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Abstract

Background: A microorganism is a complex biological system able to preserve its functional features against external
perturbations and the ability of the living systems to oppose to these external perturbations is defined ‘‘robustness’’. The
antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial
system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled
the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a b-
lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs). These PBPs are involved in the synthesis of
peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival.

Methodology: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the
data of molecular interactions are stored in Systems Biology Markup Language (SBML). To simulate the dynamic behaviour
of this biochemical network, the kinetic equations were associated with each reaction.

Conclusions: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of
PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome) and the synthesis of
peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the
whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the
real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to
understand the general mechanism regarding the cellular resistance to some antibiotics.
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Introduction

Microorganisms are able to preserve their functional features

against external perturbations. This represents often the major

impediment to discover an efficient pharmacological therapy

against human pathogens. In fact, the target of a drug is often a

specific molecular component of the microorganisms that are

easily able to develop new molecular mechanisms for neutralizing

the drug presence [1]. For example, it has been recently solved the

structure of a protein that adds a methyl group to ribosomal RNA

and confers antibiotic resistance to bacteria [2]. Therefore, it has

been defined as ‘‘robustness’’ the ability of the living systems to

oppose to external perturbations or fluctuations to preserve some

critical functional characteristics [3].

It is now known that the functional elements of a cell, i.e. genes,

RNAs, proteins, metabolites, etc, establish an integrated network

being at the basis of the regulation of cellular biochemical

pathways. This network exerts dynamically the cellular robustness

against any external perturbation for minimizing its effects on the

whole biochemical behaviour of the system. Each functional

element has to be considered as a node of a network that carries

weighed connections with the other metabolic nodes [4]. At

present, we often know in details all molecular properties of each

biochemical element as well as the biochemical relationships

existing within each ‘‘omic’’ level but we still have poor knowledge

of the biochemical laws that connect the various ‘‘omic’’ levels.

This represents an important aspect to understand how the

biological information is transmitted within the various functional

levels as well as to clarify how the cell regulates its functional

processes and how we can act on them. Some efforts have been

made to model in mathematical terms (by graphs, neural

networks, etc.) the relationships among nodes of the same

biochemical environment, i.e., relationships among genes at

genomic level, among proteins at proteomic level, among mRNA

at transcriptomic level, and so on, but few efforts have been made

to integrate the information in vertical sense, i.e., among the

different functional levels [5].

Lacking this important integration, very hardly we will be able

to understand and to model the complex biochemical behavior as

a whole [3,6], because its biological response is produced trough

the integration between the different biochemical functional levels.

The antibiotic resistance, developed by different bacteria

strains, is a clear example of robustness and of ability of the

bacterial system to acquire a particular functional behaviour in

response to environmental changes [7]. The molecular mecha-

nisms, related to each functional level of the bacterial cell against
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some antibiotics are known and even moderately simple.

Therefore, we have considered this phenomenon for a modelling

of the integrated cellular response to an external perturbation. The

modelling reflects the integrated response of the bacterial cell that

through its robustness is able to cause the ‘‘emergence’’ of new

biological properties.

The first form of drug resistance was the so called ‘‘penicillin-

resistance’’, due to penicillin, an antibiotic of the beta lactamic

family. Its resistance is due to the ability of bacteria to express

beta-lactamase, an enzyme that can inactivate the drug by

hydrolysis of its beta lactamic ring [8,9]. To overcome this

phenomenon, it was necessary to develop new drugs not affected

by the same molecular mechanisms of inactivation. One of the

defining features of bacterial resistance is based on the physical

properties of cell wall representing possible barriers for attacks by

pathogens.

The methicillin being a new synthesized antibiotic (see Figure 1)

was checked against the penicillin-resistant strains with excellent

results because it is not a beta-lactamase substrate, although the

methicillin target is the same of the penicillin. In fact, both drugs

are b-lactamic antibiotics that act by inhibiting the penicillin-

binding proteins (PBPs). PBPs are involved in the synthesis of

peptidoglycans, essential mesh-like polymers that surround cellular

enzymes and are crucial for the bacterium survival.

