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Abstract: Myocarditis comprises many clinical presentations ranging from asymptomatic to sud-
den cardiac death. The history, physical examination, cardiac biomarkers, inflammatory markers,
and electrocardiogram are usually helpful in the initial assessment of suspected acute myocarditis.
Echocardiography is the primary tool to detect ventricular wall motion abnormalities, pericardial
effusion, valvular regurgitation, and impaired function. The advancement of cardiac magnetic res-
onance (CMR) imaging has been helpful in clinical practice for diagnosing myocarditis. A recent
Scientific Statement by the American Heart Association suggested CMR as a confirmatory test to
diagnose acute myocarditis in children. However, standard CMR parametric mapping parameters
for diagnosing myocarditis are unavailable in pediatric patients for consistency and reliability in
the interpretation. The present review highlights the unmet clinical needs for standard CMR para-
metric criteria for diagnosing acute and chronic myocarditis in children and differentiating dilated
chronic myocarditis phenotype from idiopathic dilated cardiomyopathy. Of particular relevance to
today’s practice, we also assess the potential and limitations of CMR to diagnose acute myocarditis in
children exposed to severe acute respiratory syndrome coronavirus-2 infections. The latter section
will discuss the multi-inflammatory syndrome in children (MIS-C) and mRNA coronavirus disease
19 vaccine-associated myocarditis.

Keywords: myocarditis; children; COVID-19; multisystem inflammatory syndrome in children;
mRNA COVID-19 vaccine; cardiac MRI

1. Introduction

Myocarditis is an inflammatory disease of the myocardium and is a rare diagnosis in
children accounting for only 0.05% of pediatric hospital admissions [1]. Acute myocarditis
has a heterogeneous clinical course ranging from the asymptomatic presentation and grad-
ual onset of heart failure to fulminant myocarditis presenting as cardiogenic shock and
sudden death [2,3]. The complexity of these divergent presentations is further compounded
by the continuously evolving diagnostic criteria, making the diagnosis exceptionally chal-
lenging [2]. Children with acute myocarditis often present with resting tachycardia, chest
pain, respiratory distress, abdominal pain, and vomiting [3–6]. Chest pain is a typical symp-
tom of acute myocarditis in adolescents [7]. Electrocardiography (ECG) abnormalities are
present in approximately 90% of children with myocarditis, including ST-T wave, changes,
low voltage QRS complexes, and atrioventricular conduction delays [3,5,6]. Elevations in
cardiac biomarkers such as troponin and brain-type natriuretic peptides are common but
not specific for acute myocarditis in children [3,7,8].
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Echocardiography is the primary tool to determine the presence of left ventricular (LV)
wall motion abnormalities, pericardial effusion, valvular abnormalities, and function as-
sessment [9]. Endomyocardial biopsy (EMB) is the “gold standard” to confirm myocarditis,
but it is an invasive procedure with suboptimal sensitivity. The advancement of cardiac
magnetic resonance (CMR) imaging has been helpful in clinical practice for diagnosing
myocarditis. Reflecting this evolution, a recent Scientific Statement by the American Heart
Association (AHA) suggested CMR as the current gold standard for diagnosing myocardi-
tis [10]. In addition to tissue characterization, CMR is useful for evaluating the ventricular
function, myocardial wall thickness, chamber dilation, and pericardial effusion.

Clinically acute myocarditis implies a short time elapsed from the onset of symp-
toms (generally <1 month and up to 8 weeks) [11,12]. Chronic myocarditis (course of
disease ≥ 3 months) is a type of inflammatory cardiomyopathy with either a dilated or
non-dilated phenotype that is often characterized by regional or global wall motion abnor-
malities and impaired LV function [10]. In general, the prognosis of acute myocarditis is
good, but up to 30% of cases may progress to develop a dilated cardiomyopathy pheno-
type [13]. The relative roles of viruses, host genomics, and environmental factors in disease
progression and recovery are still unknown [14]. Consequently, treatment strategies are not
well established. Confirming the diagnosis of acute myocarditis in children by CMR with
tissue characterization using inverse recovery acquisition findings of myocardial inflamma-
tion is an essential milestone in the right direction and a paradigm shift towards a decreased
need for EMB [10]. However, standard CMR parametric mapping parameters for diagnos-
ing myocarditis are not established in pediatric patients for consistency and reliability in the
interpretation. This review highlights the unmet clinical needs for CMR parametric criteria
for diagnosing acute and chronic myocarditis in children and differentiating dilated chronic
myocarditis phenotype from idiopathic dilated cardiomyopathy (DCM). Of particular rele-
vance to today’s practice, we also assess the potential and limitations of CMR to diagnose
acute myocarditis in children exposed to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, the multi-inflammatory syndrome in children (MIS-C), and mRNA
coronavirus disease 19 (COVID-19) vaccine-associated myocarditis.

