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Abstract Class II human leukocyte antigens (HLA II) are
proteins involved in the human immunological adaptive
response by binding and exposing some pre-processed,
non-self peptides in the extracellular domain in order to
make them recognizable by the CD4+ T lymphocytes.
However, the understanding of HLA—peptide binding inter-
action is a crucial step for designing a peptide-based vaccine
because the high rate of polymorphisms in HLA class II
molecules creates a big challenge, even though the HLA II
proteins can be grouped into supertypes, where members of
different class bind a similar pool of peptides. Hence, first
we performed the supertype classification of 27 HLA 11
proteins using their binding affinities and structural-based
linear motifs to create a stable group of supertypes. For this
purpose, a well-known clustering method was used, and
then, a consensus was built to find the stable groups and
to show the functional and structural correlation of HLA II
proteins. Thus, the overlap of the binding events was mea-
sured, confirming a large promiscuity within the HLA 11—
peptide interactions. Moreover, a very low rate of locus-
specific binding events was observed for the HLA-DP ge-
netic locus, suggesting a different binding selectivity of
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these proteins with respect to HLA-DR and HLA-DQ pro-
teins. Secondly, a predictor based on a support vector ma-
chine (SVM) classifier was designed to recognize HLA II-
binding peptides. The efficiency of prediction was estimated
using precision, recall (sensitivity), specificity, accuracy, F-
measure, and area under the ROC curve values of random
subsampled dataset in comparison with other supervised
classifiers. Also the leave-one-out cross-validation was
performed to establish the efficiency of the predictor. The
availability of HLA II-peptide interaction dataset, HLA II-
binding motifs, high-quality amino acid indices, peptide
dataset for SVM training, and MATLAB code of the pre-
dictor is available at http://sysbio.icm.edu.pl/HLA.

Keywords MHC - HLA class II - Peptide binding - T cell
epitopes - Clustering - Machine learning

Introduction

Antigen presentation is the crucial process for eliciting an
efficient immune response since T cells fail to recognize
non-self antigens in the absence of the human leukocyte
antigen (HLA)—peptide complex (Vivona et al. 2008). The
T cell receptor is restricted to identifying antigenic peptides
only when bound to find suitable HLA molecules. HLA
binding antigens can be generated by the exogenous patho-
gen pathway, which is operated by specialized antigen-
presenting cells (APC) to initiate and promote the develop-
ment of lymphocyte activation. Exogenous antigens must be
internalized by the APC, digested into small peptides, and
bound to the peptide-binding groove of the HLA II mole-
cules, in order to be recognized by antigen-specific CD4+ T
cells (Vivona et al. 2008).

The HLA system is characterized by an extremely high
level of polymorphism resulting in highly comprehensive
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antigen presentation. This is more relevant in the HLA class
I, where different gene loci are coded in & (DRA, DQA,
and DPA) and 3 (DRB, DQB, and DPB) chains. There is a
fundamental difference in structural composition between
HLA class I and HLA class II proteins, resulting in very
different binding characteristics (Vivona et al. 2008). In the
HLA class I, the binding groove is closed at both ends,
allowing the binding of only nine amino acid long peptides
using a unique binding frame (Vivona et al. 2008). The peptide-
binding core of HLA class II molecules is open at both ends.
Therefore, the size of peptides that can bind the groove typi-
cally ranges from 12 to 24 amino acid residues. Moreover, each
peptide can bind different open binding grooves by using
different binding registers. This wide variability largely com-
plicates the binding predictions (Gowthaman and Agrewala
2008). Both chains of the HLA II molecule interact with the
side chains of the peptide and determine binding affinity, but
the majority of the polymorphic residues are located within the
[ chain. Moreover, each class II allele has different side chain
contacts, which allow only peptides with certain amino acids to
bind into particular key positions, called anchor positions. The
peptide anchor position closest to the N-terminal accepts hy-
drophobic residues by including large aromatic amino acids
that are essential for binding peptides with high affinity (Dai et
al. 2010). These anchors are the amino acids mostly found in
peptide positions 4, 6, and 9. Each of these anchor residues
within the peptide interacts with a combination of amino acids
present in the HLA II-binding groove (Dai et al. 2010). These
polymorphic HLA amino acids, able to coordinate the peptide
anchor residues, can be grouped into several binding pockets
(Sturniolo et al. 1999). Different HLA binding grooves are
formed by a linear combination of binding pocket variants.
Understanding the relations between different HLA II proteins
in terms of their binding affinities still presents a considerable
challenge, since the high level of polymorphism of HLA II
molecules makes the problem difficult to solve.