Once the methicillin was clinically used, the patients developed

methicillin-resistant strains, as for example the methicillin-resistant

S. aureus (MRSA) strains. For these reasons, the functional use of

this drug is now reduced to few cases [10,11]. The methicillin-

PBPs interaction causes the inactivation of the normal path to

synthesize the peptidoglycan. In MRSA strains the resistance

mechanism is based on the PBP2a expression. Moreover, some

genes (mecI_GENE, mecA_GENE and mecR1_GENE) are

located on the mobile genetic elements, known as SCCmec

elements. In particular, the mecA_GENE encodes for PBP2a

when the methicillin arrives, mecR1_GENE for membrane-bound

signal transduction protein (mecR1_PROTEIN) and mecI_GENE

for a transcriptional regulator. These PBP2a isoforms present a

decrease of binding affinities for antibiotics. Therefore, PBP2a

confers resistance by contributing to the function of native PBPs

during cell wall synthesis [10,11].

Rates of invasive infections with methicillin-resistant S. aureus

(MRSA) have increased both in the hospital and in the

community. The prevalence of methicillin-resistant S. aureus

(MRSA) worldwide [12] is continuously increasing. This spread of

virulent community associated MRSA [13] is accompanied with

the emergence S. aureus and a reduced susceptibility to other

antibiotics, such as vancomycin and other glycopeptides

[13,14,15]. Vancomycin, that is the antibiotic used for MRSA

infections for the past 40 years, does not seem to be as effective

[16] due to the appearance of vancomycin-resistant S. aureus

following the emergence of vancomycin-resistant enterococcus

[17]. Moreover, it was experimentally reported that benign-

appearing skin and soft tissue infections caused by MRSA can

progress rapidly to potentially fatal diseases [18].

What is really worrying are the recent news which report of

patients that have been infected with strains of S. aureus resistant to

methicillin and vancomycin having also acquired the ability to

release cellular toxins [19]. This is raising the spectre of the worst

kind of antibiotic-resistant superbug [19]. Studies on S. aureus

conducted for determining the minimum inhibitory concentration

at microbial population level have revealed the complex response

to drug exposure [20].

Therefore, it is necessary to understand at metabolic level the

molecular dynamics that support the persistent S. aureus bacter-

emia. Several research groups have developed strategies for the

control and the treatment of MRSA infections through modeling

approaches. Brandner et al. offer a platform to undertake high-

throughput genomic and proteomic studies of S. aureus and MRSA

infection, including the molecular mechanisms involved in

transmission, virulence, immune-escape, and antibiotic resistance.

They reported the results of the entire cloning set of S. aureus

protein-encoding open reading frames (ORFs), or ORFeome [21].

Moreover, a recent work focus on the importance of different

kinetic parameters associated with the resistance mechanisms,

using a computational approach. Murphy et al. created a model

that can be used to generate quantitatively accurate predictions of

MICs for antibiotics against different strains of MRSA and to

quantify the effects of the principal pharmacokinetic parameters of

these antibiotics on treatment, investigating the relative impact of

to b-lactam antibiotics on cell survival in the presence of

antibiotics [22].

We have integrated cooperatively the different functional parts

of the bacterial cell in order to exert drug-resistance. In particular,

we have integrated the molecular information existing at the

various functional levels (genomics, transcriptomics, proteomics,

metabolomics) to model the whole mechanism essential to the

methicillin-resistance through a systems biology approach that

shows the behaviour of a single bacterial cell. In this context, a

systems biology approach can be useful to provide a framework, at

cellular level, able to define the timing as well as the hierarchy of

the metabolic reactions of drug resistance of S.aureus that is missing

in the literature.

