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Generalized anxiety disorder (GAD) is one of common anxiety disorders in adolescents.
Although adolescents with GAD are thought to be at high risk for other mental diseases,
the disease-specific alterations have not been adequately explored. Recent studies
have revealed the abnormal functional connectivity (FC) in adolescents with GAD. Most
previous researches have investigated the static FC which ignores the fluctuations of
FC over time and focused on the structures of “fear circuit”. To figure out the alterations
of dynamic FC caused by GAD and the possibilities of dynamic FC as biomarkers,
we propose an effective approach to identify adolescent GAD using temporal features
derived from dynamic FC. In our study, the instantaneous synchronization of pairwise
signals was estimated as dynamic FC. The Hurst exponent (H) and variance, indicating
regularity and variable degree of a time series respectively, were calculated as temporal
features of dynamic FC. By leave-one-out cross-validation (LOOCV), a relatively high
accuracy of 88.46% could be achieved when H and variance of dynamic FC were
combined as features. In addition, we identified the disease-related regions, including
regions belonging to default mode (DM) and cerebellar networks. The results suggest
that temporal features of dynamic FC could achieve a clinically acceptable diagnostic
power and serve as biomarkers of adolescent GAD. Furthermore, our work could be
helpful in understanding the pathophysiological mechanism of adolescent GAD.

Keywords: adolescent generalized anxiety disorder, temporal properties, dynamic functional connectivity, resting
fMRI, biomarker

INTRODUCTION

Adolescent generalized anxiety disorder (GAD) is one of the fairly common anxiety disorders
among youth. Typical symptoms of adolescent GAD include excessive, uncontrolled and
lasting anxiety over common things and events in daily life. Although high risk of adult
GAD, social phobia and major depressive disorder (MDD) exists in adolescents with GAD
(Pine et al., 1998), adolescent GAD has been rarely investigated in neurophysiological
aspect, and by now the diagnosis of adolescent GAD has mainly depended on clinical
symptoms and signs. Researches aiming at revealing the pathophysiology and finding relatively
objective biomarkers of adolescent GAD are therefore of great importance at current stage.
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Recently, resting-state functional magnetic resonance
imaging (fMRI) has been a widely-used and valid technique
to reveal the functional abnormalities in brain caused by
various mental diseases. Functional connectivity (FC), defined
as the temporal dependence of neuronal activity patterns of
anatomically separated brain regions (Aertsen et al., 1989), is
able to describe the functional communication between brain
regions during task-involved or resting state. Many studies have
investigated FC to explore the abnormal functional organization
of brain in patients with specific psychiatric illnesses, such
as major depression disorder, social anxiety disorder (SAD),
schizophrenia and Alzheimer’s disease (AD; Greicius et al., 2007;
Stam et al., 2007; Hahn et al., 2011). By present, task-involved
studies have reported the disease-related FC in GAD patients,
and most of them were associated with amygdala, prefrontal
cortex (PFC), anterior cingulate cortex (ACC) and concentrated
in the structures of ‘‘fear circuit’’ which deals with fear and other
negative emotions (Monk et al., 2008; Etkin et al., 2010). Resting
state FC was mainly calculated on the basis of predefined regions
of interest (ROI). Amygdala was the ROI widely investigated
in GAD studies, and abnormal FC between amygdala and PFC
has been frequently reported in these researches (Etkin et al.,
2009; Liu W. J. et al., 2015). Disrupted amygdalar subregions FC,
increased FC between amygdala and cerebellum, insula, superior
temporal gyrus and putamen in GAD patients have also been
found (Etkin et al., 2009; Liu W. J. et al., 2015). Additionally, by
the whole brain FC analysis, increased FC between hippocampus
and fusiform in GAD patients has been revealed by Cui et al.
(2016). These studies tried to estimate the FC that was able to
describe the functional relevance between brain regions during
scanning, which was based on the assumption that the FC
remained stationary (static FC) during rest or task-processed
state. However, the varying levels of attention, mind-wandering,
even mood-swings may take place during scanning, leaving the
observed blood oxygenation level-dependent (BOLD) signals
non-stationary and deviating from the assumption. Moreover,
the static FC abandons dynamic properties of FC which might
be thought to be related to specific diseases (Sakoglu et al., 2010;
Jones et al., 2012) and potential to serve as biomarkers.