2. CMR Findings of Myocardial Inflammation and Pathological Correlations

Tissue characterization by CMR parametric mapping allows quantifying myocardial
changes based on T1 and T2 images for fibrosis, water content, and extracellular volume
fractions (ECV), a surrogate of interstitial fibrosis (Figure 1A–C and Figure 2A–C). It enables
differentiation between normal myocardial muscle, edema, and fibrosis, thereby serving as
a virtual biopsy [14,15]. CMR allows evaluation of all myocardial segments, contributing
to its superior sensitivity to EMB to detect myocarditis because myocardial inflammation
often has a heterogeneous, “patchy” distribution. Late gadolinium enhancement (LGE)
helps detect scarring and necrosis.
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(B) and the apex (C). Clinical vignette: A 20-month-old female with myocarditis associated with 

rhino/enterovirus, rapid left ventricular ejection fraction recovery from 24% to 48%, elevated tro-

ponin, and diffuse low voltage QRS complexes on electrocardiogram. There was no evidence of 

myocardial delayed enhancement after gadolinium contrast emphasizing the additional utility of 

T1 and T2 mapping in the evaluation of myocarditis. 

The diagnostic CMR criteria are derived from the common consensus among experts 

(Lake Louise Consensus (LLC) criteria) for myocarditis in adults [16]. The hallmark fea-

tures of myocardial inflammation on CMR are (1) T2-weighted imaging, which assesses 

for edema; (2) T1-weighted early gadolinium enhancement imaging (EGE), which assesses 

for hyperemia; and (3) LGE, which assesses for myocyte necrosis and scar. The CMR LLC 

criteria seem to have moderate accuracy in diagnosing acute myocarditis [17,18]. LLC cri-

teria are qualitative analyses and rely upon the increased signal intensity of the myocar-

dium relative to the normal myocardium. These criteria, therefore, have limited applica-

bility for diffuse myocardial involvement without focal findings. Subsequently, a revised 

version of the LLC was released in 2018 with quantitative tissue mapping techniques. Ac-

cording to the updated LLC criteria, myocarditis can be diagnosed with high specificity 

based on: (i) the presence of one of the T2-based criteria (i.e., regional or global increase 

in T2 relaxation time or increased signal intensity on T2 weighted images) and (ii) the 

presence of one T1-based criterion out of three: prolonged T1 relaxation time, elevated 

ECV or LGE [19]. Both criteria have a reported median area under the curve for detecting 

myocarditis ranging from 0.75 to 0.90. Either isolated T1- or T2-based criteria in the ap-

propriate clinical setting can suggest myocardial inflammation in adults [19,20]. It is im-

portant to note that the LLC criteria have not been validated in children. 

Figure 1. T1 mapping demonstrates a global increase in myocardial T1 relaxation times at the base
(A), mid-ventricular level (B), and the apex (C). The average left ventricular myocardial T1 relaxation
time is prolonged (1067 ms), and myocardial extracellular volume is elevated (32%).
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Figure 2. T2 mapping demonstrating the regional increase in myocardial T2 relaxation times at
the basal anteroseptal and anterolateral segments (A), with normal T2 times at the mid-ventricular
level (B) and the apex (C). Clinical vignette: A 20-month-old female with myocarditis associated
with rhino/enterovirus, rapid left ventricular ejection fraction recovery from 24% to 48%, elevated
troponin, and diffuse low voltage QRS complexes on electrocardiogram. There was no evidence of
myocardial delayed enhancement after gadolinium contrast emphasizing the additional utility of T1
and T2 mapping in the evaluation of myocarditis.