Results

Description of the model
We created a model to simulate the mechanism of inactivation

of the PBP by methicillin, as well as the expression of PBP2a, the

regulation of the SCCmec elements (SCC: staphylococcal cassette

chromosome) [23], and the synthesis of peptidoglycan by PBP2a.

The model and the reaction equations for the model are shown in

Figure 2.

The peptidoglycan is obtained from the transpeptidation of NAM

and NAG groups (N-acetylmuramic acid and N-acetylglucosamine

repeats). In particular, the methicillin-resistance is not due to the

production of the b-lactamase enzyme, as one can see in the case of

the penicillin-resistance, but depends on the expression of a penicillin-
Figure 1.The methicillin structure.
doi:10.1371/journal.pone.0006226.g001
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Figure 2. A) Map model. Representation of the network connecting genes, RNAs, proteins and metabolites by using different forms and colours for
some species. The frame in light violet represents the cellular membrane. B) Reactions and rate of the equations used in the model.
doi:10.1371/journal.pone.0006226.g002
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binding protein (PBP2a). This foreign protein is resistant to the action

of the methicillin, as demonstrated by the low affinity of PBP2a for

the methicillin (METHICILLIN) [8,9]. In the chromosome of

methicillin-resistant strains was found the mecA_GENE, that express

PBP2a, and a series of other genes located on mobile genetic

elements, known as SCCmec elements. The mecR1_GENE encodes

a membrane-bound signal transduction protein (mecR1_PROTEIN)

while mecI_GENE encodes a transcriptional regulator (mecA_GEN-

E_repressor), which is a strong repressor of the expression of the

mecA gene. When MecR1 protein interacts with the methicillin, it

breaks off and its fragment (mecI_GENE_soppressor) is able to

repress the mecI_GENE. So, in the absence of the mecA_GEN-

E_soppressor, the mecA_GENE can express PBP2a. The PBP2a

expression enables the cell to synthesize the peptidoglycan and this

neutralizes the methicillin effect.

In the proposed model 11 reactions are involved. In particular,

Re1, Re2, Re6, Re7 and Re8, are defined as zeroth order forward,

first order reverse, reversible mass action kinetics; Re3 as second

order forward with two reactants, first order reverse, reversible

mass action kinetics (generalized mass-action); Re4 as first order

irreversible mass action kinetics; Re10 as first order irreversible

mass action kinetics (catalyzed by METHICILLIN); and Re9 and

Re11 as irreversible non modulated non-interacting bireactant

enzymes. (Appendix A, Table S1 and Table S2 in Supplementary

Material). Moreover, we modified the equation of the reaction

Re7 concerning the complex meticillin-mecRI concentration as

our variable, and we included in the equation of the reaction Re5

mecI_GENE_soppressor as our inhibitory variable.

The model presents the framework of genes, RNAs, enzymes,

products and reactions involved in the methicillin-resistence

phenomenon. In particular, it comprises 6 proteins, 3 genes, 3

RNAs, 1 drug, 2 generic-Molecule, 1 complex and 1 interaction

entity (Supplementary Table S2) and the following reactions: 2

state transitions, one of this catalysed by the meticillin drug, 3

associations, (2 of this catalysed by PBP and PBP2a enzymes), 2

transcriptional controls, 3 transcriptions and 3 traslations (Sup-

plementary Table S1 and Table S2).

Model simulations
This paper describes the results of an integrated approach to

model the phenomenon of resistance to methicillin in S. aureus at

molecular level. This should provide a basis for understanding the

dynamics involved in the cellular development of methicillin

resistance that can be able to develop pharmacological strategies to

overcome its resistance.