Consequently, increasing number of articles has been
published to explore the temporal properties of FC. Different
from the model of static FC, dynamic FC is evaluated as
time-varying covariance of neural signals between brain regions,
making it able to describe the collaboration of brain regions
in a precise way. Temporal characteristics of dynamic FC are
therefore promising to explore the temporal alterations related
to psychiatric illnesses. Several previous studies have investigated
the dynamic FC in mental diseases (Damaraju et al., 2014; Rashid
et al., 2014; Yu et al., 2015). Damaraju et al. (2014) found
that schizophrenia patients failed to maintain states typified by
strong, large-scale connectivity, and the abnormal connections
in schizophrenia patients during the states deviated more from
normal levels. By investigating dynamic FC, Rashid et al. (2014)
observed fewer transitions to specific states in schizophrenia and
bipolar disorder patients. The findings mentioned above revealed
the transient abnormal connectivity patterns which might be
absent in the researches of static FC. Additionally, variance in

the dynamic graph metrics of brain were introduced by Yu
et al. (2015), and the result showed the less changeable states
transition in schizophrenia patients. In summary, the dynamic
analysis of FC appears to be useful for acquiring additional
measurements to investigate the alterations caused by mental
diseases. To the best of our knowledge, the temporal features of
dynamic FC in GAD patients have not been explored, and the
alterations caused by GAD have remained unclear. In the present
study, Hurst exponent (H) and variance of dynamic FC were
calculated to explore the sensitivities to GAD and possibilities of
biomarkers. Additionally, previous classification studies for GAD
have focused on clinical scales and questionnaires, meaning that
our work would be the pilot work on identifying adolescent GAD
by neuroimaging data.

Both healthy adolescents and those suffering from GAD
were included in our study. A data-driven method independent
component analysis (ICA) was utilized to parcellate cortex into
intrinsic connectivity networks (ICNs). To classify adolescents
with GAD from healthy controls, heterogeneous features
including H, variance of dynamic FC and static FC were
calculated. In order to find out the impact of adolescent GAD
on the connections, the activation pattern analysis proposed
in the previous study (Haufe et al., 2014) was applied to
the classification model, and the regions associated with the
connections with lager impact of GAD were considered GAD-
related. We hypothesized that the temporal features of dynamic
FC could be helpful to classification and potential to serve as
biomarkers of GAD.

MATERIALS AND METHODS

Subjects
In our study, 31 adolescents diagnosed with GAD and
28 demographically similar normal controls (NC) were recruited
from local high schools in Hunan province by advertisement
or school notice. We had fully explained the study to each
adolescent and his or her legal guardians before the written
informed consent was obtained from them. The adolescents
were diagnosed by the same trained clinician using the fourth
version of Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV) criteria and the Schedule for Affective Disorders and
Schizophrenia for School Age Children-Present and Lifetime
(K-SADS-PL) version. All of subjects were right-handed, non-
medicated, and voluntary to the study with the permission of
their legal guardians. After excluding the subjects with excessive
head motion (>2 mm translation or >2 degree rotation),
the remaining 27 patients and 25 NC kept gender-, age-,
IQ-matched and did not differ in head motion according to
framewise displacement (FD) measurement (Jenkinson et al.,
2002; see Table 1). Every recruited patient was diagnosed with
current first episode GAD without comorbidity disorder by
clinical psychiatrists. Exclusion criteria for all subjects were
the same as previous studies (Zhang et al., 2013; Liao et al.,
2014), including seizures history, neurological abnormalities,
head trauma or unconsciousness, physical disease and use
of psychoactive substances. This study was carried out in
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TABLE 1 | Demographical characteristics of the generalized anxiety disorder (GAD) patients and normal controls (NCs).

