
Genomic regions associate with major axes of variation
driven by gas exchange and leaf construction traits in
cultivated sunflower (Helianthus annuus L.)

Ashley M. Earley1,* , Andries A. Temme1,2 , Christopher R. Cotter1 and John M. Burke1

1Department of Plant Biology, University of Georgia, Athens, Georgia, USA, and
2Division of Intensive Plant Food Systems, Humboldt-Universität zu Berlin, 10117, Berlin, Germany

Received 20 April 2022; revised 1 July 2022; accepted 6 July 2022; published online 11 July 2022.

*For correspondence (e-mail ashleyearley@uga.edu).

SUMMARY

Stomata and leaf veins play an essential role in transpiration and the movement of water throughout

leaves. These traits are thus thought to play a key role in the adaptation of plants to drought and a better

understanding of the genetic basis of their variation and coordination could inform efforts to improve

drought tolerance. Here, we explore patterns of variation and covariation in leaf anatomical traits and ana-

lyze their genetic architecture via genome-wide association (GWA) analyses in cultivated sunflower

(Helianthus annuus L.). Traits related to stomatal density and morphology as well as lower-order veins were

manually measured from digital images while the density of minor veins was estimated using a novel deep

learning approach. Leaf, stomatal, and vein traits exhibited numerous significant correlations that generally

followed expectations based on functional relationships. Correlated suites of traits could further be sepa-

rated along three major principal component (PC) axes that were heavily influenced by variation in traits

related to gas exchange, leaf hydraulics, and leaf construction. While there was limited evidence of colocal-

ization when individual traits were subjected to GWA analyses, major multivariate PC axes that were most

strongly influenced by several traits related to gas exchange or leaf construction did exhibit significant

genomic associations. These results provide insight into the genetic basis of leaf trait covariation and show-

case potential targets for future efforts aimed at modifying leaf anatomical traits in sunflower.

Keywords: deep learning, genome wide association, leaf anatomy, neural network, stomata, sunflower,

venation.

INTRODUCTION

Stomata and leaf veins are central players in plant water rela-

tions. Veins distribute water throughout the leaf and stomata

control the rate of transpiration (Sack and Scoffoni, 2013). As

such, these traits are generally thought to play a key role in

the adaptation of plants to drought (e.g., Bertolino et

al., 2019; Sack and Scoffoni, 2013), a major agricultural stress

that limits plant growth and productivity worldwide (NOAA;

IPCC, 2014). Plant performance in water-limited conditions is

known to be influenced by stomatal and vein traits (Lei et

al., 2018; Scoffoni et al., 2011; Buckley, 2019). Stomatal con-

ductance (gs), a measure of the conductance of CO2 and

water vapor through the stomata, is determined by the physi-

ological control of stomatal opening and closing as well as

the size and distribution of stomata (Faralli et al., 2019). Simi-

larly, vein length per area (VLA) affects leaf hydraulic conduc-

tance (Kleaf), or the ratio of water flow rate to the water

potential gradient across the leaf, and thus greatly affects

how long stomata can remain open without drying out the

leaf (Sack and Scoffoni, 2012). While substantial work has

been done on the developmental and regulatory pathways

determining stomatal density and morphology (e.g., Gudes-

blat et al., 2012; Bergmann and Sack, 2007) less is known

about the genetic basis of the observed relationships

between stomatal and leaf vein traits.

Leaf veins distribute water from the petiole throughout

the leaf. In the intracellular space, water then moves

through the mesophyll to the ultimate site of transpiration,

the stomata. It is important to note here that stomata can

be distributed on both the top (adaxial) and bottom (abax-

ial) sides of the leaf, and that species with stomata on both

sides (i.e., amphistomatous) tend to have greater gas

exchange capacity than species with stomata on a single

side (Xiong and Flexas, 2020). An increase in the number

of stomata on the upper side leads to increased maximum

photosynthetic rates and to increased rates of transpiration
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due to increased CO2 diffusion (Muir, 2018; Xiong and

Flexas, 2020). Due to these effects on water supply and

loss, a close relationship between vein density and stom-

atal size/density is expected to be important for the opti-

mization of water transport and transpiration (Fiorin

et al., 2016; Bertolino et al., 2019). In particular, a shorter

vein-to-stomata distance is thought to improve gas

exchange and photosynthetic performance (Brodribb et

al., 2007; de Boer et al., 2012). This distance is affected by

traits such as stomatal density, vein density (estimated as

VLA), leaf thickness, and cell shape (Brodribb et al., 2007;

de Boer et al., 2012). As a general rule, vein and stomatal

density are positively correlated (Sack and Scoffoni, 2013)

while stomatal size and density are negatively correlated

(Shahinnia et al., 2016; Doheny-Adams et al., 2012). Smal-

ler epidermal cell size is also known to correlate with

increases in stomatal and vein densities (Simonin and

Roddy 2018; Brodribb et al. 2013). Such correlations are

observed within (Carins Murphy et al., 2014) and across

species (Zhang et al., 2012), though the extent to which

these trait correlations are conditioned by genetic correla-

tions (i.e., linkage or pleiotropy of major-effect loci)

remains an open question.