We have not used real concentrations for every molecular specie

because there are no experimental investigations that reported

quantitative data for a single cell. Nevertheless, literature studies

[23–25] follow us to determinate the relationships between the

species in the model and the framework between them was

established. We used for the constants (association, dissociation,

catalytic and inhibition) the values ranged between 0.1 and 2 (see

Supplementary Table S1) concerning the following biological

considerations. In details, the catalytic constant (kcat) may be

higher than that of association (kass) because it has a role speeding

the reaction but the association constant (kass) may be higher than

those of dissociation (kdiss) and inhibition (kini) having only a

regulatory and control role in the reaction in which these are

involved. In fact, when we used values out from 0.1,k,2 or from

the criteria reported above, the simulation produced wrong results:

i) negative concentrations for species if equal values were set for all

constants or if kass.kcat; ii) the meticillin effect was minimal if

kass,kdiss and iii) the peptidoglycan increase was slow if

kcat,kdiss and kcat,kass (Supplementary Figure S1).

All the molecular species are considered as variable species,

except the genes that are assumed constants because in a cell a

gene is always present, even if not expressed. When the

transcription is activated, the RNA is expressed and the variable

of the transcription process is the transcript amount, and not the

presence of the gene that can be activated or inactivated.

In absence of quantitative data regarding a single cell, we can

only assess the internal ratios existing among reactants or their

fluxes. Therefore, we refer to these in terms of amounts, to

evidence their presence or their absence. In particular, for the gene

class we can not define a concentration, assuming the gene as a

constant, and we set every one equal to an unit of amount. Some

amounts are fixed at zero because some species, as mecR1_drug,

mecI_GENE_soppressor, PBP2a, PBP_inactive, mecA_RNA,

initially are not expressed. MecR1_RNA is set equal to 1 as well

as the corresponding mec_R1_protein because these values

represent basal amounts to ensure the activation of the gene and

its relative expression. Instead, the peptidoglycan, PBP, NAM_-

peptide and NAG_peptide are initially set equal to 3 as amount

because in a synthesis process these species are more active respect

to mec_R1_protein being like a ‘‘sentinel’’ protein that attends

only when the methicillin arrives. MecA_GENE_soppressor and

mecI_RNA are set equal to 5 as amount. This is the highest value

because it represents the more important transcriptional control of

the bacterial resistance involved in the simulation. When PBP

enzymes are inactivated by the methicillin, PBP2a is expressed in

order to restart the synthesis of the peptidoglycan. In these

conditions it is observed a growing amount of various molecular

species involved in the mechanism of resistance, largely based on

the expression of PBP2a.

In the Figure 3a the variations of PBP, PBP-inactive and the

PBP2a are shown. The effect of the methicillin presence is evident

because PBP quickly decreases in about one unit of the simulation

time and becomes inactive (i.e. PBP-inactive), while the PBP2a is

slowly expressed in about seven units of the time scale. The

Figure 3b shows that 1) the methicillin amount decreases when it

interacts with the mecR1_PROTEIN and inactivates the PBP; 2)

the synthesis of peptidoglycan ends when PBPs are inactivated

while increases with the espression of PBP2a; 3) the amount of

mecR1_drug increases while the methicillin is consumed. It is

worthy of note that the total amount of mecR1_drug, spanning

from 0 to 6 time units, is about the 25–30% of the total methicillin.

This evaluation originates from the analysis of the graphs (see

Figure 3b) and is a consequence of the used parameters that were

not set on this criteria. In fact, as reported below, some initial

parameters were modified in order to verify how the curves change

and if the model reply in agreement to cellular mechanism.

However, this means that the methicillin affinity for its cellular

receptor (mecR) should be not very high.

This is in agreement to a recent article that has found the kinetic

data for the binding of penicillin-BlaR to be smaller in comparison

to other drugs [24]. Our simulations show that, while in the initial

phase of the methicillin action the PBPs are quickly inactivated,

the bacterial peptidoglycan growth are consistently reduced (about

55%) whereas the cell wall defence is quickly at the maximum in

the absence of methicillin.

In general, these results are consistent with the behaviour of the

methicillin-resistant S. aureus (MRSA) strains in presence of the

antibiotic methicillin but the model highlights new interesting

metabolic features of the cell reply. In particular, the whole

phenomenon is completely dependent from ‘‘de novo’’ biosynthe-

sis of peptidoglycan. The normal path to synthesize this structure is

rapidly inactivated by methicillin (see Figure 2). The new path, i.e.

the cellular response, occurs through the expression of PBP2a.