Characteristics GAD (n = 27) (Mean ± SD) NC (n = 25) (Mean ± SD) P value T value

Age (years) 16.85 ± 0.60 16.56 ± 0.96 0.192a 1.32
Gender (males/females) 12/15 15/10 0.262b

IQ 102.67 ± 7.55 105.72 ± 9.20 0.199a
−1.30

STAI
SAI 43.56 ± 8.61 39.12 ± 6.96 0.046a∗ 2.05
TAI 53.59 ± 7.21 43.84 ± 9.26 0.00a∗ 4.22

BDI 8.42 ± 4.75 5.77 ± 5.32 0.083a 1.77
PSWQ 55.74 ± 10.06 39.36 ± 11.67 0.00a∗ 5.43
FD 0.11 ± 0.04 0.12 ± 0.05 0.157a

−1.44

SD, standard deviation; STAI, Spielberger State Trait Anxiety Inventory (SAI—state only reported, TAI—trait only reported); BDI, Beck Depression Inventory; PSWQ, Penn
State Worry Questionnaire. FD, Framewise displacement. aTwo sample T test. bχ2 test. ∗Statistically significant.

accordance with the recommendations of ICH-GCP, ‘‘China-
GCP’’, related regulation and law of China and the Ethics
Committee at the Second Xiangya Hospital of Central South
University with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the Ethics
Committee at the Second Xiangya Hospital of Central South
University.

Image Acquisition
Subjects were instructed to keep their eyes closed, relaxed,
awake and mindless during scanning. Foam paddings and
earplugs were used to limit head motion. After scanning,
subjects were asked whether they had fallen asleep or opened
their eyes during scanning, and those responded yes were
excluded. All of the participants’ high-resolution T1-weighted
anatomic images and resting-state fMRI were performed
on a 3.0-Tesla Philips MRI scanner. The anatomic images
were acquired by magnetization-prepared rapid gradient-echo
sequence (repetition time (TR) = 7.5ms, echo time (TE) = 3.7ms,
slice thickness = 1 mm, filed of view = 256 × 256 mm2, flip
angle = 8◦, number of slices = 180). Resting-state functional
images were obtained using an echo-planar imaging (EPI)
sequence and the parameters included TR = 3000ms, TE = 30ms,
filed of view = 240 × 240 mm2, flip angle = 90◦, number of
slices = 36, slice thickness = 4 mm, in-plane matrix = 64× 64 and
total volume = 180.

Image Preprocessing
All participants’ images were preprocessed with the Statistical
Parametric Mapping (SPM8) based toolkit Data Processing
Assistant Resting-State fMRI (DPARSFA; Chao-Gan and Yu-
Feng, 2010)1. The first 10 volumes for each subject were
discarded to allow for equilibration of the magnetic field. Slices
signal acquisition time correction, head motion correction, and
realignment were applied to the remaining volumes. To reduce
the potential influence of head motion, subjects with head
motion exceeding 2 mm or 2 degree were excluded, which leaved
25 healthy adolescents and 27 GAD patients for the further
analysis. All images were then spatially normalized to Montreal
Neurological Institute (MNI) space with 3 mm× 3 mm× 3 mm
resolution. Resulting images were spatially smoothed with a
Gaussian kernel of 8 mm full width at half maximum (FWHM).