The diagnostic CMR criteria are derived from the common consensus among experts
(Lake Louise Consensus (LLC) criteria) for myocarditis in adults [16]. The hallmark fea-
tures of myocardial inflammation on CMR are (1) T2-weighted imaging, which assesses for
edema; (2) T1-weighted early gadolinium enhancement imaging (EGE), which assesses for
hyperemia; and (3) LGE, which assesses for myocyte necrosis and scar. The CMR LLC crite-
ria seem to have moderate accuracy in diagnosing acute myocarditis [17,18]. LLC criteria
are qualitative analyses and rely upon the increased signal intensity of the myocardium
relative to the normal myocardium. These criteria, therefore, have limited applicability for
diffuse myocardial involvement without focal findings. Subsequently, a revised version
of the LLC was released in 2018 with quantitative tissue mapping techniques. According
to the updated LLC criteria, myocarditis can be diagnosed with high specificity based
on: (i) the presence of one of the T2-based criteria (i.e., regional or global increase in T2
relaxation time or increased signal intensity on T2 weighted images) and (ii) the presence of
one T1-based criterion out of three: prolonged T1 relaxation time, elevated ECV or LGE [19].
Both criteria have a reported median area under the curve for detecting myocarditis ranging
from 0.75 to 0.90. Either isolated T1- or T2-based criteria in the appropriate clinical setting
can suggest myocardial inflammation in adults [19,20]. It is important to note that the LLC
criteria have not been validated in children.

The parametric mapping techniques have only recently begun to enter clinical use
in children, and their predictive utility in acute myocarditis remains an active area of
investigation. There is no comprehensive data for CMR based on the revised LLC criteria
in pediatric myocarditis except for small observational studies. A study on 43 consecutive
clinically suspected pediatric acute myocarditis patients demonstrated that the revised LLC
criteria enhance the diagnostic performance compared to conventional LLC criteria [21]. In
another retrospective study in 58 children with acute clinical myocarditis, LGE was identi-
fied as a predictor of poor outcomes [22]. Conventional LGE imaging can underestimate the
amount of myocardial injury in myocarditis. Native T1 and ECV maps may reveal hidden
myocardial injury in the normal-appearing myocardium of patients with myocarditis.

In one study, CMR was reported to have a low yield in diagnosing the severity of acute
myocarditis and does not predict outcomes in children [23]. However, this study was likely
underpowered to detect the outcome. Due to variability between individual scanners and
local site references, there are significant differences in CMR tissue characterization tech-
niques among pediatric centers and no standardized cutoff values for T1 or T2 relaxation
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times. Most centers use LGE for diagnosing scar or myocardial necrosis [24]. The presence
of LGE is likely a robust prognostic marker in children and adults with myocarditis [25,26].

Subepicardial inferolateral LGE is the most common pattern in adult patients with
acute myocarditis [27]. In contrast, a higher prevalence of a mid-wall or mixed LGE pattern
is reported in pediatric patients [27]. The mid-wall or mixed pattern of LGE was associated
with more severe disease progression and a higher complication rate than the subepicardial
inferolateral pattern [28,29]. The LGE distribution pattern may help differentiate myocardi-
tis from ischemic myocardial injury as seen in the anomalous left coronary artery from
the pulmonary artery (ALCAPA), congenital coronary ostial stenosis or atresia, coronary
fistula, or Kawasaki disease (KD) [30,31]. LGE involves the subendocardium following a
coronary territory in cases of ALCAPA, and KD confers to an infarction-like pattern. In
more severe cases, LGE may extend to transmural, resulting in a fully transmural pattern
(Figure 3).
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Figure 3. Late gadolinium enhancement (LGE) imaging allows the noninvasive visualization of areas
affected by myocardial scar, conferring clinicians the unique ability to differentiate ischemic from
nonischemic lesions based on typical LGE patterns.

LGE patterns for viral myocarditis are often confined to the intramural septal wall or
subepicardial lateral wall (Figure 4A,B), but the presence of LGE alone does not inform the
chronicity of the disease process. Furthermore, Mahrholdt et al. [32] described different
LGE patterns and correlated them with viral etiologies of acute myocarditis in children
and young adults. Parvovirus B19 myocarditis had LGE in the inferolateral segments. In
contrast, human herpes simplex type 6 (HHV6) myocarditis had LGE in the intraventricular
septum, and the difference in distribution was due to different viral cardiac tropisms. A
summary of CMR findings in children with either clinically suspected or EMB proved acute
and chronic myocarditis in children are described in Table 1.
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Figure 4. CMR in an adolescent with acute myocarditis: (A) Shows subepicardial early gadolinium
enhancement (EGE) (white arrow); (B) Shows subepicardial LGE (white arrow).