Bacterial Mechanism Modeling
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Therefore, the computational model shows that these two

mechanisms have different kinetics. As shown in Figure 3b, the

inactivation of the normal path is immediate with the entrance of

methicillin, because it happens simply through the PBP inactiva-

tion. The cell reply depends on the mecR1_drug increase that is

related to the interaction between methicillin and mecR1_protein,

and is not directly linked to the total amount of methicillin, being

also used to inactivate PBP. This reply is also correlated to PBP2a

expression that needs a complete transcription, translation and

expression process. Therefore, the cellular response of defence is

slow compared to the action of the methicillin.

We have also perturbed our model with different methicillin

amounts to verify if it responds correctly to perturbations. In fact,

as one can easily control, the different concentrations of methicillin

modulate the cellular expression of PBP2a in proportion as well as

the peptidoglycan synthesis. In Figure 4 and Figure 5, we show the

results of different simulations.

In particular, the final amount of peptidoglycan is the same in

all conditions, being dictated by the need of the cell to synthesize

the wall protection. This agrees to the fact that the penicillin can

heavily attack the bacteria if they are in a growth stasis but if the

bacteria have lost their cell wall, they can grow and replicate in

presence of the antibiotic (L forms) that doesn’t appear toxic [25].

The kinetics of its synthesis depend on the presence of PBP and

PBP2a enzymes, and are strongly influenced by the amount of

methicillin, that induces their inactivation and expression, as we

shown in the Figure 4.

A large quantity of methicillin causes a rapid inactivation of the

PBP [9]. This induces a temporary stop of the peptidoglycan

synthesis that can be resumed only when the PBP2a expression,

being more slow respect to inactivation process, is completed.

Moreover, this result reveals an important period of latency that

can be used for new pharmacological approach. When the effect of

methicillin is poor, the process of inactivation is slower, and the

growth curve of peptidoglycan amount is not described by an

immediate stop but by a gradual decrease, that is followed by a

more rapid recovery of the growth, as shown in Figure 4. The

strong correlation between the amount of methicillin in the cell

and the rate of the phenomenon has been demonstrated

experimentally in infection models by the shorter, or absent,

post-antibiotic effects [26].

Furthermore, we focused our attention on the expression of

mecR1, in terms of gene, RNA and protein (Figure 5). The protein

mecR1 is the first involved in the detection of methicillin. This

protein activates the response of the cell after the drug binding. Our

simulation shows that, when the perturbation is due to a small

amount of methicillin, the cell is able to cover up quickly the right

amount of protein mecR1 with its concomitant transcription.

Instead, when the cell perturbation is due to a great amount of

methicillin, the transcription process to express mecR1 is not able to

immediately satisfy its consumption. This highlights the correlation

between the efficacy of the treatment and the doses used. Moreover,

we have also investigated the fluxes of all RNA species. The

simulations with different amount of methicillin (Figure 6) show that

the behaviour of RNA curves agrees with the biological expecta-

tions. In fact, in the absence of methicillin, mecA_RNA is not

expressed since it is not necessary to express PBP2a, but when

methicillin is assumed, both PBP2a and its related RNA are

expressed. As mentioned before (Figure 5), mecR1_RNA shows

different kinetics at different methicillin amounts because mecR1_-

protein is consumed and, consequently, the corresponding RNA

fluxes must change. In fact, mecR1_RNA is expressed only in the

absence of methicillin and it is consumed to inhibit PBP2a

expression. However, its amount can’t fall below a certain level to

maintain the inhibition. We have also verified that, with the

presence of methicillin, mecI_RNA falls below this threshold to stop

the inhibition as well as to allow the PBP2a expression.