1http://www.restfmri.net

Group ICA and Post Processing
Group ICA
Instead of using a priori template, we utilized the data-driven
technique group ICA to avoid the deviation which might be
induced by pre-defined templates. All preprocessed fMRI data
were entered to perform a group ICA implemented in GIFT
toolbox2. To allow investigation of FC between subsystems
of ICNs (Allen et al., 2014), a relatively high-order ICA with
100 independent components (ICs) was executed. In the data
dimension reduction step, principle components analysis
(PCA) was performed to obtain 150 principal components
for subject-specific data and 100 principal components
for group data maintained by expectation-maximization
(EM) algorithm (Roweis, 1998). And then Infomax group
ICA algorithm (Calhoun et al., 2001) was used to retain
100 ICs. Spatial maps and corresponding time serials for
every subject were acquired after the back reconstruction
step. Consistent with previous studies (Menon, 2011; Rashid
et al., 2014), eight ICNs consisting of 44 ICs were selected
from the 100 ICs. Shown in Figure 1, the eight selected
ICNs corresponded to auditory (AUD), basal ganglia (BG),
sensorimotor (SM), posterior insula (PINS), visual (VIS),
cognitive control (CC), cerebellar (CB), and default mode (DM)
networks.

Post Processing
Additional steps were carried out to further eliminate artificial
noise of the time serials in ICNs. The linear, quadratic and
cubic trends of time serials were removed, and the six rigid
realignment parameters and their temporal derivatives were
regressed out. Outliers of time serials were detected and removed
by 3DDESPIKE. A low-pass filter with the cutoff frequency of
0.15 Hz was used to remove the high frequency components of
signals (Allen et al., 2014).

Dynamic FC and Temporal Features
Estimation
Dynamic FC Calculation
Dynamic connection between any pair of ICs was estimated
by instantaneous phase difference using Hilbert transform.
The previous study (Glerean et al., 2012) showed that this

2http://icatb.sourceforge.net/
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FIGURE 1 | Spatial distributions of non-artificial intrinsic connectivity networks (ICNs). Spatial distribution of each ICN was in a white frame, and spatial distributions
of the same components were in the row within the black box.

method could be reliable and comparable with correlation-
based methods but with higher time resolution. Recently, this
method has been used to detect community structures in
brain, and the resulting synchronization communities were
similar to those acquired by well-established approach such as
ICA (Ponce-Alvarez et al., 2015). The computational model
used in the recent study (Demirtas et al., 2016) was adopted
in our work. Every post processed signal of selected IC
was Hilbert transformed to get the corresponding analytic
signal with instantaneous phases. Then the instantaneous
phase difference between each pair of ICs was calculated and
normalized between 0 and 1 indicating perfect synchronization
and perfect anti-synchronization, respectively (Ponce-Alvarez
et al., 2015).

Temporal Features Estimation
Vaillancourt andNewell (2002) argued that abnormal complexity
of a physiological or behavioral system might be the result
of aging and disease. Temporal complexity, defined as the
difficulties arising when describing or predicting a signal (Lu
et al., 2008), has been applied to fMRI researches. Hurst exponent
widely used to reflect the ‘‘long-term memory’’ of time series,
is directly related to the fractal dimension of signals and
enable to measure the temporal complexity of physiological
signal. Previous study (Maxim et al., 2005) has revealed the

disease-related temporal complexity in several regions of cortex
by comparing the H of BOLD signals between healthy controls
and AD patients. One purpose of the present study is to figure
out the extent to which GAD affects the H of dynamic FC. R/S
method (Annis and Lloyd, 1976) was adopted to calculate H in
our study. The calculation procedure is described below:

1. Dynamic FC is divided into d subseries of length n;
2. For each subseries Xm, m = 1. . .d, Xm is normalized to

Zm = Xm − Xm, where Xm is the mean value of subseries Xm;
3. Calculate cumulative time series Yj,m =

∑j
k = 1 Zk,m,

j = 1. . .n for every normalized subseries, where Zk,m is the k-th
value of Zm;

4. Calculate range Rm = max(Y1,m, Y2,m, . . . Yn ,m) − min(Y1,m,
Y2,m, . . . Yn ,m);

5. Rescale the range Rm/Sm, where Sm is the standard deviation
of subseries Xm;

6. Calculate the mean value over all rescaled ranges of length n:
(R/S)n = 1

d
∑d

m = 1 Rm/Sm.