Patients with DCM often have a linear mid-myocardial LGE pattern, but a subendocar-
dial pattern strongly suggests previous myocardial ischemia or necrosis due to microthrom-
bus but spontaneous coronary recanalization or distal embolization from minimally stenotic
coronary lesions [33]. In contrast, chronic myocarditis rarely presents with a subendocardial
LGE pattern and rarely follows coronary artery distribution. Instead, the hallmark LGE
pattern of chronic myocarditis consists of patchy or longitudinal striae of mid-wall and
subepicardial enhancement. In chronic myocarditis, parametric tissue mapping to evaluate
myocardial T1 relaxation time and ECV helps detect diffuse fibrosis without focal LGE [34].

Table 1. CMR findings in clinically suspected acute and chronic myocarditis in children.

Reference n Age
CMR in Days

Following Acute
Clinical Myocarditis

Abnormal T1 Plus T2 CMR
Findings n (%) LGE + n (%)

Gagliardi et al. [35] 11 9 mo–9 yrs 24–48 days

Tissue characterization
obtained in T1 weighed

spin-echo sequences in 100%
of pts

Banka et al. [24] 143 16 yrs
(mean)

2 days
(mean)

LLC + ve in 117 (82%),
negative in 18 (13%),

And equivocal in 7 (5%)
yielding a sensitivity of 82%

115 (81%)

Martinez-Villar et al. [7] 26 0–16 yrs
(median) 14 yrs 11–53 days Total of 2 of 3 LLC in all

26 patients (100%) 26 (100%)

Cornicelli et al. [22] 23 15.1 yrs
(mean)

4.5 days
(mean)

LLC: diagnostic yield 57%
Revised LLC increased
diagnostic yield to77%

86%

Chinali et al. [25] 40
2–17 yrs
(median)

13 yrs

At admission
10/40 had FU CMR

Myocardial edema in
33 (82.5%)

6 recovered, 4(40%) had
persistent fibrosis

19 (47.5%)
4(40%) had

persistent LGE

Dubey et al. [36]

34
(Follow-up CMR in 12

who had LGE at
baseline)

10–17 yrs
(median 16 yrs) After discharge Persistence LGE in

10/12 (83%)

Martin et al. [28] 125 Average 15.1 yrs Average 8 days
Revised LLC in 94 (76%)

79 had FU: 16 pts had
disappearance of LLC

93 (74.4%)
35(28%) had

persistent LGE

Isaak et al. [21]

43
(Follow-up CMR in

27/43 pts
But only 17 had

parametric mapping
available)

8–21 yrs
(mean) 17 yrs

1–9 days of
initial diagnosis

53 days from the initial
CMR (median)

Focal edema in 32 (74.4%)
Persistent focal edema in

12/27 (44.4%)

36 (83.7%)
LGE persistent in 20/27

(74%)
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3. CMR in Acute Myocarditis

It has been more than 30 years since CMR diagnosis of acute myocarditis was described
in children [35]. Since then, the CMR technology has advanced, and more evidence
of its clinical utility has been reported and is now considered a confirmatory test for
diagnosing myocarditis in children [10]. However, the diagnostic value of CMR employing
the 2018 LLC criteria in pediatric and adolescent patients with acute myocarditis is not
externally validated. Furthermore, Lurz et al. assessed the performance of CMR and
compared it with EMB in 129 consecutive suspected acute myocarditis patients, reported
that the vast majority of patients had an excellent prognosis [37]. Thus, diagnosing acute
myocarditis in this group, while intellectually engaging, did not alter clinically as most
patients were managed with supportive care. It is unknown whether treatments with
anti-inflammatory agents (prednisone, interferon, etc.) or immunosuppressive agents
(azathioprine, sirolimus) directed at myocardial inflammation detected on CMR imaging
can improve early functionality after acute myocarditis.