Discussion

Our integrated approach shows that a computational model can

generate and describe correctly the whole phenomenon of the

methicillin resistance at biochemical level. The concept of

integrated biological system has emerged as a means of envisioning

how multifactorial biological processes operate as a whole. Here,

we attempted to evaluate the current state of knowledge about the

peptidoglycan components of MRSA wall in the context of

methicillin action. The model suggests that two metabolic

cascades, both activated by the methicillin, display strikingly

different levels of temporal response to varying strengths of

perturbations. In fact, the expression of the target gene

(mecI_gene) in the metabolic cascade was influenced by the

upstream reactions. This finding suggests that network connectiv-

ity has a greater effect on the variability of expression than the

expression of a gene itself. The model is able to accurately predict

the latency time of single genes within the two cascades

Figure 3. Simulation examples of our model. Flux curves obtained for PBP, PBP-inactive and PBP2a (a), peptidoglycan, METHICILLIN,
mecR1_drug (b). The substance amount and time are expressed in number of molecules and seconds, respectively.
doi:10.1371/journal.pone.0006226.g003

Bacterial Mechanism Modeling

PLoS ONE | www.plosone.org 5 July 2009 | Volume 4 | Issue 7 | e6226



demonstrating that such behaviour can be described in a

quantitative manner.

Experimentally it’s known that, when the methicillin is assumed

by patients, PBP is inactivated but PBP2a is expressed and the

peptidoglycan synthesis is induced [8,9]. According to these data

the curves reported in Figure 3 showed that after methicillin

administration the PBP amount decreased while the PBP2a and

peptidoglycan amounts increased. Moreover, the model is also

able to react to the external perturbation (i.e. to different amounts

of methicillin) by activating the same biochemical mechanisms of

the S. aureus and modulating its response on the basis of the extent

of the perturbation. In fact, when the model is perturbed with

different amounts of methicillin, its reply is proportional to the

perturbation. The strong correlation between the amount of

methicillin in the cell and the rate of the phenomenon has also

been observed by the very short, or missing, post-antibiotic effects

(PAE) in experimental models of infection [26]. The ‘‘post-

antibiotic effect’’ term refers to the time period after complete

removal of an antibiotic during which there is no growth of the

target organism. This is a feature of most antibiotics agents

influenced by several factors, such as organism type, antibiotic

type, and treatment type. The beta-lactamic class has demon-

strated both in vivo and in vitro a post-antibiotic effect against gram-

positive cocci but not against gram-negative bacilli [26,27] because

of the structural complexity of the cell-wall of negative bacteria

which is opposed to the entry of the methicillin in the cytoplasmic

space. For this reason, the beta-lactamic treatment requires

frequent or continuous dosing.

The computational results demonstrate that the cellular

response depends on the effective amount of methicillin inside

the cell. Therefore, the knowledge of the integrated metabolic

behaviour can be useful to develop new therapeutic approaches to

control the methicillin resistance as well as a useful methodological

tool for deepening the understanding of the mechanism on the

cellular resistance to antibiotics. In fact, the time period between

the end of the path of the PBP inactivation and the activation of

the second path of the PBP2a expression corresponds to a latency

of the peptidoglycan biosynthesis. Visibly this is a period in which

the bacterium might be vulnerable. Moreover, the correlation

between the methicillin amount and the expression rate of some

proteins (see mecR1 in Figure 5) should also support a detailed

study of therapeutic doses.

In conclusion, our results show that the integrated approach of

the systems biology, that we have applied for studying the

Figure 4. Concentration curves of the various species: methicillin (black), peptidoglycan (violet), PBP (red), PBP2a (dark blue),
PBP_inactive (green), mecR1_drug (orange), in different simulations, using different METHICILLIN amounts: A: 3; B: 2.5; C: 2; D: 1,5;
E: 1; F: 0,5; G: 0. The various species are distinguished by colours as indicated in the legend. The substance amount and time are expressed in
number of molecules and seconds, respectively.
doi:10.1371/journal.pone.0006226.g004
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mechanism of the bacterial resistance to methicillin at biochemical

level, can be very useful to a biological modelling of complex

infectious diseases.

