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Alzheimer’sDisease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associatedwith aberrant
processing of the amyloid precursor protein, which leads to the deposition of amyloid-𝛽 plaques within the brain. Together with
plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal
neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular
compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD,
as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium
homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been
considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and
nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with
main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level.

1. Introduction

Alzheimer’s Disease (AD) is the most common type
of dementia affecting millions of people. According to
Alzheimer’s Disease International (ADI), as of 2015 peo-
ple suffering from dementia worldwide accounted for esti-
mated 46.8 million. Approximately 70% of these cases were
attributed to AD. This amount will increase to an estimated
74.7 million in 2030 and 131.5 million in 2050, with a parallel
rise of healthcare costs. As a matter of fact, global costs of
dementia have increased fromUS$ 604 billion in 2010 to US$
818 billion in 2015, for a 35.4% increase.The incidence rate for
AD grows exponentially with age, with the main onset time
observed in people aged over 60, in particular between the
age of 70 and 80 [1, 2]. AD has also a sex-related incidence,
making women 1.5–3 times more vulnerable than men [3].
It has been widely assumed that the higher risk observed
in females is related to the loss of the neuroprotective effect

of sex steroid hormones during menopause, resulting in
estrogen deficiency in the brain [4–6].

AD is a progressive neurodegenerative disorder leading
to severe cognitive, memory, and behavioral impairment
[7]. The majority of cases is idiopathic; however a rare
variant of AD, known as Familial Alzheimer’s Disease (FAD),
accounts for a small percentage (1–5%) [2, 8] of all cases.
FAD features an autosomal dominant heritability and an
early disease onset (<65 years old) [7, 9]. Three genetic
mutations have been identified as being responsible for FAD.
They involve genes for amyloid precursor protein (APP) on
chromosome 21 [10], presenilin 1 (PS1) on chromosome 14
[11], and presenilin 2 (PS2) on chromosome 1 [12]. Both
forms of AD share two main pathological hallmarks: the
abnormal extracellular accrual and deposition of amyloid-
𝛽 (A𝛽) peptides and the intracellular accumulation of neu-
rofibrillary tangles (NFTs). A𝛽 peptides are cleaved prod-
ucts of APP obtained via sequential proteolysis by two
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membrane-bound endoproteases, aspartyl 𝛽-secretase and
presenilin-dependent secretase (𝛾-secretase) [13, 14]. APP
can also be cleaved by 𝛼-secretase to produce nontoxic frag-
ments, which are thought to antagonize A𝛽 peptides genera-
tion [15]. A𝛽 is a protein consisting of 39–43 amino acids, and
it mainly exists in two isoforms: soluble A𝛽

1–40 (∼80–90%)
and insoluble A𝛽

1–42 (∼5–10%) [15, 16]. In particular, due to
a greater tendency to aggregate than A𝛽

1–40, A𝛽1–42 seems
to be the main pathological isoform [17]. Interestingly, it has
been described that soluble A𝛽 globular oligomers can form
along a new aggregation pathway independent of A𝛽 fibril
formation. These globular A𝛽 oligomers have been found
in the brain of patients affected by AD and APP transgenic
mice, and they bind specifically to neurons and affect synaptic
plasticity, as demonstrated by Barghorn and coworkers [18].
The disturbance afforded by soluble A𝛽 oligomers has also
been supported by evidence showing that they can bind
to glutamate receptors (both ionotropic and metabotropic),
thereby impairing glutamatergic neurotransmission [19, 20].
It is interesting to underline, however, that APP products and
very low concentrations of soluble A𝛽 can be involved in
important physiological processes, such as synapse activity
and behavior [21, 22].

As for NFTs, it has been found that their major consti-
tuent is the protein tau. Tau is the predominant microtubule-
associated protein found in mammalian brain [28]. During
early stages of development tau is highly phosphorylated;
however phosphorylation decreases with brain aging [29,
30], leading to an unphosphorylated form that binds to
microtubules, therebymaking themmore stable. InAD, tau is
aberrantly misfolded and abnormally hyperphosphorylated
[7, 13]. Several factors might be involved in tau hyper-
phosphorylation, including A𝛽-mediated caspases activa-
tion, A𝛽-mediated oxidative stress, chronic oxidative stress,
and reduced insulin-like growth factor 1-mediated oxidative
stress [31]. Over the course of AD, hyperphosphorylation
contributes to the loss of tau physiological functions and it
prepares this protein to form neurotoxic aggregates. It has
been shown that, in this pathological form, tau can also
ectopically enter the somatodendritic compartment where,
in conjunction with A𝛽 oligomers, it promotes excitotoxi-
city. Additionally, tau phosphorylation can modulate DNA
integrity and global changes in transcriptional events [32].