Furthermore, CMR cannot differentiate three significant myocarditis types: lympho-
cytic, giant cell, and eosinophilic myocarditis, where specific therapy could improve my-
ocarditis and myocardial function [38]. Eosinophilic myocarditis is often easily reversible
with cessation of the offending allergen and early use of corticosteroids. The CMR find-
ings of circumferential LV subendocardial enhancement provide supportive evidence of
eosinophilic myocarditis in the presence of eosinophilia and allow for the prompt institu-
tion of measures to promote recovery and alter its prognosis [39]. Whether CMR imaging
alone is sufficient to initiate active treatment or guide immunosuppressive therapy in
lymphocytic myocarditis remains controversial. Frustaci et al. demonstrated significant im-
provement in myocardial function after prednisone and azathioprine immunosuppression
in 85 pathogen-negative biopsy-proven lymphocytic myocarditis patients [40]. Baccouche
et al. compared CMR and EMB in consecutive patients with acute myocarditis in adults
and suggested that combining CMR and EMB yields a considerable diagnostic synergy
by overcoming the limitations of CMR and EMB as individually applied techniques [41].
This hybrid approach reduces sampling error, thereby increasing the sensitivity of EMB
and making more detailed histopathological and etiological information available for
decision-making.

There is a bimodal distribution of acute myocarditis in the pediatric population, with
peaks during infancy and adolescents [2]. Besides the patient’s age, other factors may
influence the CMR parameters for T1 and T2 relaxation times, e.g., heart rate, respiratory
movements, or hydration status. Several practical considerations related to CMR must be
taken, especially for routine CMR for suspected acute myocarditis in infants and young
children, as they may not comply with breath holding during image acquisition. Each center
has strategies to minimize generalized and cardio-respiratory motion artifacts depending
on the child’s age, clinical condition, and available expertise and resources. Young children
often require deep sedation and anesthesia to prevent artifacts and poor-quality CMR
imaging [42,43]. CMR under general anesthesia is resource-intensive, requiring a pediatric
anesthesiologist with cardiac experience and CMR-compatible equipment [44,45]. Since
children with acute myocarditis are often very sick and pose a high risk for anesthesia,
continuing intensive monitoring despite limited access to the child during the scan poses
an additional challenge. Nonetheless, CMR seems to have an excellent safety profile
even in these children when managed by trained personnel, good communication, and a
comprehensive emergency plan [46,47].

4. CMR in Chronic Myocarditis

The European Society of Cardiology (ESC) Working Group on myocardial and peri-
cardial diseases described three inflammatory cardiomyopathies: viral myocarditis, au-
toimmune myocarditis, and viral-induced immune myocarditis [13]. Despite significant
advancements in the CMR-based diagnosis of myocarditis, there remain challenges in
differentiating between acute and chronic myocarditis and distinguishing the three crucial
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types of myocarditis. In patients with acute symptoms, parametric mapping techniques
provide a valuable tool for confirming or rejecting the diagnosis of myocarditis [48,49].
However, only T2 mapping has acceptable diagnostic performance in patients with chronic
myocarditis [37]. The role of finding LGE by CMR in chronic myocarditis is controversial,
and the implication of LGE findings in children differs from adults. In children and adoles-
cents with DCM, LGE is rarely detected by CMR despite marked LV dilatation and severely
depressed LV function, which undermines the role of LGE [50]. In contrast to DCM, in a
study of 222 consecutive adults with biopsy-proven myocarditis, the presence of LGE was
found to be the best independent predictor of all-cause mortality and cardiac mortality [51].
But in another study, CMR evidence of LGE in the acute phase of myocarditis was not a
predictive marker of recovery in children with follow-up CMR [52]. LGE could completely
disappear during the healing phase of acute myocarditis in children. In addition, LGE in
the mid-mural location is often found in DCM unrelated to inflammation and is associated
with ventricular tachycardia, increased morbidity mortality, and decreased response to
HF therapy in adults. Conversely, CMR imaging and texture analysis of myocardial T1
and T2 maps can differentiate acute and myocarditis and is superior to LLC or averaged
myocardial T1 and T2 values [53].