However, few attempts were made for HLA supertype
classification (Sette and Sidney 1999; Castelli et al. 2002;
Greenbaum et al. 2011) and HLA class II prediction
(Karpenko et al. 2005; Doytchinova and Flower 2003). In
most cases, the methods were trained and evaluated on very
limited datasets, including only a single or a few different
HLA class II alleles, and used either binding assay data (Sette
and Sidney 1999; Castelli et al. 2002; Greenbaum et al. 2011),
or the sequence or structure similarity of HLAs proteins (Lund
et al. 2004; Doytchinova and Flower 2005). This motivated us
to make a contribution to the problem by providing a stable
group of supertypes and a predictor for HLA II-binding pep-
tides, after the analysis of 27 HLA 1II proteins. Therefore, in
this paper, the supertype classification was performed on the
binding and motif-related information datasets of 27 HLA 1II
proteins in order to find the results of consensus classification
between them. This was done using p values based on
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multiscale bootstrap resampling hierarchical clustering
(Shimodaira 2002, 2005). To confirm the biological relevance
of earlier clustering results, the phylogenetic tree was com-
puted. The overlap of the binding events was found to show
large promiscuity in the HLA II-peptide interactions.
Moreover, a very low rate of locus-specific binding events
was observed for the HLA-DP locus. Finally, a well-known
supervised classifier, namely a support vector machine (SVM)
(Vapnik 1995), was trained to design the predictor for recog-
nizing HLA II-binding peptides using only their sequence
composition. The performance of the predictor was demon-
strated by comparison with random forest (Breiman 2001),
naive Bayes (George and Langley 1995), artificial neural
network (MacKay 1992; Bishop 1996), and K-nearest neigh-
bor (Cover and Hart 1967) classifiers in terms of average
precision, recall, specificity, accuracy, F-measure, and area
under the ROC curve (AUC) values of random subsampled
dataset. In addition, superiority of the predictor was also
validated by leave-one-out cross-validation (LOOCYV).

Materials and methods

The HLA supertype classification groups different HLA pro-
teins into distinct classes on the basis of the given similarity
parameters. The classification was performed considering
both functional binding and structure-related information.
The consensus between those two different approaches was
proposed in order to identify some smaller groups of proteins
that were correlated both functionally and structurally. Our
workflow is presented on Fig. 1.

Experimental binding affinities

Two different HLA binding datasets were used:

1. Greenbaum dataset consisting of 27 HLA II proteins
binding 425 peptides obtained from Phleumpratense
(Greenbaum et al. 2011)

2. An enhanced dataset containing the previously known
protein—peptide pairs with additional binding data of
211 peptides for the same HLA repertoire (Immune
Epitope Database").

Both datasets contained the IC50 binding values of the
binding affinity between HLAs and peptides. The raw datasets
were transformed into binary binding matrices containing the
value / for binding events and 0 for non-binding events. For
the original Greenbaum dataset, the Greenbaum’s threshold
criteria were maintained by considering the smallest 20 % of
IC50 binding values as binding events for each HLA II. In this
case, we could see that the maximum IC50 values were

! www.immuneepitope.org/
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Fig. 1 A block diagram of the workflow

around 500 nM for considering a peptide as a binder to the
HLA II protein. Hence, for the enhanced dataset, a compatible
criterion was adopted by setting the threshold value at
500 nM. However, the usual IC50 binding threshold values
for HLA I proteins were measured around 500 nM
(Greenbaum et al. 2011) and the binding threshold for HLA
IT was generally 1,000 nM. These stringent IC50 threshold
values were adopted in order to decrease the background noise
of the data.