Presented in the previous study (Mandelbrot and Wallis,
1969), the relation between length n and corresponding rescaled
range (R/S)n is: (R/S)n∼cnH . Therefore, the estimation of H can
be acquired by linear regression over a sample of increasing time
horizons: log(R/S)n = logc + Hlogn. Due to the relatively small
number of time points of dynamic FC, The (R/S)n estimated in
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our study is corrected with themethodmentioned in the previous
study (Weron, 2002).

The other temporal feature of dynamic FC, variance
independent to H, is investigated in the present study as well.
The variance of dynamic FC reflects the temporal variability
in FC across time. Larger variances indicate more changeable
functional connections between brain regions, and are related to
the frequently changing states of information processing in brain
(Yu et al., 2015; Marusak et al., 2017). The most used unbiased
estimator of variance was used in our study. In addition, we
calculated static FC of all pairs of ICs as Pearson correlation
coefficients of the corresponding signals. Fisher’s Z transformed
static FC was then used as features to classify GAD patients from
healthy controls to test the validity of being a biomarker.

Feature Selection
To pick out the disease-related connections and acquire better
classification performance, nested feature selection procedure
was conducted to gather the features with high discriminative
power before training a classifier. H, variance of dynamic FC
and static FC were regarded as three types of features to be
selected for classifying healthy controls and GAD patients. First,
to compare the effectiveness of every type of features, each type of
features was selected and used alone to identify adolescent GAD.
Subsequently, the union set of the temporal features including
H and variance and that of all the three types were treated as
features respectively to find out the highest accuracy. Of note, H
and variance of dynamic FC were normalized by Z score method,
and static FC was Fisher’s Z transformed before feature selection.

Not being limited by the uncertain distribution of data,
measuring the relevance to class labels is a robust method to
evaluate the discriminative power of features. We utilized the
Kendall (1948) tau rank correlation coefficient to quantify the
relevance to classification of features, with larger absolute values
indicating greater discriminative powers. In the present study,
the features were sorted by the absolute value of Kendall tau rank
correlation coefficient in descending order, and the top features
with coefficients over a threshold were selected to be the input of
the classifier. In order to find out the best number of features for
classification, the number of features to be selected in every type
increased from 1 to 400 with the step length of 1, and the feature
set with the highest accuracy was adopted.

Since the feature set is consisted of multiple types of features,
we selected top features from every type of features respectively,
and the union set of all selected features from each type were
input into classifier.

Support Vector Machine Learning
The support vector machine (SVM) was applied to classification
in our study. SVM is a supervised machine learning algorithm
introduced byVapnik (2013). This algorithm is pretty suitable for
the pattern cognition problemwith small sample number, thus in
theory being able to handle the classification with relatively small
number of samples in the present study. To reduce the risk of
overfitting, the linear kernel SVM was chosen in our work. We
adopted the LIBLINEAR toolbox (Fan et al., 2008) on MATLAB

to construct classifier, and the default parameters were used in
the current study.

Leave-One-Out Cross-Validation and
Activation Pattern Analysis
Since relatively few samples were included in our study, we
used the leave-one-out cross-validation (LOOCV) strategy to
estimate the generalization ability of the classifiers. In every
LOOCV iteration, one sample was chosen as testing set and
the rest samples were used for training set. The feature
selection and classifier training steps were only carried out
with the data in training set, without using the information
of the testing set. The selected features of testing sample
were then entered to the trained classifier to predict whether
the testing subject was GAD patient or healthy control. This
procedure was repeated 52 iterations to ensure every subject was
predicted.