A𝛽 plaques and NFTs, often referred to as “positive
features” [13], occur in specific regions rather than diffusely
throughout the brain: in particular hippocampus and cortex
are mainly affected [8, 13]. In addition, negative features of
AD have also been described, including typical losses of
neurons, neuropil, and synaptic elements, thatmostly parallel
NFTs formation. However, a causative relationship between
NFTs and neuronal loss still remains to be clarified [33–
40]. Growing evidence supports the involvement of neuroin-
flammation in AD [41], focusing on its critical role within
brain regions where A𝛽 plaques are mainly distributed. A𝛽-
deposition renders cells more likely to develop inflamma-
tory responses that involve the production of neuronal and
glial cytokines belonging to the Tumor Necrosis Factor-𝛼
(TNF-𝛼) superfamily [42]. Interestingly, it has been shown
that neutralization of the Tumor Necrosis Factor Related

Apoptosis Inducing Ligand (TRAIL) protects human neu-
rons from A𝛽-induced toxicity [43]. In this context, in
vitro experiments conducted using the differentiated human
neuroblastoma cell line SH-SY5Y demonstrated that the
nonsteroidal anti-inflammatory derivative CHF5074 abro-
gates neurotoxic effects of both A𝛽

25–35 and TRAIL [44],
suggesting a potential role of this drug as neuroprotective
agent.

AD patients show symptoms that can be divided into two
main categories: cognitive and psychiatric. Cognitive symp-
toms include loss of long term memory, aphasia, apraxia,
and agnosia, while psychiatric symptoms include person-
ality changes, depression, and hallucinations (Alzheimer’s
Foundation of America, Last Update: January 29, 2016; [8]).
AD is a complex multifactorial disorder, neuronal death is
a subtle phenomenon, and it is difficult to identify a single
cause. The idea that energy/mitochondrial dysfunction and
oxidative stress may have a central role in the pathogenesis
of AD is widely supported by literature [45–49]. Research
on the pathogenesis of AD has recently stressed the role
of mitochondria, based on the finding that mutation in
APP and tau may directly affect mitochondrial function and
dynamics [8], and now it is accepted that the impairment of
mitochondrial functionmay affect other crucial cell signaling
pathways, as in calcium signaling. A central role for calcium
dysregulation in the pathogenesis of AD has been extensively
suggested [7, 50]. This review attempts to clarify connections
betweenmitochondrial pathways impairment and the patho-
genesis of AD, drawing attention to the calcium homeostasis
deregulation as a potential consequence of mitochondrial
function disturbance and to the proteins mainly involved in
this process, such as the sodium-calcium exchanger (NCX).

2. Calcium and AD

Calcium can be considered a ubiquitous intracellularmessen-
ger within cells acting as a regulator in multiple physiological
functions. As a divalent cation, calcium can bind to several
proteins, receptors, and ion channels. All of these properties
are of great importance within neurons, where continu-
ous firing of action potentials leads to calcium cycling,
and it implies an influx through the calcium channels at
the plasma membrane level, intracellular buffering, and an
efflux through the calcium plasma membrane transporters.
This cycling involves several subcellular compartments and
proteins. In particular, two organelles play a major role in
calcium buffering, namely, endoplasmic reticulum (ER) and
mitochondria, whereas ATPase calcium pump and NCX are
the two main systems involved in calcium efflux through the
plasma membrane (Figure 1). Perturbation in such delicate
balance may have deleterious consequences for cells and in
particular for neurons, leading to necrosis and/or apoptosis
and subsequently to stroke and neurodegeneration.

2.1. Intracellular Calcium Homeostasis. There is a large body
of evidence documenting a connection between calcium
homeostasis disruption and the development of neurodegen-
erative diseases such as Alzheimer’s [50]. The involvement
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Figure 1: Intracellular calciumhomeostasis. Intracellular calcium levels are tightly regulatedwithin a narrowphysiological range [23]. Cellular
calcium influx through the plasma membrane is largely mediated by receptor-operated calcium channels (ROCC), voltage-operated calcium
channels (VOCC), store-operated calcium channels (SOCC) and, under exceptional circumstances, the sodium/calcium exchanger (NCX).
Under physiological conditions, NCX is mainly involved in calcium efflux; however it can also reverse its mode of operation (reverse mode
exchange) thereby contributing to calcium influx, especially during strong depolarization and in the presence of high intracellular sodium
concentrations [24]. Calcium may also be released into the cytoplasm from the endoplasmic reticulum, through inositol-1,4,5-trisphosphate
(IP3R) and ryanodine receptors (RYR). Different systems operate within the cell to counterbalance the cytosolic calcium increase. Specifically,
the plasma membrane calcium pump (PMCA), NCX, and sarcoendoplasmic reticulum calcium ATPase (SERCA) participate in restoring
physiological calcium levels. The excess of intracellular calcium can also be taken up by mitochondria through the mitochondrial calcium
uniporter (MCU). Calcium can be released back into the cytosol through the activity of mitochondrial NCX (mNCX), which can also reverse
its mode of operation allowing the access of calcium ions into the mitochondrial matrix. Recently, the mitochondrial hydrogen/calcium
exchanger (mHCX) has been proposed to be an electrogenic 1 : 1 mitochondrial calcium/hydrogen antiporter that drives the uptake of calcium
intomitochondria at nanomolar cytosolic calcium concentrations [25]. PTP, permeability transition pore; MMCA,mitochondrial membrane
Ca2+ATPase.

of calcium in the pathogenesis of AD has been suggested
long time ago by Khachaturian [51], and since then many
efforts have been made to clarify this hypothesis [7, 52–
56]. Despite the significant progresses made in explaining
this theory, several aspects are to be defined. For instance,
growing in vitro evidence suggests that neuroprotection could
be mediated by the restoration of calcium homeostasis.
Different calcium channel blockers have been reported to
be effective in preventing long- and short-term memory
impairment induced by A𝛽