At the whole-leaf level, plant species exhibit a range of

strategies related to the cost of leaf construction. Traits

such as leaf mass per area (LMA) and VLA play a role in

leaf construction in addition to affecting leaf hydraulics

(Xing et al., 2021; Poorter et al., 2009; John et al., 2017).

These strategies occur along a major axis of leaf trait varia-

tion (the leaf economics spectrum [LES]), which ranges

from resource-conservative (i.e., ‘slow’) with a greater

investment in leaf construction to resource-acquisitive (i.e.,

‘fast’) with a smaller investment in leaf construction

(Wright et al., 2004; Reich, 2014; Dı́az et al., 2016). A key

indicator trait for the location of species along this spec-

trum is LMA, with leaf hydraulic traits (allocation to major

versus minor veins in particular) accounting for a portion

of the observed variation in LMA (John et al., 2017). Inves-

tigating the variation present in both finer-scale aspects of

leaves and whole-leaf traits promises to broaden our

understanding of the evolution of correlated suites of leaf

traits.

To date, most studies focusing on within-species varia-

tion in leaf anatomy have either relied on relatively small

sample sizes or largely focused on stomatal traits to the

exclusion of vein traits (e.g., Khan et al., 2003; Ries et

al., 2012; Shi et al., 2021; Haworth et al., 2021). The general

dearth of studies that explicitly examine the genetic basis

of stomatal and vein traits, particularly in tandem, is likely

due to challenges associated with the large-scale pheno-

typing of such traits. One study on wild tomato (Solanum

pimpinellifolium) found that strongly correlated leaf traits

were not controlled by the same quantitative trait locus,

suggesting that natural selection had favored particular

trait combinations (Muir et al., 2014). However, another

study on wild Arabidopsis accessions found that stomatal

density correlated with various other leaf traits, including

stomatal index and pavement cell density, and that they

seemed to share a common genetic basis (Delgado et

al., 2011). The lack of a clear pattern across species leaves

as an open question the extent to which variation in such

traits can be decoupled, thereby allowing them to vary

independently.

Here, we describe patterns of phenotypic variation in

leaf traits in cultivated sunflower (Helianthus annuus L.)

and investigate their genetic architecture via genome-wide

association (GWA) analyses. Domesticated from the com-

mon sunflower (also H. annuus; Wills and Burke, 2006;

Blackman et al., 2011), cultivated sunflower is one of the

world’s most important oilseed crops (FAO, 2018). Often

grown in rainfed regions, sunflower productivity is fre-

quently dependent on natural patterns of precipitation.

While sunflower is generally regarded as being drought-

resistant due to its ability to root deeply (Connor and

Sadras, 1992), drought is considered to be a major yield-

limiting factor across the range of production (Hussain et

al., 2018), making traits underlying plant–water relations a

vital avenue of research. Prior work on sunflower has

shown substantial variability and plasticity in leaf anatomi-

cal traits (Wang et al., 2020). Previous genomic analyses,

however, have been largely limited to higher-level traits

such as leaf mass, leaf area, LMA, and leaf mass fraction

(Temme et al., 2020; Masalia et al., 2018). To overcome

limitations in the analysis of vein traits, we developed a

neural network deep learning approach to increase pheno-

typing efficiency from digital images (see Xu et al., 2020

for a similar approach), enabling an investigation of the

genomic basis on finer-scale leaf anatomical traits.

In this study, we sought to: (i) quantify phenotypic varia-

tion in stomatal and leaf vein traits and test for trait corre-

lations in sunflower, (ii) identify genomic regions

underlying these traits using GWA analyses, and (iii) deter-

mine the extent to which observed trait correlations are

due to a shared genetic basis. Our results provide insight

into the genetic complexity of these traits and the degree

to which observed trait correlations are constrained by

linkage or pleiotropy of major-effect loci and serve as a

valuable first step toward optimizing leaf trait combina-

tions via breeding.

RESULTS

We sampled leaves from a diversity panel of 239 cultivated

sunflower genotypes from the Sunflower Association Map-

ping (SAM) population (Mandel et al. 2011) grown under

greenhouse conditions. These leaves were then used to

collect measurements for a variety of leaf anatomical traits

(Figure 1). Traits of interest included stomatal density and

size and VLA for major and minor veins (Figure 1) as well
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as traits including LMA, midrib density, and plant biomass.