In order to find out the altered features caused by adolescent
GAD, activation pattern analysis was performed in our study.
Shown in previous study (Haufe et al., 2014), the weights of
multivariate linear classifiers could not directly interpret the
relationship between features and the sample labels, because
significant nonzero weights might also be obtained at features
which are statistically independent of the class labels, and
the transformation converting weights vector to activation
patterns could achieve the desirable interpretation. Proven in
Haufe et al. (2014), the activation pattern of a linear classifier
could be obtained by: A = cov(X) × W × cov(S)−1, where
X is the matrix consisted of selected features in training
set, S is the vector of the sample labels in training set,
W is the weights of selected features, and cov() represents
covariance of a given variable. The values in A indicate
the effect directions and strengths of the class label in the
selected features, which enable the desirable interpretation.
In the present study, the activation pattern analysis was
conducted when H and variance were combined. In each
LOOCV iteration, the activation value of every selected feature
was calculated, and we set the values of the features not
selected to zero. Thus, by averaging the absolute values of
activation patterns across all iterations, we obtained every
feature’s standard activation value which was able to quantify
the GAD’s influence on the feature. We defined the activation
value of every IC by summing the standard activation values
of features associated with the IC. The significantly important
ICs were defined as regions whose activation values were
not less than the sum of two standard deviations and
mean value of all ICs’ activation values. Additionally, the
features selected in all iterations of LOOCV were regarded
stably helpful to classification, and were defined as consensus
connections.

RESULTS

Classification Accuracy
Table 2 showed the accuracies, sensitivities, specificities and the
area under the curve (AUC) obtained from receiver operating
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characteristic (ROC) analysis of all cases of classifications
with different feature sets. The highest accuracy of 88.46%
and the largest AUC of 0.8889 were acquired when both H
and variance of dynamic FC were used. In this case, the
top 211 ranked variance and the top 138 ranked H were
selected in each LOOCV iteration. It should be noted that
when H, variance of dynamic FC and static FC were all
used, the highest accuracy could be 88.46% as well, but the
number of selected features in static FC could hardly affect
this accuracy once there were around 211 and 138 features
selected in variance and H respectively. Therefore, we considered
the best accuracy was achieved when only H and variance
used.

Both H and variance of dynamic FC performed relatively
better than static FC when used as features alone. When only
H of dynamic FC was used, the highest accuracy was 84.62%
with the corresponding AUC of 0.8726, and the top 57 ranked
H were selected in each LOOCV iteration. When it came to

TABLE 2 | Classification performances of different types of features.

Feature SPE SEN ACC AUC

Static FC 60.00% 62.96% 61.54% 0.5511
Variance 84.00% 81.48% 82.69% 0.8800
Hurst 80.00% 88.89% 84.62% 0.8726
Variance, Hurst 84.00% 92.59% 88.46% 0.8889
Static FC, variance, Hurst 84.00% 92.59% 88.46% 0.8933

SPE, specificity; SEN, sensitivity; ACC, accuracy; AUC, area under the ROC curve.

TABLE 3 | Spatial distributions of important independent components (ICs).

IC Brain region Number of voxels

CB1 Cerebellum anterior lobe, cerebellum posterior
lobe

1871

DMN2 Medial frontal gyrus, superior frontal gyrus,
inferior frontal gyrus, middle frontal gyrus

2032

DMN, default mode network; CB, cerebellar.

variance of dynamic FC, the highest accuracy of 82.69% with
the corresponding AUC of 0.8800 were achieved, and the top
62 ranked variance were selected in each LOOCV iteration.
Relatively low accuracy of 61.54% was acquired when only
static FC was used to classification. This difference in accuracy
might indicate that temporal characteristics of dynamic FC
were affected by GAD and suitable to serve as biomarkers of
GAD.

Figure 2 showed the ROC analysis of the four classifiers with
different types of features used. The trend of AUC was a little
different as that of accuracy, which meant the largest AUC of
0.8889 was obtained when temporal features were combined, the
second was 0.8800 when only variance was used, the third was
0.8726 when only H was used, and the smallest was 0.5511 when
only static FC was used.