25–35 (the shortest A𝛽 fragment
processed in vivo by brain proteases, retaining the toxicity

of the full-length peptide [57]) and in decreasing A𝛽 pro-
duction, inflammation, and oxidative stress. For example,
Rani et al. described the effect of a calcium channel blocker
clinically used in angina, in a mouse model of dementia.
Interestingly, Morris water maze test, plus maze test and
different biochemical analysis, demonstrated the restoration
of normal learning and memory functions. Moreover, SCR-
1693 (a nonselective calcium channel blocker) has been
described to attenuate A𝛽

25–35-induced death in SH-SY5Y
cells and to regulate A𝛽-induced signal cascade in neurons
[58–60]. However, the use of calcium channel blockers to
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mitigate AD outcomes is still much debated. For example,
at least three clinical studies emphasized that elderly people,
taking calcium channel blockers as antihypertensive drugs,
were significantly more likely to experience cognitive decline
than those using other agents [61–63].

At cellular level, it is well documented that abnormal
amyloid metabolism induces an upregulation of neuronal
calcium signaling, firstly resulting in a decline of memory
and then leading to apoptosis [7, 50, 51, 64, 65]. An inter-
esting connection between A𝛽, calcium, and AD has been
postulated by Arispe and coworkers [66], who suggested
that A𝛽 oligomers can form calcium-permeable channels in
membranes. It seems that energy deficits can promote this
association, consistently with the observation that neurons
with low cytosolic ATP levels showed a pronounced vul-
nerability to A𝛽-induced toxicity [67]. In line with these
reports, studies conducted in animal models (i.e., transgenic
mice) highlighted an increase in calcium resting levels in the
spines and dendrites of pyramidal cortical neurons [68, 69],
supporting the hypothesis that calcium-permeable channels
can form in the neuronal plasma membrane close to the A𝛽
plaques, thanks to the high concentration of A𝛽 oligomers
found in these areas [67]. Tau protein is also able to form ion
channels in planar lipid bilayer, with lack of ion selectivity and
multiple channels conductance, thus contributing to lower
membrane potential, dysregulate calcium, depolarize mito-
chondria, or deplete energy stores [70]. Within neurons, the
increase in intracellular calcium levels stimulated by A𝛽 does
not seem to be necessarily sustained by extracellular calcium
influx. By using the human neuroblastoma SH-SY5Y cell line,
Jensen and coworkers [71] interestingly described that the
increase in intracellular calcium levels elicited by the A𝛽

1–42
fragment can occur in the absence of extracellular calcium.
Such observation supports the role of calcium release from
the ER [72] to the generation of these signals. In addition,
they demonstrated that this phenomenon relies only partially
on inositol 1,4,5-trisphosphate (IP3) signaling, based on the
fact that they observed the calcium mobilizing effect of
A𝛽
1–42 when the fragment was applied to permeabilized cells

deficient in IP3 receptors (IP3R). Notably, this effect could
underpin an additional direct effect of A𝛽

1–42 upon the ER
and a mechanism for induction of toxicity by intracellular
A𝛽
1–42 [71]. As a matter of fact, ryanodine receptors (RyR)

can also contribute to the A𝛽-induced calcium release from
ER, as described by Ferreiro and coworkers [73, 74]. Exposing
rat primary cortical neurons to A𝛽

1–40 or to A𝛽25–35 peptides,
the authors observed an increase in cytosolic calcium levels
thatwas counteracted by either xestosponginCor dantrolene,
pharmacological inhibitors of IP3R and RyR, respectively.
Once calcium has been mobilized, it can initiate a cascade
of events promoting free radicals generation, cytochrome
c release from mitochondria, and activation of caspases,
culminating in apoptotic cell death [73, 74]. It is worth men-
tioning that the balance between intracellular calcium levels
and ER content involves not only IP3R and RyR, but also
the activity of sarcoendoplasmic reticulum calcium ATPase
(SERCA), which transports calcium ions from the cytoplasm
into the ER (Figure 1). In this regard, Ferreiro and coworkers
performed a comparative study by using the selective SERCA

blocker thapsigargin [74]. They demonstrated that thapsi-
gargin induced the loss of intracellular calcium homeostasis
and the activation of caspase-3, leading to apoptotic cell
death, as observed after incubation with A𝛽

1–40 or A𝛽25–35
peptides. These findings lend support to the hypothesis that
intracellular calcium deregulation induced by ER stress may
be critical in the neurodegenerative processes triggered by
A𝛽 peptide. Furthermore, the role of SERCA has been also
investigated in the context of the FAD. Specifically, it has been
proposed that SERCA activity is physiologically regulated by
the interaction with presenilin [75], the membrane intrinsic
protein that localizes predominantly to the ER membrane,
which is responsible for the generation of the A𝛽 fragment.
The finding that the modulation of SERCA activity would
alter A𝛽 production may entail a possible role of the SERCA
in the pathogenesis of AD [76].