There is no agreement on the time interval to perform follow-up CMR or the duration
of follow-up after an episode of acute myocarditis in children. It is essential to differentiate
between inflammatory cardiomyopathy (subacute/chronic myocarditis with abnormal
ventricular function) from idiopathic DCM as there is a significant difference in prognosis
and outcomes [54]. Figure 5A–C and Figure 6A–C describe the T1 and T2 mapping images
in a 12-year-old child with a history of Parvovirus B19 infection who presented with dilated
LV with markedly decreased function and symptomatic heart failure. T1 mapping indicated
a global increase in T1 relaxation time, but as per revised LLC criteria, the sensitivity of
CMR drops as edema is less prominent than in acute myocarditis and even disappears
entirely in most cases of chronic myocarditis [26,55]. In contrast to edema, LGE generally
persists in most cases. However, its extent is slightly reduced from 6.2% to 4.1% of LV mass
after six months, according to data from 187 patients in the Italian Multicenter Study on
Acute Myocarditis Registry [56].
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Figure 6. T2 mapping demonstrating normal myocardial T2 relaxation times at the base (A), mid-
ventricular level (B), and at the apex (C). Clinical vignette: 12-year-old female with possible chronic
myocarditis associated with Parvovirus B19, dilated LV with decreased LVEF 22%.

5. CMR in COVID-19-Associated Myocarditis

The challenges in diagnosing acute myocarditis were highlighted during the recent
COVID-19 pandemic. In an extensive study of 718,365 COVID-19 patients from a global
federated health research network, 5% had new onset myocarditis, and those who presented
with myocarditis had increased odds of major adverse cardiac events [57]. The incidence
of myocardial injury was 19.7% among 416 hospitalized COVID-19 patients in Wuhan,
China [58]. The true epidemiology of COVID-19-related myocarditis in children is unknown
because it is difficult to prove that SARS CoV-2 is a cardiotropic virus. However, coronavirus
is known to induce myocarditis, though not being among the most commonly involved
viral agents. One case report showed localization of SARS-CoV-2 in myocardial interstitium
in an adolescent who died from acute fulminant myocarditis and cardiogenic shock [59].
In an autopsy series in adults, Lindner et al. [60] found that 24 (50%) had SARS-CoV-2
viral particles in their myocardial tissue samples but showed no evidence of myocardial
inflammation. However, Halushka et al. [61] reviewed 22 publications describing autopsy
results in 277 adult patients who died of COVID-19 and concluded that myocarditis was
infrequent (1.4%) in this population. EMB is not recommended to diagnose COVID-19
myocarditis because the findings of macrophage infiltration are not specific for COVID-19
myocarditis, and isolation of SARS-CoV-2 is rare [62].

The mechanism of myocardial injury due to COVID-19 is not well characterized. Possi-
ble direct myocardial involvement and myocarditis through binding of SARS-CoV-2 spike
protein to angiotensin-converting enzyme 2 (ACE2) protein, followed by endocytosis of
the virus and subsequent viral replication and ACE2 down-regulation. Lack of ACE2 may
decrease the conversion of Angiotensin II (ATII) to angiotensin, leading to an accumulation
of ATII and an increase in its harmful effects on the cardiovascular system. Activated T-cells
are responsible for cell-mediated cytotoxicity. Another possible mechanism for cardiovas-
cular morbidities in patients with COVID-19 is the systemic inflammatory response, which
may trigger hypoxia, ischemia, and vasculitis involving coronary arteries [63–66]. Note-
worthily, cytokine storm, known to exacerbate the clinical course of COVID-19, promotes
the activation of T-cells, which releases cytokines to maintain the exaggerated immune
response. A schematic diagram of the putative mechanism of SARS-CoV-2 viral-induced
myocarditis is shown in Figure 7.
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CMR findings in COVID-19-related acute myocarditis cases do not differ from what
is described in LLC criteria [67]. The Society for Cardiovascular Magnetic Resonance
Imaging has proposed a protocol to evaluate myocarditis in COVID-19 infection [68]. Out
of 100 adults who recently recovered from COVID-19, Puntmann et al. [69] identified
cardiac involvement in CMR in 78%, but the case selection of this cohort (with many
patients having new or persistent symptoms) influenced the high incidence. Many case
reports and meta-analyses [70–75] describing the CMR findings in adolescents and young
adult athletes aged 16 to 21 years who had positive for COVID-19 were published and
summarized in Table 2. An example of COVID-19 myocarditis in a 15-year-old soccer
player with linear subepicardial LGE is shown in Figure 8. There are no uniform CMR
criteria to consistently diagnose acute myocarditis in COVID-19 patients, and conflicting
CMR findings are reported in adults with COVID-19-associated myocarditis. One study
showed the presence of diffuse myocardial edema in symptomatic COVID-19-associated
myocarditis patients [76], whereas, in another study, there was less myocardial edema
in COVID-19-associated myocardial injury compared to all-cause myocarditis [77]. Fu-
ture studies with standardized CMR protocols are needed to investigate the long-term
cardiovascular consequences of COVID-19.