Design of binding site composition

In this paper, inedited, simple, reliable, and informative
structure-based linear motifs of the HLA II-binding sites are
proposed. The aim was to obtain motif-based clusters to be
compared with the clusters coming from the measured binding
affinity data. Seven different HLA class II PDB structures in
complex with peptides (1BX2, 1D5M, 1D5X, 1D6E, 3LQZ,
1UVQ, and 1JK8) were analyzed to investigate which amino
acids within a protein sequence were responsible for binding.
The HLA 1I residues were considered to interact with the
peptides when the distance between any atom in the peptide
residue and any atom in the HLA residue is less than or equal
to a cutoff distance of 4 A according to Mohanapriya et al.
(2009). Fifteen different conserved residue positions, distrib-
uted over four different binding pockets of the HLA {3-chains,
were found to play a major role in the HLA II-peptide

SUPERVISED OUTPUT OF THE
CLASSIFIER: SVM PREDICTIONS

UNKNOWN
PEPTIDES
7

interaction in accordance with earlier literature (Doytchinova
and Flower 2005; Patronov et al. 2011). The amino acids
identified as principal “binding actors” were merged into
linear binding motifs of 15 amino acid (AAs) long motifs
containing all the amino acids essential for the binding. This
is the simplest way to encode a complex physicochemical
pattern of the active site into the usable linear motifs. Since
the majority of the polymorphisms are located in the HLA (3-
chain, only the key positions within HLA II (3-chains were
considered. The following positions were used to generate
binding motifs: 39, 311, p13, 328, 330, 337, P47, 57,
360, 61, 367, 370, 371, 374, and 378.

The binding motifs were then converted into numerical
descriptors by representing the physicochemical features of
each amino acid. For this purpose, we used the recently
proposed set of 24 high-quality amino acid indices (HQI24)
(Saha et al. 2011; Plewczynski et al. 2012). These numerical
vectors were then used in the clustering analysis.

Phase 1: clustering of functional and motif data

The p value-based multiscale bootstrap resampling hierar-
chical clustering reveals the presence of three major clusters
corresponding to the three HLA loci (DR, DQ, and DP) for
both functional and motif datasets. Figure 2 shows that by
the true cluster plot. The clusters show the expected difference
between HLAs belonging to different loci in terms of peptide-
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Fig. 2 The true cluster plot of 27 HLA II proteins after performing p
value-based multiscale bootstrap resampling hierarchical clustering.
Three different clusters are clearly visible, corresponding to the three
different loci DQ, DR, and DP

binding affinity, but they do not give any information about
possible clusters present within the same genetic locus. In
order to investigate a possible functional intra-locus cluster-
ing, p value-based multiscale bootstrap resampling hierarchi-
cal clustering was performed with the above configuration. As
shown in Fig. 3, almost all clusters have standard errors
smaller than 0.015, assuring the high confidence level
(99.985 %) of the approximately unbiased (AU) p values.

In p value-based multiscale bootstrap resampling hierarchi-
cal clustering, the pvclust function (Suzuki and Shimodaira
2006) was applied using R package’. Different clusters were
generated by the pvrec function, which is marked by the red
box in Fig. 4, with a gradual decrease of the AU-related cutoff
value. With the use of these clustering functions, the functional
binding and motif datasets of 27 HLA 1II proteins were clus-
tered. For functional binding data, the Jaccard (1901) binary
distance function was used, whereas the Euclidean distance was
used for motif dataset. Moreover, p value-based multiscale
bootstrap resampling hierarchical clustering uses the multi-
level bootstrap analysis with a confidence value « iteratively
lowered by a factor of 0.1 for each iteration. The goal of this
action was to operate the clustering starting from highly reliable
clusters with a gradual reduction of the similarity restrains
between HLAs. The selection of the distance function was made
based on the nature of the datasets. Figure 1 provides the block
diagram of the resulting clustering procedure in phase 1.