The alteration of the glutamatergic systemmay be another
important factor causing calcium imbalance in AD. Once
released at glutamatergic synapses, glutamate is cleared from
the extracellular space by the activity of the high affin-
ity sodium-dependent glutamate transporters (Excitatory
Amino Acid Transporters, EAATs) [77], which represent
the most prominent system involved in terminating the
excitatory signal, recycling the transmitter, and regulating
extracellular levels of glutamate. As a result of overproduc-
tion and/or impaired clearance from synapses, glutamate
may become excitotoxic. In this case, a prolonged exposure
to glutamate induces an excessive activation of glutamate
receptors, which is associated with a massive calcium influx
through the receptor’s associated ion channel. The resulting
calcium overload is particularly neurotoxic, leading to the
activation of several degradation pathways which can have
deleterious consequences on the cell fate [78–80]. Marked
changes in functional elements of the glutamatergic synapses,
such as glutamatergic receptors and transporters, have been
described in AD. In 1996, Masliah and coworkers observed
a deficit in glutamate transport activity in AD brains, likely
occurring at neuronal level [81]. In line with this report,
more recent findings suggested that soluble A𝛽 oligomers
can disrupt neuronal glutamate uptake and promote long-
term synaptic depression (LTD), a form of synaptic plasticity.
In particular, the elegant study by Li and coworkers [82]
showed that soluble A𝛽 oligomers from several sources,
including humanbrain extracts, facilitated electrically evoked
LTD in the mouse hippocampal CA1 region, involving both
metabotropic and ionotropic glutamate receptors, and high
extracellular glutamate levels. Accordingly, neuronal synaptic
glutamate uptake was significantly decreased by A𝛽. It is
interesting to note that A𝛽-facilitated LTD was mimicked by
the action of the glutamate reuptake inhibitorDL-threo-beta-
benzyloxyaspartate (TBOA), confirming that A𝛽 oligomers
ability to perturb synaptic plasticity may rely upon glutamate
recycling alteration at the synaptic level. In this regard, a
dramatic reduction in the expression of two members of the
EAAT family, EAAT1 and EAAT2, has been described at both
gene and protein levels in hippocampus and gyrus frontalis
medialis of AD patients [83]. Interestingly, in the same
regions, glutamate receptors of the kainate type were signif-
icantly upregulated, further supporting the hypothesis that
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excitotoxic mechanisms can have a role in the pathogenesis
of AD [79]. Such upregulationwas accompanied by downreg-
ulation of the other ionotropic glutamate receptors, namely,
N-methyl-D-aspartate (NMDA) and 𝛼-amino-3-hydroxyl-5-
methyl-4-isoxazole-propionate (AMPA) receptors. Consid-
ering that both NMDA and AMPA receptors are known to
mediate long-term potentiation [84, 85], the fundamental
molecular mechanism of learning, memory, and cognition,
their impairment may be considered a causative factor of the
reduced cognitive functions observed in AD patients [83].

Although the observed alterations in intracellular cal-
cium homeostasis in neurons significantly contribute to the
pathogenesis of AD, more recent findings suggest that cal-
cium dysregulation occurring in other cell types that support
neuronal activity may contribute to degenerative processes
[86]. In this regard, Fonseca and colleagues have recently
demonstrated that A𝛽 may imbalance calcium homeostasis
in brain endothelial cells with an increase in oxidative stress
[87]. Using rat brain microvascular endothelial cells, they
showed that the exposure to a toxic dose of A𝛽 alters ER
ability to buffer calcium, and it enhances the mitochondrial
and cytosolic response toATP-stimulated ER calcium release.
Although these responses are compensated after a longer
exposure to A𝛽, the early increase in oxidant levels and the
concomitant decrease of antioxidant defenses induce dele-
terious effects on endothelial cells that undergo apoptosis,
contributing to the cerebrovascular impairment observed in
AD [87].

Astrocytes are also emerging as active players in AD [88],
as highlighted in a recent paper by Dal Prà and cowork-
ers [89]. They suggested an interesting issue concerning
A𝛽 interaction with the Calcium Sensing Receptor (CaSR)
[90]. The CaSR is a member of the largest family of cell
surface receptors, the G protein-coupled receptors involved
in calcium homeostasis. CaSRs expression is ubiquitous
within the brain [91], where they are involved in several
physiological processes, including synaptic plasticity and
neurotransmission [92]. They showed that, in astrocytes,
CaSR-A𝛽 interaction induces a downregulation of CaSR,
leading the neighboring neurons to oversecrete de novo
synthesized A𝛽 as well as nitric oxide (NO) and the toxic
peroxynitrite (ONOO−) [90, 93]. Recently, they have shown
that the interaction occurring between A𝛽 and CaSR in
human astrocytesmay activate a signaling able to stimulate de
novo production and secretion of vascular endothelial growth
factor (VEGF) [89], whose excessive production can have
toxic effects on neurons, astrocytes, and brain–blood barrier
[94–97].

In general, the available literature suggests that the pro-
longed intracellular calcium elevation occurring within brain
cells may be a crucial early event in AD pathogenesis, even
though the mechanisms have not been fully explained.

