while the association

with FRS-CVDwoa was only significant with frontal
PWMHs and frontal DWMHs after correction for
multiple testing.

Discussion

Main results

The main finding of this study is that occipital PWMH

and DWMH burden is increased in SCD-Abþ com-
pared with NC-Ab�, also after correction for multiple
testing. In MCI-Abþ, we found increased global
WMHs, occipital and temporal DWMHs compared

with NC-Ab�, after correction for multiple testing.

Figure 3. Regional WMH loads. Barplots of regression coefficients with regional WMH loads as dependent variables and group
dummy variables as independent variables, showing the differences in SCD-Abþ, MCI-Ab� and MCI-Abþ compared with NC-Ab�,
adjusted for age and scanners, with error bars marking 95% confidence intervals. * p<0.05. ** p<0.01
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The largest differences were seen in the deep parietal

region, for both SCD-Abþ and MCI-Abþ, but even

though there were significant differences, they did not

survive the multiple testing correction.
Only frontal PWMH and DWMH loads were asso-

ciated with vascular risk assessed by FRS-CVDwoa,

after adjusting for age and correction for multiple

testing.
SCD cases often seek medical help, but cognitive

screening is normal, function in work and daily life

may be preserved and next of kin may report no con-

cern. Our findings suggest that increased WMH burden

in SCD should raise the suspicion of AD and elicit

further investigations. However, this is not in line

with the current NIA-AA guidelines,25 stating that

patients with severe WMH burden should only be diag-

nosed with possible (not probable) AD. None of the

guidelines for preclinical or predementia AD include

WMHs in their biomarker models,24,32 and extensive

WMH burden is an exclusion criterion in several

recent clinical trials in predementia AD.

Supporting results

Cognitive function is associated with WMH load,33

and WMH volume was recently found to predict

amyloid positivity in cognitively normal individuals.4

In the present study, we divided the cognitively

normal group in asymptomatic controls and subjective

cognitive decline and further stratified on evidence for

amyloid pathology. To our knowledge, we are the first

to describe increased occipital WMH burden in amy-

loid positive SCD subjects compared with asymptom-

atic cognitively normal amyloid negative controls.
Our findings of increased posterior WMHs in pre-

clinical AD are consistent with previous research. In

the Dominantly Inherited Alzheimer Network

(DIAN) cohort of asymptomatic carriers of dominant

AD genes, increased occipital WMHs occurred more

than two decades before estimated time of symptom

onset, coinciding with Ab and phosphorylated tau

pathology.21 Also, only parietal WMHs predicted

time to incident AD dementia in a large cohort of

non-demented elderly.20 On the other hand, frontal

WMHs have been associated with age and cardiovas-

cular risk, and then especially hypertension, in two

recent studies.17,18

Conflicting findings

A recent systematic review and meta-analysis found an

overall association between WMHs and evidence for

Table 3. Associations of global and regional WMH loads with age and FRS-CVDwoa.

Age FRS-CVDwoa

b 95% C.I. p-value b 95% C.I. p-value

Univariate models

Global WMHs 0.0615 (0.0515, 0.0714) <0.001 0.0842 (0.0532, 0.1152) <0.001
Frontal PWMHs 0.0774 (0.0660, 0.0887) <0.001 0.1104 (0.0743, 0.1466) <0.001
Frontal DWMHs 0.0694 (0.0580, 0.0808) <0.001 0.1017 (0.0666, 0.1367) <0.001
Parietal PWMHs 0.0832 (0.0674, 0.0990) <0.001 0.1134 (0.0656, 0.1612) <0.001
Parietal DWMHs 0.0755 (0.0601, 0.0910) <0.001 0.1013 (0.0550, 0.1477) <0.001
Occipital PWMHs 0.0329 (0.0235, 0.0423) <0.001 0.0278 (0.0006, 0.0549) 0.045