Activation Pattern Analysis
In the case of best accuracy where the top 211 ranked variance
and the top 138 ranked H were selected in each LOOCV

FIGURE 2 | Receiver operating characteristic (ROC) curves of different types of features. Different colors were used to represent the ROC curves of all four types of
features.
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FIGURE 3 | Distribution of consensus connections. Nodes were colored by ICN, and their sizes were weighted by activation values. The red lines indicate the
decreased trend of value in generalized anxiety disorder (GAD) adolescents, and the blue lines indicate the increased trend of value in GAD adolescents. The widths
of lines are weighted by their standard activation values. (A) Region activation values and consensus connections of H features. (B) Region activation values and
consensus connections of variance features.

iteration, the activation pattern analysis was conducted. Since
the implication of H differs from that of variance, the important
ICs were identified respectively from the standard activation
values of H and those of variance. The distribution of consensus
features and their standard activation values were shown in
Figure 3.

The important IC identified from standard activation
values of H features was DMN2. CB1 and DMN2 were
identified as important ICs associated with variance
features. DMN2 was shared by the two kinds of important
ICs, which suggested that the neural activity in this
network might be greatly influenced by GAD. The spatial
distributions of the two kinds of important ICs were shown in
Table 3.

DISCUSSIONS

In the present work, we managed to classify adolescents with
GAD from healthy controls using information from resting
FC. To our knowledge, studies exploring the GAD-related
FC alterations have been based on static FC, and there has
been no study investigating the temporal features of dynamic
FC in GAD patients. Results in our study showed that H
and variance of dynamic FC could be treated as features
to identify adolescents with GAD even when used alone
(see Table 2). Furthermore, we acquired a relatively high
accuracy of 88.46% when H and variance of dynamic FC
were combined, which suggested that they were potential to be
used as diagnostic criteria for GAD. Moreover, by activation
pattern analysis, we identified specific brain regions affected
by GAD: DMN2 for H features; CB1 and DMN2 for variance
features. DMN2 was the region important to both temporal
features.

Classification Performance
When used alone as features, both H and variance of dynamic
FC achieved a higher accuracy (larger than 61.54%) compared
with static FC, and the performance of H was slightly better
than variance. It’s not surprising that the combination of H
and variance improved the performance of classification, which
implies that these two temporal characteristic of dynamic FC
are complementary to each other, and it is necessary to take
them into account to identify GAD patients. Of note, when
static FC was the only used type of feature to discriminate
subjects, accuracy decreased to 61.54% that is much lower than
that achieved by temporal features of dynamic FC. The further
analysis showed that adding features from static FC failed to
promote performance of classifier. The reason might be that
static FC abandoned the dynamic information of FC, and was
not precise enough to describe the communication between brain
regions, which might veil the disease-related details of brain
activity.

ICNs with Greater Magnitude of Activation
Value
In the present study, by activation pattern analysis, DMN was
found greatly affected by GAD. DMN has been considered
as a critical role in monitoring the external environment and
supporting internal mentation (Mitchell et al., 2006; Gilbert et al.,
2007; Zhong et al., 2014). Recently, there have been several
studies revealing the abnormal activities of DMN in patients
with anxiety disorder, including less deactivation in medial
prefrontal cortex (MPFC) and greater deactivation in posterior
cingulate cortex (PCC; Zhao et al., 2007), decreased functioning
(Sylvester et al., 2012), abnormal connectivity between posterior
hippocampal and DMN (Chen and Etkin, 2013). In the current
study, we identified the GAD-affected region, DMN2 by both the
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activation pattern analyses of H and variance features. DMN2 is
mainly located in MPFC which is the core region of DMN.
MPFC is known to be associated with self-referential processing
(Kelley et al., 2002; Northoff et al., 2006) and has the ability
to understand the mental state of oneself and others (Allen
et al., 2008). The abnormal FC dynamics associated with MPFC
revealed the disrupted information exchange related to this
region, and might result in the failure to sense how ‘‘self and
others think, feel, perceive, imagine, react, attribute, infer and
so on.’’ (Sharp et al., 2011), which could make the patients with
GAD unable to control their worry and anxiety as sensitively as
healthy controls. Our results might provide additional evidence
for the notion that DMN plays a key role in the pathophysiology
of GAD.