In terms of proteins contributing to the calcium home-
ostasis in the brain, particular attention should be focused
on NCX. NCX is a transporter that can move sodium
across the membrane in exchange for calcium, oper-
ating in either calcium-efflux/sodium-influx mode (for-
ward mode) or calcium-influx/sodium-efflux mode (reverse
mode) depending upon the electrochemical ion gradients

[24]. Three NCX isoforms have been described, namely,
NCX1, NCX2, and NCX3, whose pattern of expression is
tissue-specific [98]. Recent reports demonstrated the main
role of NCX1 in controlling energy metabolism in several
cells types, including neurons and astrocytes [99, 100]. In
detail, our group recently reported a functional interaction
betweenNCX1 and the sodium-dependent Excitatory Amino
Acid Carrier 1 (EAAC1), at both plasma membrane and
mitochondrial level in neuronal, glial, and cardiac models
[99, 100]. Notably, we found that NCX1 reverse activity is
necessary to restore transmembrane sodium gradient after
glutamate entry into the cytoplasm, supporting glutamate
utilization as a metabolic substrate that, in turn, enhances
ATP production.

The role of NCX isoforms in the pathogenesis of AD
is still under investigation. In 1991 Colvin and coworkers
[101], measuring NCX activity in cerebral plasma membrane
vesicles purified from human postmortem brain tissues of
normal, AD, and non-AD origin dementia, identified a
transporter altered kinetic in the vesicles of AD patients.
The surviving neurons showed an increased NCX activity,
leading authors to speculate that this phenomenon could
help the surviving neurons to overtake the neurodegenerative
process of AD, reinforcing the idea that the increase in
intracellular calcium levels can play a major role in the
pathogenesis of AD entailing the death of nonsurviving
neurons. The hypothesis of an altered activity of NCX in AD
patients represents an attractive mechanism that could, at
least partially, be accountable for the calcium dysregulation
observed in neurodegenerative processes accompanying the
pathology [102]. The impairment of NCX activity can be
related to the main features of AD. For instance, aggregated
A𝛽 could interact with the hydrophobic surface of NCX,
leading to an altered activity of the transporter [103]; however,
it cannot be excluded that the observed interaction of A𝛽
oligomers with the plasmamembrane could be per se respon-
sible for the alteration of NCX transport properties [103].
The pioneering study of Colvin has inspired further studies
that explained the specific role of different NCX isoforms
in AD; in this regard, the study by Sokolow and coworkers
offered a better understanding of the actual role of NCXs
[104]. The analysis of NCX1, NCX2, and NCX3 expression in
AD parietal cortex disclosed a specific pattern of expression
within nerve terminals. In particular, NCX1 is the main
isoform expressed in nerve terminals of cognitively normal
patients, while NCX2 and NCX3 seem to be modulated in
the parietal cortex in a late AD stage, as NCX2 expression
is increased in positive terminals, while NCX3 expression
is reduced [104]. Interestingly, the three isoforms colocalize
with A𝛽, supporting the hypothesis that the NCX activity
modulation can be connected to a direct interaction with A𝛽;
furthermore, in all synaptic terminals containing A𝛽, NCX1-
3 expression is upregulated [104]. It could be possible that the
altered expression of NCX isoforms represents the neurons
attempt to counterbalance the A𝛽-induced alteration in
calcium homeostasis. But, the different pattern observed in
NCX isoforms expression can underpin a specific role for
each isoform within the neurodegenerative process accom-
panying AD. In this regard, a specific alteration has been
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demonstrated for NCX3 isoform, leading to inactivation.
NCXproteins can be inactivated by specific calpain 1 operated
cleavage, and this can produce an increase of intracellular
calcium levels contributing to the neurodegenerative cal-
cium overload [105, 106]. In AD, the overproduction of A𝛽
increases calpain-mediated cleavage of NCX3, resulting in a
decreased NCX3 activity [107]. Interestingly, the localization
of NCX3 in dendrites and astrocytes processes contacting
excitatory synapses [108] suggests the major role of NCX3 in
regulating calcium current during synaptic activity, which is
crucial for normal learning and memory. Therefore, reduced
NCX3 activity can strongly contribute to the altered calcium
levels associated with neuronal dysfunctions in AD [107].

3. Mitochondria and AD

Mitochondria are essential organelles for both cell survival
and death, as they produce the largest part of cellular energy
in the form of ATP and they play an active role in apoptosis
induction [109, 110]. Mitochondria take part in cellular
calcium signaling and act as highly localized buffers, thereby
acting in the regulation of cytosolic calcium transient [111–
113] (Figure 1). A crucial role in neurodegenerative disorders
has been suggested for mitochondria, and AD patients
have shown evidence of impaired mitochondrial function
[114]. Reddy and coworkers demonstrated the upregulation
of genes related to mitochondrial energy metabolism and
apoptosis in an AD transgenic mouse model overexpressing
a mutant form of APP at different stages of AD progression
[115]. Mutant APP and soluble A𝛽 may enter mitochondria,
which generate reactive oxygen species leading to oxidative
damage, thereby affecting mitochondrial function. That is
why the upregulation ofmitochondrial genes could be a com-
pensatory response tomitochondrial dysfunction induced by
mutant APP or A𝛽 [115, 116].