Occipital DWMHs 0.0361 (0.0262, 0.0459) <0.001 0.0302 (0.0017, 0.0587) 0.038

Temporal PWMHs 0.0535 (0.0415, 0.0656) <0.001 0.0591 (0.0233, 0.0948) 0.001

Temporal DWMHs 0.0573 (0.0444, 0.0701) <0.001 0.0640 (0.0258, 0.1023) 0.001

Multivariable model

Global WMHs 0.0566 (0.0460, 0.0672) <0.001 0.0346 (0.0062, 0.0630) 0.017

Frontal PWMHs 0.0707 (0.0586, 0.0827) <0.001 0.0484 (0.0162, 0.0806) 0.003

Frontal DWMHs 0.0629 (0.0508, 0.0749) <0.001 0.0466 (0.01431, 0.0790) 0.005

Parietal PWMHs 0.0769 (0.0599, 0.0939) <0.001 0.0462 (0.0009., 0.0915) 0.046

Parietal DWMHs 0.0701 (0.0534, 0.0868) <0.001 0.0399 (�0.0046, 0.0845) 0.079

Occipital PWMHs 0.0321 (0.0219, 0.0424) <0.001 �0.0003 (�0.0275, 0.0269) 0.984

Occipital DWMHs 0.0353 (0.0246, 0.0460) <0.001 �0.0006 (�0.0290, 0.0278) 0.968

Temporal PWMHs 0.0503 (0.0372, 0.0634) <0.001 0.0151 (�0.0198, 0.0500) 0.396

Temporal DWMHs 0.0559 (0.0420, 0.0698) <0.001 0.0151 (�0.0220, 0.0522) 0.424

Note: We performed linear mixed model regression with global and regional WMH loads as dependent variables with age and FRS-CVDwoa as fixed

independent variables, both separately (univariate models) and in the same model (multivariable model). Scanner differences were treated as random

effect with random intercept in all models. Bold font denotes p< 0.05.

WMHs: white matter hyperintensities; PWMHs: periventricular white matter hyperintensities; DWMHs: deep white matter hyperintensities; FRS-

CVDwoa: The simple Framingham Risk Score for cardiovascular disease without the age component.
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amyloid deposition,4 but there are also contradicting
findings.34,35 Frontal WMHs as well as parietal
WMHs were associated with amyloid positivity in a
cohort of non-demented elderly.36 However, mean
age was more than 10 years higher in this cohort, and
twice as many cases had hypertension, possibly
explaining more frontal WMHs. Diverging results
may be explained by different ways of assessing
WMHs and heterogeneity in cohorts regarding age,
heredity, clinical diagnoses, stage of disease and
sample size, reflected by the various selection strate-
gies, as well as differences in categorization
thresholds and covariate models. In studies with
groups based on clinical diagnosis, misdiagnosis or
mixed pathological conditions may obscure the analy-
ses. Because WMH aetiology is heterogeneous, total
burden likely reflects both amyloid and non-amyloid
SVD, thus reducing the probability of finding statisti-
cal relationships.

Interpretation

Chronic cerebral ischemia is associated with WMHs,
but the direct mechanisms are unclear. In longitudinal
studies, WMHs predate a reduction in cerebral perfu-
sion and vice versa.37 Whether WMHs in AD and