Methods

To develop models of integrated biochemical levels, it is

necessary to consider the mechanisms by which biochemical

information transfer occurs. The network of genes, mRNA,

proteins and metabolites was created using CellDesigner version

4.0 (http://celldesigner.org/), a software that enables users to

describe molecular interactions using a well-defined and consistent

graphical notation [28]. The data of molecular interactions are

stored in Systems Biology Markup Language (SBML; http://sbml.

org/) [29]. Since SBML is a standard machine-readable model

representation format, all the information can be used for a range

of computational analysis, including computer simulation [30].

To simulate the dynamic behavior of these biochemical

networks, kinetic equations have to be associated with each

reaction. The software SBMLsqueezer was used to generate

kinetic rate equations for our biochemical network. This approach

facilitates the modeling steps via automated generation of equation

and overcomes the highly error-prone and cumbersome process of

manually assigning kinetic equations. For each reaction the kinetic

equation is derived from the stoichiometry, the participating

species (e.g., proteins, mRNA or generic molecules) as well as the

regulatory relations (activation, inhibition or other modulations) of

the SBGN diagram. The software SBMLsqueezer offers different

types of kinetics (i.e. mass-action, Hill, and several Michaelis-

Menten-based kinetics), each including activation, inhibition and

reversibility or irreversibility for representing gene regulatory,

signal transduction, protein, metabolic, and mixed networks. The

rate laws were generated by considering for each reaction all

participating reactants, products and regulators. In particular, for

gene regulatory networks, i.e., transcriptional and translational

processes, the Hill equation is applied.

After invoking SBMLsqueezer, the kinetic formulas are

generated and assigned to the model, which was then simulated

in CellDesigner ver 4.0. Details on reaction type and differential

equations are reported in Figure 2B, Supplementary Appendix S1,

Table S1 and Table S2 and Supplementary Figure S2. Moreover,

the substance amount and time are expressed in number of

molecules and seconds, respectively (see for details Table 3 in

Hucka et al (2003) [31]).

Supporting Information

Appendix S1 Differential’s equations used in the model.

Found at: doi:10.1371/journal.pone.0006226.s001 (0.18 MB

DOC)

Figure 5. Concentration curves of the various species: methicillin (black), all genes (green), mecR1_protein (blue), mecR1_RNA
(red), in different simulations, using different METHICILLIN amounts: A: 3; B: 2.5; C: 2; D: 1,5; E: 1; F: 0,5; G: 0. The various species are
distinguished by colours as indicated in the legend. The substance amount and time are expressed in number of molecules and seconds, respectively.
doi:10.1371/journal.pone.0006226.g005
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Figure S1 Simulation results with different parameters: a) the

constants are fixed as indicated for the final model, b) all the

constants are set equal to 1, c) all the dissociation constants are set

equal to 4, being higher than the association constant, d) all the

catalytic constants are set equal to 0.1, being lower than the

association constant, e) all the association constants are set equal to

0.1, being lower than the dissociation constant, f) one of the

association constants is set equal to 4, being out from the

established range. The substance amount and time are expressed

in number of molecules and seconds, respectively.

Found at: doi:10.1371/journal.pone.0006226.s002 (0.43 MB

DOC)

Figure S2 Graphical notations and colors used to represent the

network (CellDesigner ver4.0).

Found at: doi:10.1371/journal.pone.0006226.s003 (0.04 MB

DOC)

Table S1 Details regarding the reactions type and the names

used to indicate both reactants and products and the parameters

values.

Found at: doi:10.1371/journal.pone.0006226.s004 (0.04 MB

DOC)

Table S2 Details on initial quantities of all species used during

the simulation.

Found at: doi:10.1371/journal.pone.0006226.s005 (0.05 MB

DOC)
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