In healthy neurons synaptic activity can be influenced
by mitochondrial dynamics, such as fission and fusion
events [117]. A number of studies demonstrate that essential
proteins for fission and fusion are altered when APP is
overexpressed [118, 119]. It has been shown that dynamin-
like protein 1 (DLP1) and optic atrophy (OPA1) pro-
tein are significantly decreased, whereas levels of fission 1
(Fis1) are significantly increased in cell lines overexpressing
APP [119]; this leads to mitochondrial fragmentation and
abnormal distribution, which contribute to mitochondrial
and neuronal dysfunction [119]. These findings were con-
firmed by Gan and coworkers [120] that observed sig-
nificant changes in mitochondria morphology and func-
tion in cytoplasmic hybrid (cybrid) neurons, where platelet
mitochondria from AD and non-AD human subjects were
incorporated into mitochondrial DNA-depleted neuronal
cells. They found an impairment of fission/fusion proteins
expression and function that was reverted by antioxidant
treatment. Interestingly, they showed that oxidative stress
negatively affects the extracellular-signal-regulated kinases
(ERK) transduction pathway, which alters the expression
levels of mitochondrial fission/fusion protein in AD cybrids
[120].

Although it was common to focus primarily on A𝛽,
recently there has been an increasing interest on the role of
the hyperphosphorylated formof tau. Hyperphosphorylation
can decrease tau binding to microtubules, thereby affecting
their stability and axonal transport of organelles, including
mitochondria [8, 31]. Recent studies have begun to explore
the effect of this altered protein on mitochondrial dynamics.
Interesting findings come from the experiments performed
by Schulz and coworkers [121] in SH-SY5Y wild-type (wt)
and overexpressing P301L mutant tau. They demonstrated
that P301L overexpression results in a substantial complex I
deficit accompanied by decreased ATP levels and increased
vulnerability to oxidative stress. Interestingly, those events
were paralleled by pronounced changes in mitochondrial
morphology and decreased fusion/fission rates, observed as
reduced expression of several fission and fusion proteins such
as OPA-1 or DLP- 1 [121]. An imbalance in fission/fusion
proteins has also been shown by Manczak and Reddy [122]
who demonstrated a physical link between phosphorylated
tau and DLP1. The authors concluded that the interaction
between phosphorylated tau, DLP1, and A𝛽 can cause an
excessive mitochondrial fragmentation and both mitochon-
drial and synaptic deficiencies, leading to neuronal damage
and cognitive decline [122]. Regardless of its connection with
fission/fusion events, the synergistic action of A𝛽 and tau has
been further investigated in a recent study by Quintanilla
and colleagues who demonstrated that, in aging neuronal
cultures, phosphorylated tau potentiates A𝛽-induced mito-
chondrial dysfunction by affecting mitochondrial membrane
potential and increasing oxidative stress [123]. In a previous
study, the same group demonstrated that also a truncated
form of tau, cleaved at Asp421 by caspases [124], significantly
increases oxidative stress response in cortical neurons treated
with sublethal concentrations of A𝛽 [125]. Moreover, inter-
esting results in this field have been obtained by using triple
transgenic mice. This model has been obtained by cross-
breeding tau transgenic pR5 mice, characterized by tangle
formation, and double-transgenic APP152 mice developing
A𝛽 plaques. Only triple transgenic mice, combining both
pathologies, at early age (8 months old) showed a reduction
of the mitochondrial membrane potential, while at the
age of 12 months they showed the strongest defects on
oxidative phosphorylation, synthesis of ATP, and reactive
oxygen species formation, emphasizing synergistic and age-
associated effects of A𝛽 and tau in perishing mitochondria
[126]. Globally, these findings clearly demonstrate that mito-
chondrial function can be seriously impaired by A𝛽 and that
hyperphosphorylation of tau can enhance the A𝛽-induced
mitochondrial neuronal damage. Notably, mitochondria are
also involved in themaintenance of cellular activities through
the contact they establish with ER [127, 128]. Mitochondria-
associated ER membranes (MAMs) are intracellular lipid
rafts regulating calcium homeostasis and several metabolic
pathways, such as glucose, phospholipids, and cholesterol
metabolism [127, 129].The physical interaction between these
organelles has been extensively studied, and several MAMs-
associated proteins have been identified. A recent research
has shown that the contact sites between mitochondria
and ER are enriched in PS1 and PS2 [130], components of
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Figure 2: Modes of operation of mNCX. The figure reports the prevalent modes of operation of mNCX. (a) shows the forward mode of
operation of the exchanger, which is prevalent in physiological conditions. In thismode of operation,mNCXmediates the extrusion of calcium
ions from mitochondrial matrix in exchange for sodium ions. (b) shows mNCX reverse mode of operation. In this mode of operation, the
mitochondrial exchanger mediates the influx of calcium ions into the matrix and the extrusion of sodium ions. The figure has been entirely
reproduced from Castaldo et al., 2009 [26], upon written authorization by the editor.