Table 2. CMR findings in children and young adults with COVID-19-associated myocarditis.

Reference n Age CMR in Days after
COVID-19 + Test

Clinical
Symptoms

Abnormal T1 Plus T2
CMR Findings n (%) LGE + n (%)

Gnecchi M, et al. [72] 1 16 yrs 2 days Symptomatic T2 mapping-patchy
edema of the lateral wall Subpericardial LGE+

Das BB [73] 1 16 yrs 60 days Symptomatic

ECV 40%
Relative myocardial signal
intensity was calculated to
be >2.4 compared to the

pectoralis muscle

No LGE

Rajpal et al. [74] 26 19–21 yrs 11–53 days 46% symptomatic 4 (15%) 12 (46%)

Clark et al. [75] 59 19–21 yrs 13–37 days 78% symptomatic 16 (27%) 2 (3%)

Starekova et al. [76] 145 19–21 yrs 11–94 days 77% symptomatic 2 (1.4%) 42 (29%)

Kim In-C et al. [77] 1 21 yrs NA Symptomatic Native T1 +ve for
ECV 61%, Transmural LGE +
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6. CMR in Myocarditis with MIS-C 
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Figure 8. LGE in the mid myocardium of the inferior and lateral wall (white arrows). Clinical
vignette: 15-year-old-female soccer player with COVID-19-associated myocarditis. This subject
reported shortness of breath and chest pain with activity and was found to have ventricular ectopy
and non-sustained runs of ventricular tachycardia on Holter monitoring.

6. CMR in Myocarditis with MIS-C

The pathophysiology of MIS-C is not fully understood. Preliminary studies suggest
that a cytokine storm with a vasculitis process, myocardial edema, and microvascular
disease are likely to contribute [78,79]. The CMR is only indicated when there is cardiac
dysfunction by echocardiography and does not improve with a decrease in inflammatory
markers. Therefore, in most cases, the CMR was performed at variable times from the initial
clinical presentation. Bartoszek et al. [80] reported normal CMR two months after COVID-
19-related MIS-C in 19 children with initial LV dysfunction by echocardiography. Webster
et al. [81] reported normal CMR in 20 children without evidence of initial LV dysfunction
at three months follow up after COVID-19 MIS-C. A multicenter international study of
111 children diagnosed with MIS-C showed that 20 (18%) patients had CMR criteria for
acute myocarditis (as defined by LLC), and LGE was present in 18 of those 20 patients [82].
The authors of the study suggested that CMR helps identify a subset of MIS-C patients
at risk for cardiac sequelae [82]. Other studies have shown diffuse myocardial edema on
T2 inversion recovery sequences and native T1 mapping with no evidence of LGE one
week after onset of symptoms, suggesting that CMR parametric mapping helps diagnose
acute myocarditis in MIS-C in children [83]. On the other hand, another study in children
where CMR was performed on 21 MIS-C patients six months after discharge from the
hospital showed no evidence of edema in T2-weighed sequences, and three patients had
LGE [84]. Figure 9 describes CMR findings of elevated T1 relaxation time but no LGE in an
8-year-old girl three months after MIS-C. The difference in variability of CMR findings in
MIS-C patients might be related to the timing when CMR was performed. Normal CMR
was reported in children during mid-term recovery from MIS-C [81].
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In a few studies, CMR showed no evidence of LGE, and there was no correlation be-
tween LGE and LV dysfunction. However, another study demonstrated a good correlation
between CMR-based myocardial parametric mapping and echocardiography-based global
longitudinal strain and strain rate [85]. The authors of this study also showed that none
of the 70% of MIS-C cases with biochemical evidence of myocardial injury at presentation
had residual LGE on follow-up at three months [85]. CMR can be helpful in both acute and
convalescent periods, where echocardiography may provide inadequate images. Further
studies are needed to determine the long-term functional implications of CMR findings
in MIS-C.