Phase 2: prediction of HLA II-binding peptides

A support vector machine (Vapnik 1995) classifier was used
to predict whether or not a peptide binds to an HLA type II
protein. The entire pool of 636 peptides was initially trans-
formed into the numerical domain using the HQI24

2 http://www.r-project.org
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Fig. 3 The plot of p values versus standard error for the binding data
(636p) with the threshold IC50<500 nM. The standard error of the
multi-bootstrap AC value is lower than 0.015 for the large majority of
the cases, assuring a good cluster reliability. Similar results were found
in the other datasets

representation of residues, i.e., 24 high-quality amino acid
indices (Saha et al. 2011; Plewczynski et al. 2012). The
length of all the peptides was homogenized to 15 AA,
cutting the less relevant bordering amino acids of a few
l6mer and 17mer peptides present in the dataset. The dis-
section was selected after an accurate comparative analysis
of the less conserved residues within longer peptides. A
multiple sequence alignment was performed among proteins
containing the peptides to be homogenized in length. The
amino acids present in the positions less conserved within
these alignments were removed. The homogenization of the
peptides length was a mandatory step for SVM.

The binary binding affinity matrix was used to define the
total number of binding events for each given peptide. The
percentage of positive activity (PPA) was defined for this
purpose. The highest number of positive activity was com-
puted and considered as a reference value of 100 %. The rest
of the peptides’ PPA were then computed with respect to the
highest PPA. A threshold was defined a priori. If the PPA is
greater than the pre-defined threshold, then the activity for
that peptide is equal to 1, otherwise it is equal to 0. Each
activity value indicates whether or not the peptide is an
“HLA binder.” Since the activity value of a peptide is
defined with respect to the threshold value, hence a lower
threshold gives a higher number of binding peptides.
Different threshold values were applied and the statistics is
given in Table 1. Moreover, it was observed that the number
of positive and negative binders plays a crucial role for
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Fig. 4 A dendrogram of 27 HLA II proteins for a 636 peptide binding data of threshold<500 nM and b structure-based binding motifs, after
performing p value-based multiscale bootstrap resampling hierarchical clustering

supervised classifiers. Hence, the threshold level at 30 %
was considered for balanced number of binders.

In this paper, we implemented random subsampling valida-
tion, to estimate the unbiased error rate of the designed tech-
nique. This method randomly splits the dataset into training and
test (validation) data. For each of such split, the classifier
learned the training data, and predictive accuracy was assessed
using the test data. The results were then averaged over multiple
such splits. For the 30 % threshold level, the training and test
samples for positive instances were populated in the ratio of 4:1
from all available positive samples. The number of negative
samples for each type was similarly chosen. Hence, two thirds
of the dataset was used for training and one third for testing.
Random subsampling produces better error estimates than a
single train-and-test split. The advantage of this method over 4-
fold cross-validation is that the proportion of the training/vali-
dation split is not dependent on the number of iterations or
folds. In this work, we performed three random splits in the
positive/negative datasets for 30 % threshold level. This was
done to eliminate the possible bias during the training proce-
dure in any given train/test dataset combination. Using a sup-
port vector machine classifier, this threshold was trained
separately on the three randomly chosen independent test data-
sets and was then tested to compute precision, recall,

Table 1 Statistics of the dataset used for different classifiers is marked
in bold

Threshold Number of Number of Percentage
levels (%) positives negatives of positives
10 535 101 84
15 459 177 72
20 415 221 65
30 310 326 49
40 244 392 38
50 156 480 25

specificity, accuracy, F-measure, and AUC values. The phase
2 classification task is illustrated in Fig. 1.

Results and discussion

Different methods and datasets show comparable results
with some expected differences (Greenbaum et al. 2011).
The variability of the clusters seems to be more influenced
by the dataset rather than by the methods or the threshold
values used. The final functional data classification was
chosen considering the clustering results and analyzing the
consensus between them, by visual inspection.