With the exception of minor veins, which were traced using

a novel deep learning neural network (Methods S1), all

traits were measured manually. Trait correlations were

examined using bivariate and multivariate analyses and

genetic associations were determined using a custom GWA

pipeline. See Experimental Procedures for full details.

Patterns of phenotypic variation and trait correlations

Significant genotypic effects were detected for all traits

measured except midrib mass fraction (Table 1). Table 1

lists the median, minimum, and maximum values found

for all traits measured, demonstrating substantial trait vari-

ation across the population. Comparison of manually mea-

sured VLA to the results from the neural network analysis

revealed a strong correlation (Pearson’s r = 0.97), demon-

strating the accuracy and validity of these computer-

generated measurements (Figures S1 and S2).

Trait correlations were examined using both bivariate

and multivariate analyses. Stomatal density and size traits

from the top and the bottom of each leaf were strongly

correlated with each other (Figure 3a; Figure S4; e.g.,

SD_Top versus SD_Bottom, PL_Top versus PL_Bottom); as

such, stomatal sum (SD_Top + SD_Bottom) and averages

of the top and bottom for other traits were used for analy-

ses moving forward. Bivariate analysis revealed numerous

significant trait correlations among stomatal and vein traits

(Figures 2 and 3). Notably, stomatal density and length

were negatively correlated (Figure 3b), stomatal density

and VLA were positively correlated (Figure 3c), and stom-

atal length and VLA were negatively correlated (Figure S4).

VLA was positively correlated with both average stomatal

density and theoretical gsmax (Figure 3d). The only traits

that were significantly correlated with leaf area were sec-

ond VLA and major VLA and biomass traits indicating that

trait scaling with leaf size did not play a major role in

observed patterns of anatomical variation. For all bivariate

plots see Figure S4.

Multivariate trait correlations were analyzed via principal

component analysis (PCA) to determine major axes of vari-

ation. Because stomatal trait values on the top and bottom

of the leaf were strongly correlated, we again used an aver-

age of the top and bottom values for stomatal size traits

including length, pore length, and guard cell width (Fig-

ure 4; see Figure S5 for a full PCA including the top and

bottom traits separately). The first three PCs combined

explain 62.9% of trait variation (Figure S6), with PC1

explaining 30.3%, PC2 explaining 22.6%, and PC3 explain-

ing 10.0% of variation. The top three traits contributing to

each of the major axes were: PC1 – stomatal density

(SD_Sum), stomata per vein length (SV), and whole-plant

biomass (Plant Bio); PC2 – second VLA, major VLA, and

leaf area; and PC3 – midrib density, midrib mass fraction,

and LMA (Table 2). While all traits have a loading score on

each PC axis, we sought to infer some functional signifi-

cance for each of the major axes of variation. Given the

Figure 1. (a) Left: Image of dissected leaf. Right: Cleared and stained leaf showing major veins (green). Left inset: Image of a single stoma taken using the 100×
objective. Colored lines indicate measurements taken: stoma length (red), pore length (yellow), and guard cell width (white). Right inset: A microscope image of

minor veins taken using the 5× objective. (b) Top: Image of minor veins taken at 5×. Bottom: Image of computer-traced minor veins using our deep learning

approach. See Experimental Procedures for details.
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observed trait loadings, PC1 appears to be most heavily

influenced by traits related to gas exchange functioning

such as stomatal density sum and SV. In contrast, PC2 is

strongly influenced by traits related to hydraulic function-

ing including major VLA and second VLA. Finally, PC3 is

heavily influenced by traits related to cost of leaf construc-

tion including LMA and midrib traits.

Genetic architecture of observed trait variation

As a first step toward understanding the genetic basis of

variation in leaf anatomical traits, we estimated narrow-

sense heritability for all traits under consideration

(Table 3). Midrib traits and VLA (major and minor) had

very low heritabilities (0.05 to 0.11) and the confidence

intervals of these estimates all overlapped with zero.

Stomatal traits had somewhat higher heritability, rang-

ing from 0.08 to 0.20. Heritability values largely reflected

our GWA results (see below) in those traits with the low-

est heritability estimates having few significant associa-

tions.

Our GWA analyses revealed significant associations for

12 out of 24 traits and two of the three major PC axes

Table 1 List of all traits measured along with the median and range of trait values