7. CMR in mRNA COVID-19 Vaccine-Associated Myocarditis

Since April 2021, increased acute myocarditis cases have been reported in conjunction
with the COVID-19 vaccinations, particularly among adolescents [86–93]. The pathogenesis
of mRNA COVID-19 vaccine-associated transient myocarditis is unknown, but an antibody-
mediated mechanism is speculated. However, Muthukumar et al. [94] explored the SARS-
CoV-2 antibody levels in patients with acute myocarditis and failed to prove the hypothesis
of antibody-mediated myocardial injury. The three main mechanisms by which COVID-19
mRNA vaccines might induce hyperimmunity are mRNA immune reactivity, antibodies
to SARS-CoV-2 spike glycoproteins cross-reacting with myocardial contractile proteins,
and hormonal differences [95]. Alternatively, the lipid nanoparticle sheath, a common
structural component of m-RNA vaccine platforms, could be implicated in the pathogenesis
of vaccine-induced myocarditis [96].

The published reports suggest myocardial Inflammation in many mRNA vaccine-
associated myocarditis patients where CMR was abnormal as defined by the 2018 revised
LLC criteria. The available studies indicate mild clinical symptoms and rapid resolution of
myocarditis after mRNA vaccination. CMR showed LGE was common in these patients
(94% had LGE), and normal LV systolic function was usual by an echocardiogram (92%
had normal systolic function by echocardiogram) [88]. In this cohort, the pattern of LGE
was largely subepicardial or mid-myocardial. In the short-term follow-up, all patients with
vaccine-associated myocarditis reported in the cohort were asymptomatic with no adverse
events. In another study of 69 patients with COVID-19 vaccine-associated myocarditis,
most patients had normal LV systolic function with mild LV dysfunction noted in 14%
(9 patients) [87]. In this study, most patients (88%) had myocardial edema and LGE. All
of these patients with LGE had involvement in the subepicardial layer of the lateral and
inferior wall of the LV [87]. The distribution of LGE in a 16-year-old male is shown in
Figure 10. The long-term impact of LGE found by CMR in the setting of normal LV function
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by echocardiogram remains unknown and needs to be followed with repeat CMR in
6 to 12 months.
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Figure 10. A 16-year-old-male with mRNA COVID-19 vaccine-associated myocarditis. (A) subepicar-
dial LGE (white arrow); (B) subepicardial LGE (white arrow); (C) early gadolinium enhancement
(EGE) (white arrow); and (D) shows enhanced T2 signal (white arrow).

8. Conclusions

Polymerase chain reaction testing revealed a broad spectrum of viruses, including
rhinovirus, influenza A/B, respiratory syncytial virus, coronavirus, adenovirus, coxsackie
B5 virus, enterovirus, and parainfluenza virus in children with myocarditis in the pre-
COVID-19 era [97]. In the last decade, the etiology of myocarditis has shifted dramatically,
with parvovirus B19 and HHV6 replacing cases due to enterovirus and adenovirus. In the
current era, the ongoing COVID-19 pandemic and the increasing number of myocarditis
related to SARS-CoV-2 infection might bring about yet another etiological shift. Recently,
CMR has emerged as an essential test because of its noninvasive nature, high sensitivity,
and ability to comprehensively evaluate the myocardial function, structure, and tissue
characterization. However, CMR findings and LGE extension can be a dynamic process and
time-dependent in the acute phase of acute myocarditis. Per the consensus statement by the
Society for Cardiovascular Magnetic Resonance [34], parametric CMR T1 and T2 imaging
were superior to LGE in diagnosing and prognosis of acute myocarditis in adults. However,
there is a need for external validation of CMR parametric parameters in children. The
present review identified a crucial need for more in-depth information on CMR parametric
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imaging parameters to accurately diagnose and manage myocarditis in children and predict
adverse long-term outcomes in patients with suspected acute myocarditis.
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