Functional supertype classification

Figure 4a shows eight different functional supertypes that
were identified. For the HLA-DP proteins, a single functional
supertype containing five strongly correlated HLA proteins
(DPB1*0101, DPB1*0201, DPB1*0402, and DPB1*0501)
was described in all the cases. The DPB1*1401 is the only
protein to be clustered in a supertype belonging to another
genetic locus (HLA-DR), in accordance with Greenbaum et
al. We observed a single supertype for HLA-DP proteins. The
lack of any refined cluster structure within the HLA-DP locus
is in opposition to Greenbaum’s functional classification of
the HLA-DP proteins (Greenbaum et al. 2011), where two
different supertypes were proposed.

For the HLA proteins, belonging to the DQ locus, three
major supertypes were found, each containing two proteins:
(DQB1*0302, DQB1*0401), (DQB1*0201, DQB1*0501),
and (DQB1*0301, DQB1*0602). Different possible classifi-
cations can be made for the DR locus, according to the variety
of AU values of the dendrograms. In this case, three constant
clusters were recognized (DRB1*0401, DRB1*0405,
DRB1*0802), (DRB1*1302, DRB3*0101, DRB3*0202),
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and (DRB1*0101, DRB1*0901). The other proteins are not
stable within the same clusters under different conditions.

Motif-based supertype classification

A detailed analysis of the clustering results leads us to the
identification of the seven different motif-based supertypes
as shown in Fig. 4b. All the proteins belonging to the DP
genetic locus (DPB1*¥0101, DPB1*0201, DPB1*0401,
DPB1*0402, DPB1*0501, and DPB1*1401) were grouped
into a single supertype, similarly to the functional case,
examined in the previous section. DQ proteins were
grouped into two different supertypes, each containing three
HLAs: (DQB1*0301, DQB1*0302, DQB1*0401) and
(DQB1*0201, DQB1*0501, DQB1*0602). As in the func-
tional case, the motif-based classification of the DR proteins
is less defined with respect to the other loci. The HLA-DR
can be grouped into four supertypes: (DRB1*0401,
DRB1*0405, DRB1*0802, DRB1*1101), (DRB3*0101,
DRB3*0202), (DRB1*0301, DRB1*1302), and the fourth
containing the remaining proteins. Visualization of clusters
is shown in Fig. 5a. In both functional and motif-based
clustering, multiple calculation methods were applied.
Partially overlapping results are shown in Fig. 5a. The
clustering overlaps found between these two datasets are
defined as stable clusters. Thereafter, only these stable clus-
ters were used in the final consensus between the functional
and motif-based supertype classifications.

STABLE FUNCTIONAL CLUSTERS:
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e hio_D@Bt:0401/ | T
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« h12_DQB1:06702
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e h12_DQB1:06*02
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. 5_| :13*
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* h8_DQB1:03"01

« h18_DRB1:08"02

e h15_DRB1:04*01

¢ h16_DRB1:04*05,

Consensus between supertype classifications

In both clusterings, all the HLAs were classified within the
same loci with the exception of the DPB1*1401 HLA-DP
protein which belong to the DR type just for the functional
classification. A more relevant partial overlapping of the
stable intra-locus clusters was found via consensus selection
between common binding and motif-based clusters. For HLA-
DP proteins, five (of six) were found to maintain a very strong
correlation in both cases by belonging to the same cluster in
opposition to the Greenbaum observation. These proteins are:
DPB1*0101, DPB1*0201, DPB1*0401, DPB1*0402, and
DPB1*0501. The consensus between proteins of the DQ
locus reveals two common groups, one of them containing
DQB1*0302 and DQB1*0401 and the other containing two
HLAs, DQB1*0201 and DQB1*0501. Figure 5b shows the
details of the consensus results.