Besides the IC in DMN network, cerebellum was also
characterized as GAD-related regions by activation pattern
analysis. It’s not surprising that cerebellum is included in the
GAD-affected regions for there are evidence proving the role
cerebellum plays in certain non-motor functions, including
emotion and cognitive processing regulation (Dolan, 1998;
Schmahmann and Sherman, 1998; Schmahmann and Caplan,
2006; Hu et al., 2008). Previous study showed the impairment
to cerebellum existed in patients with GADs (Abadie et al.,
1999). Also, several studies (Critchley et al., 2000; Bonne
et al., 2003; Sakai et al., 2005) on anxiety symptoms reported
a hyperactivity of the cerebellum. Since the hyperactivity of
cerebellum was found in patients with MDD as well, a recent
study (Phillips et al., 2015) suggested that the abnormality in
cerebellum might be the reason of the attention impairments
of the two disorders. The abnormal dynamics associated
with cerebellum found in our study is consistent with the
previous findings and reflect the impaired information exchange
between cerebellum and other regions, which might cause the
extreme autonomic reactions coupled with anxiety (American
Psychiatric Association, 2013) and the impaired cognitive control
functions (Bögels and Zigterman, 2000; Stefanopoulou et al.,
2014).

Comparison with Other Classification
Analyses
To the best of our knowledge, no previous study has explored
the framework of classification of GAD. Therefore, we compared
the proposed method in our study with three other methods
for SAD classification. The sample size of all the four studies
are comparable, and the leave-one-out cross validation was
adopted in all of these studies. Pantazatos et al. (2014) used the
static FC during face processing task as feature to discriminate
individuals with SAD from healthy controls. Liu F. et al. (2015)
calculated the static FC between each pair of regions based
on automated anatomical labeling atlas, and resulting FC were
used as feature to identify patients with SAD. Zhang et al.
(2015) adopted the regional homogeneity of brain voxels as
feature for SAD classification. As we can see in Table 4, the
performance of the method proposed in the present study is
among the best, which proves the efficacy of our proposed
method.

TABLE 4 | Comparison on classification performance of social anxiety disorder
(SAD) methods.

Method SPE SEN ACC AUC

Pantazatos et al. (2014) 89.0% 88.0% - 0.880
Liu F. et al. (2015) 80.0% 85.0% 82.5% 0.852
Zhang et al. (2015) 82.5% 70% 76.25% -
Proposed 84.0% 92.6% 88.5% 0.889

Limitations
In our study, temporal features of dynamic FC were used
successfully to identify adolescent GAD at a relatively high
accuracy. Although results showed that both H and variance
of dynamic FC were able to serve as features to classify GAD
adolescents from healthy controls, there were limitations in
the present study. The first was the relatively smaller sample
(52 subjects in total) of subjects included in our work. With a
small number of samples included in the present study, leave-
one-out cross validation was adopted to prevent the training
set from deviating too much from the overall population. This
process is helpful to discover the critical features derived from
dynamic FC, but it also increases the risk of overfitting. Second,
the selected ICs were not complete and accurate enough to
parcellate the whole brain, resulting in the loss of information
and details of brain activity. Given these limitations, larger
number of subjects and more precise atlas of brain are needed
in the future study.

CONCLUSION

To sum up, relatively higher accuracy of differentiating
adolescents with GAD from healthy controls was obtained when
temporal properties of dynamic FC were combined, proving
the potential of dynamic FC as a biomarker for adolescent
GAD. Moreover, by activation pattern analysis, we discovered
the GAD-related regions, including the subregions of CB and
DMN. Furthermore, our results suggested that MPFC was the
prominent region with more sensitivity in identification of
adolescent GAD.
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