the 𝛾-secretase complex which processes APP to produce
A𝛽 [131]. A large body of evidence indicates PS1 and PS2
mutations as being responsible for the A𝛽 overproduction
by 𝛾-secretase activity leading to FAD [132, 133]. Recently,
it has been shown that mutations in PS1, PS2, and APP
can upregulate MAMs function and produce a significant
increase in ER-mitochondrial connectivity, suggesting that
presenilins can negatively regulate this phenomenon [134].
However, the same upregulation in MAMs function and ER-
mitochondrial communication has been found in fibroblasts
from patients with sporadic AD (SAD), in which there are no
mutations in PS1, PS2, and APP structure [134].This interest-
ing finding suggests that the upregulated function of MAMs,
as a common feature in both FAD and SAD, may represent a
pathogenic initiator of AD [134]. A recent study by Schreiner
and colleagues [135] supports this hypothesis. In this work,
the authors determined the production of A𝛽 in subcellular
fractions isolated from mouse brain. They found that a large
amount of A𝛽 was produced at mitochondria-ER contact
sites. They postulated that the enhanced A𝛽 production
may perturb mitochondria and mitochondria-ER contact
site functions, leading to neurodegeneration and, therefore,
to AD [135]. As a matter of fact, the MAMs structure has
been postulated to modulate calcium signals and synaptic
and integrative activities at neuronal level [127, 136]. In this
regard, it has been suggested that MAMs may host impor-
tant physiological functions related to neuronal integrity,
as they have been reported to be uniformly distributed
throughout hippocampal neurons and at synaptic level [127].
In particular, two main proteins have been identified as
being crucial for MAMs activity and, consequently, for neu-
ronal integrity: phosphofurin acidic cluster sorting protein-
2 (PACS-2) and 𝜎1 receptor (𝜎1R) [127]. These proteins
contribute to maintaining MAMs homeostasis. Specifically,
PACS-2 is a multifunctional sorting protein controlling ER-
mitochondria communication and apoptosis [137], whereas
𝜎1R promotes calcium transport into mitochondria from
the ER by interacting with the IP3R [138]. Their knock-
down results in neurodegeneration, and this highlights the
importance of these proteins in the maintenance of neuronal

integrity [127]. Furthermore, exposure to A𝛽 results in the
increase of MAMs-associated proteins expression and of the
amount of contact points between ER and mitochondria in
different AD models (namely, APP transgenic mice, primary
neurons, and AD brain) [127]. In turn, the alteration in
MAMs-associated proteins expression can affect calcium
homeostasis, which has been considered an underlying and
integral component of AD pathology [7, 50, 67]. This issue is
further discussed in the following section.

3.1. Role of Mitochondria in Intracellular Calcium Balance.
Intracellular calcium dysregulation is a central event in neu-
rodegeneration; it involves plasma membrane transporters
and also intracellular organelles, such as mitochondria,
thereby creating an endless futile cycle that can have sev-
eral consequences on neuronal survival [67]. The excess of
intracellular calcium is taken up by mitochondrial calcium
uniporter (MCU) that, through the large electrochemical
gradient across the inner mitochondrial membrane, drives
calcium from the cytosol to the mitochondrial matrix [67]
(Figure 1). Calcium is then released back into the cytosol
through the activity of mitochondrial NCX (mNCX, Figures
1 and 2(a)) [67]. However, mNCX may reverse its mode
of operation (Figure 2(b)) from a calcium efflux system
to an influx pathway allowing the access of calcium ions
into the mitochondrial matrix [26]. Although the molecular
identity of mNCX has been extensively researched and
strongly debated, our group has provided data showing that
plasma membrane NCX (plmNCX) isoforms can contribute
to mNCXs. Exploring the subcellular distribution of NCX in
the central nervous systembywestern blot and in situ electron
microscopy immunocytochemistry in rat neocortex and hip-
pocampus, we observed a large population of neuronal and
astrocytic mitochondria expressing NCX1–3 [26, 27] (Figures
3 and 4). Thus, these mitochondrial calcium transporters
manage intracellular changes of this “versatile” ion, impacting
several cell functions, including cell metabolism. As a matter
of fact, the activity of several intramitochondrial dehydro-
genases is enhanced by increased mitochondrial calcium
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Figure 3: NCXs labeling patterns in neuronal mitochondria ((a)–(i)). (a and d) NCX1-ir mitochondria (arrows) in distal dendrites (CA1
stratum radiatum). ((b) and (e))NCX2-irmitochondria (arrows) in hippocampal (b) and neocortical (e) dendrites. (c) NCX3-irmitochondria
in neocortical distal dendrite (arrow). (f) NCX2-positive mitochondrion in a CA1 axon terminal. ((g) and (h)) NCX2 and NCX3-ir
mitochondria (arrows) in a cell body (fromCA1 pyramidal cell layer); enlarged in the inset in (h), two labeled organelles (arrows) near nuclear
envelope. (i) NCX3-ir in neocortical distal dendrite with unlabeledmitochondria (open arrow). In (b) and (d) dendrites are contacted by axon
terminals forming asymmetric junction (triangles). In (a) and (e), note the labeling bridging plasma membrane and mitochondrial profile.
Open arrows indicate unlabeled mitochondria in dendrites ((a) and (i)) and axon terminals ((b) and (d)). With asterisks the postsynaptic
specializations are indicated and the arrowheads show the labeling between mitochondria and plasma membrane. axt, axon terminal; den,
dendrite; nu, nucleus; cyt, cytoplasm; sp, dendritic spine. Immunoperoxidase reaction in (a)–(c), (f), (g), and (h) and silver-enhanced
immunogold in (d), (e), and (i). Calibration bars: in (a), 0.25m for (a), (b), (d), (f), and (i); in (a), 0.5m for inset in (h); in (c), 0.25m
for (c) and (e); in (c), 0.5m for (g); in (c), 1m for (h). The figure has been entirely reproduced from Gobbi et al., 2007 [27], upon written
authorization by the editor.