Results of phylogenetic tree analysis

Phylogenetic multi-alignment-based trees were created for
both binding motifs and HLAs multi-fasta files. The
Clustalw 2.1 (Larkin et al. 2007) software was used for this
purpose and the unweighted pair group method with arith-
metic mean clustering algorithm was chosen to build the
phylogenetic trees. Both phylogenetic trees divide the HLAs
into three different loci: DR, DQ, and DP. Moreover, the
proteins grouped via functional/motifs consensus were also

GLOBAL CLUSTER CONSENSUS:
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e h7_DQB1:02*01
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¢ h22_DRB1:13*01 h25_DRB3:13*02

Fig. 5 a Stable clusters found by p value-based multiscale bootstrap resampling hierarchical clustering from binding affinity and motif datasets. b

Consensus results of those clusters
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Fig. 6 Phylogenetic trees generated from the multi-alignment of a entire HLA sequences and b structure-based binding motifs

similarly correlated in the phylogenetic trees. The tree gener-
ated from the binding motifs data shows a better correlation
with the HLA—peptide binding data classification and the
motifs/binding consensus groups collected. This suggests that
the motif description used here is able to collect good struc-
tural/sequence information in the vicinity of the binding site,
thus lowering the background noise present in the global HLA
protein sequences. Phylogenetic trees are shown in Fig. 6.

Peptide-binding specificity

A binary heat map was drawn to visualize the peptide
preferential specificity to the different HLAs Fig. 7a. It shows
a general high peptide overlapping, suggesting high flexibility

a

h1_DPB1.0101

na_opet.ozo1 | il | |

n3_oearodor (I 11l | |
[ |

hé_DPB1 0402 |

T

Ul | |
ns_opa1osor [l | | L ] | |
hé_DPB1.1401 | ! l]l | |I

h7_DOB1.0201

e LA I‘IIIIIM ll*!] Wlllll[l IIIIIIJI |I|I ’I[ 'Ilrl “ il |I|INI||I|I
r"'.mm'.'a.u..m iy 'W( o ”\\Mr"l'

n1a_|)091mm
h11_DQB1.0501
mz_ona\.om
h13_DRB1.0101
h14_DRE1.0301

o/

i ’II 'H'.'H |‘” \n \|n ‘ w Iu | |||||| 1

oo ! h il |:Ju1\|"|ﬂ' 'MM (LN " 4 /|

h21_DREA.1201 ‘ ‘ll

h24_DRE3.0101 ||||||| | | ‘ | |‘ |

| |I I L

h27_DRBES0101 |

Fig. 7 The heat map of the HLA—peptide binding event where each

h15_DRB1.0401
h18_DRB1.0901 (i1 [ﬁ| I [ I
{ll\l ( ] 1l I‘ ‘ | LI |
h22_DRB1.1302 ||| [l " || ‘ Ill l| | \ | “ | L ‘ | ‘ ‘
h25_DRB3.0202 | [
yellow line represents a binding event. While in a all the peptides were

h16_DRBA.O40S
h20_DRB1.1101
h23_DRE1.1501 111 ‘|
||| | |
h26_DRB4.0101 . | || |[ |
considered for binding, in b, only 1 of the 149 peptides, binding HLAs

in the HLA II peptide-binding events as described in literature
(Yaneva et al. 2009). The number of peptides that binds HLAs
and belongs to more than one locus was calculated. The
percentage of those peptides for the 636 pep Boolean table
with an IC50 cutoff value of 500 nM is equal to 76.58 %. Only
a small part of the peptides (23.42 %) bind exclusively HLAs
within the same locus. The binding data concerning these
“locus-specific” peptides were plotted into a second binary
heat map shown in Fig. 7b, which shows only the binding
events occurring within the same loci. Interestingly,
locus-specific binding events concerning the HLA-DP
are almost lacking. This observation is statistically relevant
since the main percentage of binding events, with respect to
the maximum theoretical binding are, respectively, 3.8 % for
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Table 2 Performance comparison of SVM-based HLA II-peptide predictor with other supervised classifiers at 30 % threshold level in terms of

average precision, recall, specificity, accuracy, F-measure, and AUC

Algorithms Precision (P) Recall (R) Specificity (SP) Accuracy (4) F-measure (F) AUC
SVM 60.07 88.33 87.62 76.26 71.48 0.75
RF 58.63 85.02 84.32 74.14 69.22 0.74
NB 57.04 83.85 83.87 73.64 67.85 0.73
ANN 55.32 82.07 81.74 71.73 65.32 0.71
K-NN 51.86 80.72 79.98 69.85 63.04 0.68