non-amyloid SVD represent similar or different patho-

genetic mechanisms or not, remains uncertain. Several

studies have underlined the heterogeneity of

WMHs,13,14 that has been associated with SVD of

both non-amyloid and amyloid type.15 We have previ-

ously shown that WMHs display reduced metabolism

and more severe loss of integrity in Abþ compared to

Ab� cases, using glucose-PET and diffusion tensor

imaging.38,39 Parietal WMHs were recently connected

to Wallerian degeneration in AD, putatively secondary

to cortical neurofibrillary tangles,14 but a posterior

WMH distribution in AD could also be linked to the

predilection for cerebral amyloid angiopathy (CAA) in

this region.40

The frequent coexistence of WMHs with AD pathol-

ogy has raised the question of an interaction between

CVD and AD.41 Animal studies in mice have shown

reduced clearance mechanisms of Ab in APOEe4 car-

riers, both via perivascular pathways and across the

blood–brain barrier (BBB), increasing the Ab deposi-

tions along vessel walls, such as in CAA.42,43 A prevail-

ing hypothesis is that the interstitial fluid enters the

perivascular route at the level of the capillaries and

then follows along the vasculature in the basement

membrane of arteries towards the subarachnoid

Figure 4. Effects of age and FRS-CVD on regional WMH. Barplots of regression coefficients with regional WMH loads as dependent
variables and age and FRS-CVDwoa as independent variables, in univariable (a) or multivariable (b) models, all models adjusted for
scanners, with error bars marking 95% confidence intervals. *p<0.05. **p<0.01. ***p<0.001.
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space, and general aging of the vasculature and cere-
brovascular disease can affect this mechanism of Ab
clearance.43 Thus, tortuosity, stiffness and changes in
pulsations of arteries may reduce the effectiveness of
this drainage pathway and cause build-up of amyloid
depositions, potentially adding to the vascular pathol-
ogy. Increased arterial stiffness is associated with both
increased WMH load and cortical Ab deposition, pos-
sibly mediating the effect of cardiovascular risk
factors.44

Other possible mechanisms of interaction could be
Ab affecting components of the neurovascular unit,
causing dysfunction of the BBB and dysregulation of
cerebral blood flow.45,46 For instance, pericytes regu-
late capillary diameter,47 but are vulnerable to Ab.48,49

With the capillary bed contributing the most to the
cerebrovascular resistance, pericyte degeneration
could be a substantial factor in cerebral hypoperfusion
in AD.49,50 In addition, the common finding of arterio-
sclerosis and lipohyalinosis in neuropathological stud-
ies of AD, even in very early stages,8 along with the
observation of vascular Ab deposition in spontaneous-
ly hypertensive stroke-prone rats,12 suggests that
non-amyloid small vessel disease could also cause Ab
build-up. As such, feed-forward mechanisms may exist,
causing vicious cycles of compromised vascular health
and Ab aggregation.51

Strengths and limitations

A strength of this study is the use of CSF sampling to
reveal Ab status in cognitively normal individuals (NC
and SCD) as well as MCI. Newly developed volumetric
measures of WMHs in cerebral regions promote more
accurate analysis than visual scales that have been fre-
quently used.

One of the limitations in this study is that we have
only used CSF Ab1-42 as a biomarker of predementia
AD, corresponding to Stage 1 in the NIA-AA recom-
mendations for preclinical AD.32 This might also
embrace cases with CAA,52 and while there is consid-
erable overlap between CAA and AD, they are
regarded as distinct clinical conditions. The groups
were not age-matched, and six different MRI scanners
were used, but we corrected for age and scanners in all
analysis to compensate for this. There is a probable
selection bias in our cohort towards individuals with
increased heredity for dementia and a higher propor-
tion of APOE e4 carriers compared to the general pop-
ulation, also among the controls, as a consequence of
our recruitment strategy. One can speculate whether
this has had an influence on the spatial pattern of
WMHs. In some studies, topographical effects of
APOE on WMHs have been presented, although the
findings are somewhat inconsistent.16,53 Finally,

the cross-sectional design limits the interpretation of
the findings.

Conclusions

We found increased occipital WMH load in SCD-Abþ
compared with asymptomatic cognitively normal Ab�
controls. This is in accordance with findings in autoso-
mal dominant AD mutation carriers, and supports the
utility of posterior WMHs as a marker of early-stage
AD. Only frontal WMH load was associated with vas-
cular risk factors, after controlling for age, and these
findings of differences in WMH topography support an
emerging pattern of associations between regional
WMHs and underlying pathology.
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