levels, thereby stimulating ATP synthesis [139, 140]. The
brain is one of the most metabolically active organs in the
body. The brain’s high energy requirements are mainly due
to maintenance and restoration of ion gradients dissipated
by signaling processes such as postsynaptic and action

potentials, as well as uptake and recycling of neurotransmit-
ters. InAD, the impairment in energy production is one of the
factors greatly contributing to the vulnerability of neuronal
cells [141].One of themainworks demonstrating the coopera-
tive action of tau andA𝛽 shows, through a proteomic analysis,
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Figure 4: NCXs labeling patterns in astrocytic mitochondria ((a)–(d)). (a) NCX3-expressing mitochondrion (arrow) in neocortical
astrocytic process; an adjacent dendrite contains two labeled mitochondria (arrows). (b) NCX2-ir mitochondrion (arrow) in hippocampal
glial process. Intense labeling is present on plasma membrane. (c) NCX3-labelled sub-plasma membrane mitochondria (arrows) in two
astrocytic processes contacting synaptic structures; labeling between a mitochondrion and the plasma membrane is evident (arrowhead).
An unlabeled mitochondrion is localized in a dentritic structure (open arrow). (d) A NCX1-unlabeled mitochondrion (open arrow) in
a labeled distal astrocytic process in neocortex. Note some positive distal dendrites with unlabeled mitochondria. Open arrows indicate
unlabeled mitochondria; triangles show the mitochondrial labeling near the synaptic membrane. Asp, astrocytic process; den, dendrite; axt,
axon terminal; sp, spine apparatus. Immunoperoxidase reaction in (b) and (c) and silver-enhanced immunogold in (a). Calibration bars:
in (a), 0.25m for (a), (b), and (c); in (a), 0.5m for (d). The figure has been entirely reproduced from Gobbi et al., 2007 [27], upon written
authorization by the editor.

that one-third of the deregulated proteins in different AD
mousemodels is made up ofmitochondrial proteins involved
in oxidative phosphorylation [126]. Hence, it is tempting
to speculate that modulation of mitochondrial calcium
transporter activity toward the increase in ATP production
could have beneficial effects on neuronal survival during the
neurodegenerative processes that characterize AD. In this
context, it has been suggested that a partial inhibition of
mNCXwould lead to an increase of themitochondrial matrix
calcium concentration to a higher physiological steady-state
level that could stimulate calcium-sensitive dehydrogenase
activity and the rate of ATP synthesis [67, 139, 140].Therefore,
calcium may play a dual role within cells: on the one hand
it can help vulnerable neurons increase the rate of ATP
synthesis; on the other hand it can be harmful and activate
cell death through the induction of the apoptotic pathways
[142]. Thus, there must be a critical point representing the
boundary between cytoprotective and cytotoxic effect due to
the increase inmitochondrial calcium concentration [67]. An
increased rate of ATP synthesis can be achieved stimulating
the cell in several ways. Recently, our group found that
both plmNCX and mNCX can act synergically to sustain

the increase in ATP synthesis promoted by glutamate [99,
100]. As reported above, this metabolic response results
from a physical and functional interaction between NCX
(particularly NCX1) and EAATs, with particular reference
to EAAC1, occurring at both plasma membrane and mito-
chondrial level [99, 100]. The fact that some substrates,
such as glutamate, can modulate ATP synthesis may have
several implications for AD too, and this can reverse the
traditional view of a predominantly harmful effect of this
amino acid, towards a benefic role that is able to rescue
vulnerable neurons from death. At present, the role of mNCX
in AD is still largely unexplored [26]. In an interesting paper,
Thiffault and Bennett [143] reported indirect evidence of
an involvement of the exchanger in AD. In particular, they
showed that cells, lacking endogenous mitochondria and
repopulated with mitochondria from AD patients, virtually
lack the spontaneous fluctuations in mitochondrial mem-
brane potential (ΔΨM), also called “ΔΨM flickering,” which
is normally induced by cyclosporine. It is worth noting that
mNCX blockade with CGP-37157 suppresses flickering in
control cells, thus recreating a condition similar to the one
observed inAD.The role ofmNCX inAD is also supported by



10 BioMed Research International

the work of Chin and colleagues [144], who observed that A𝛽
potentiates the increase in cytosolic calcium concentration
evoked by nicotine in dissociated rat basal forebrain neurons
in a CGP-37157-sensitive way.

4. Conclusions

Dysregulation of intracellular calcium homeostasis has been
suggested as a proximal cause of cellular dysfunction dur-
ing AD, and in this context calcium imbalance has been
considered a phenomenon mainly related to the dysfunction
of subcellular organelles, such as mitochondria. Functional
impairment of calcium-related proteinsmay play amajor role
in the pathogenesis of AD. One of the main regulators of
intracellular calcium levels,NCX, is emerging as a transporter
possibly involved in the nervous system pathophysiology,
although its involvement in AD is still poorly investigated.
Recent studies conducted by our group [99, 100] show NCX
as a key factor in the regulation of cellular metabolism
too, acting at both plasma membrane and mitochondrial
level. Energy metabolism and intracellular calcium levels
are closely related and, therefore, it has been suggested that
energy and calcium signaling deficits can be considered the
earliest modifiable defects in brain aging [145], including
AD. The achievement of an increase in cell metabolism and
mitochondrial calcium content through the manipulation of
NCX activity may represent a new successful approach to
prevent neuronal degeneration and death. However, further
studies are needed to support this finding.
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