RF random forest, NB Naive Bayes, ANN artificial neural network, K-NN K-nearest neighbor

DR, 2.17 % for DQ, and merely 0.05 % for DP. This lack of
HLA-DP-specific binding events, together with the wide
functional/motif consensus found among the HLA-DP pro-
teins, conveys the possible presence of one (or more) highly
conserved binding groove with low peptide specificity in the
DP protein family. Further docking analyses are required to
test this hypothesis. The HLA—peptide binding frequencies
(see Fig. 7) show the number of binding events collected by
each peptide for different HLA loci (DR, DQ, and DP).

Performance of SVM-based HLA II-binding peptide
predictor

The performance of a SVM classifier based predictor is
described here using precision (P), recall (R), specificity
(SP), accuracy (A4), F-measure (F1), and AUC values.
Please note that the computational procedure of these met-
rics is mentioned in the Electronic supplementary material.
In this predictor, the radial basis function kernel is used for
SVM. Here, the parameters of the kernel function, +, and the
trade-off between the training error and the margin C, are set
to be 0.5 and 2.0, respectively.

The problem of overfitting is addressed by training SVM
on independent test datasets. Three random runs of the train-
ing and test sample sets were considered to generate precision,
recall, specificity, accuracy, and F-measure values for design-
ing the software tool. Average test set accuracies are reported
in Table 2. The LOOCYV often works well to estimate the
generalization error for continuous error functions such as the
mean squared error, but it is usually very expensive from the
computational point of view because the training process must
be repeated many times. However, here size of the training
datasets suits LOOCV methodology. Hence, LOOCV has
performed to establish the superiority of the SVM predictor.

The performance analysis shows that SVM results in terms
of precision, recall, specificity, and accuracy and F-measure
values are significantly better in percentage of finding true
positive and true negative at 30 % threshold level. Moreover,
the results of other classifiers are low in comparison with
SVM, as reported in Table 1. Here, it was observed that lower
thresholds create the overfitting problem by producing similar

@ Springer

precision and recall values. Therefore, at 30 % threshold level,
the SVM-based predictor predicting a peptide as a binder,
while requiring a smaller number of binding events, results
in a better HLA binding classification. The results in Table 1
show a good prevision capability of the predictor, suggesting
that its optimization could provide a potentially valuable
instrument for discovering HLA class II binding epitopes,
the issue that is of great importance in vaccinology.
Optimization strategies planned for this method include the
consensus of multiple SVMs each trained both on the general
locus type and on the functional/motif consensus groups, via
the clustering analysis as described above.

Conclusions

Functional and motif-based clustering of 27 defined HLA
class II complexes were performed by revealing the pres-
ence of proteins sharing both functional and structural prop-
erties, supporting the concept of supertype. New binding
motifs based on structural information were proposed for
this purpose. We address it as a potentially good instrument
for the description of interactions in a typical bioinformat-
ical analysis. During the clustering analysis, a large overlap
of HLA-specific binding events was found which confirms
the high binding promiscuity present in the HLA class II
proteins. Surprisingly, a general lack of locus-specific bind-
ing events was observed in the HLA-DP proteins. A high
motif-based/functional correlation between these proteins
was found as well, suggesting the possible presence of
common and low specific binding patterns between them.
Preliminary docking studies confirmed this theory, which to
the best of our knowledge had not been reported before.
Finally, an SVM-based HLA Il-peptide binding predictor
was developed. The results show that this predictor is a
potentially good candidate for vaccinology studies.
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