Trait Median Min Max Genotypic effect Adjusted R2

SD_Bottom (stomata/mm2) 211.20 125.17 399.17 *** 0.24
SD_Top (stomata/mm2) 158.72 86.73 288.62 *** 0.21
SD_Sum (stomata/mm2) 373.37 227.50 369.30 *** 0.25
Stomatal ratio (bottom/sum) 0.57 0.48 0.68 *** 0.16
LMA (g/m2) 22.56 12.28 32.03 *** 0.33
Leaf area (m2) 0.0096 0.0035 0.0228 *** 0.48
Midrib MF (gmidrib/gleaf) 0.07 0.03 0.10 ns 0.04
Midrib density (mg/cm3) 67.49 33.93 118.86 * 0.10
GCW_Bottom (μm) 6.51 5.28 8.00 ** 0.09
GCW_Top (μm) 5.94 4.67 7.79 *** 0.12
GCW_Avg (μm) 6.24 4.98 7.89 *** 0.12
SL_Bottom (μm) 33.31 27.74 42.09 *** 0.18
SL_Top (μm) 30.60 25.62 36.63 *** 0.15
SL_Avg (μm) 32.09 26.81 39.36 *** 0.19
PL_Bottom (μm) 24.26 19.02 31.95 *** 0.21
PL_Top (μm) 21.78 16.90 29.19 *** 0.16
PL_Avg (μm) 23.13 18.57 29.55 *** 0.20
gsmax (mol/m2s) 10.73 7.05 18.56 *** 0.35
VLA (mm/mm2) 9.48 7.03 12.63 *** 0.23
Second VLA (mm/mm2) 0.07 0.02 0.14 *** 0.19
Major VLA (mm/mm2) 0.10 0.05 0.20 *** 0.21
SV (stomata/mm) 19.82 12.99 31.84 *** 0.24
AG Bio (g) 3.78 0.80 9.45 *** 0.53
Plant Bio (g) 4.31 1.01 10.65 *** 0.53

AG, aboveground; Bio, biomass; GCW, guard cell width; gsmax, theoretical maximum stomatal conductance; LMA, leaf mass per area; MF,
mass fraction; PL, stomatal pore length; SD, stomatal density; SL, stomatal length; SV, stomata per vein length; VLA, vein length per area.
Significance for genotypic effects (***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, ns = not significant) and adjusted R2 from the model are also pre-
sented.
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length per area.
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(Table 3, Figure 5). There were suggestive associations for

several other traits as well (Figure 5c; Figure S8). Based on

observed patterns of linkage disequilibrium (LD), we identi-

fied a total of 24 independent genomic regions with a sig-

nificant effect on one or more traits (Figure 5c; Figure S7).

Trait colocalization within these regions varied. For exam-

ple, there were multiple regions on chromosome 11 that

associated with both aboveground plant biomass and

whole-plant biomass, and a region on chromosome 3 (i.e.,

region 03–01) was significantly associated with gsmax while

being suggestive for stomatal density and VLA. Interest-

ingly, PC1 (traits primarily related to gas exchange) had a

single significant association (on chromosome 12; region

12–01) but no suggestive associations; moreover, this sin-

gle region was not suggestive for any other traits (Fig-

ure 5a). SV, a top contributor to PC1, had a single

significant association along with four suggestive regions,

none of which corresponded to PC1 (Figure 5b). Similarly,

PC3 had a single significant association (on chromosome

3; region 03–02) that did not correspond to any other traits.

Overall, we found somewhat limited evidence for trait

colocalization despite the prevalence of significant trait–
trait correlations (Figure 5c). Indeed, no region was signifi-

cantly associated with more than one or two traits. How-

ever, the inclusion of suggestive associations revealed

more support for a common genetic basis. Traits with the

largest number of colocalizations were stomatal size and

density-related traits. For example, region 13–01 had seven

associations including a significant association for stom-

atal density (top) and suggestive associations for leaf area,

pore length (top and average), stomatal density (bottom

and sum), and SV (Figure 5c). No significant associations

were identified for VLA, although there was a suggestive

association in region 03–01, which was significant for gsmax

and suggestive for stomatal density (both bottom and

sum). Allelic effects in this case were consistent with

observed trait correlations, with an increase in gsmax being

associated with an increase in VLA and stomatal density.

Relative effect sizes (RES) for individual associations ran-

ged from 9 to 35% of the observed range of trait variation.

Summing across regions, traits with significant associa-

tions had total RES values of approximately 12–90%. Sto-

matal density top had the largest amount of variation

explained at 89.6% and midrib density the least with

12.3%. Significantly associated regions varied in size, rang-

ing from a single single-nucleotide polymorphism (SNP) to

6.52 Mbp, though they tended to cluster at the lower end

of the range with the majority being <200 kbp (mean =
592.7 kbp, median = 77.54 kbp; Table S2). These regions

contained anywhere from 1 to 135 genes; here again, the

significant regions tended to cluster at the lower end of

this range (mean = 12.3 genes, median = 2 genes; Table

S2). The most gene-rich regions (i.e., 10–01, 12–01) were

significantly associated with variation in plant biomass and

PC1, respectively (Figure 5C; Figures S4 and S9). A full list

of gene names and annotations is available in Table S2.

Table 2 Trait loadings (fraction of trait variation explained by prin-
cipal component) of the first three principal components (PCs).
The top three traits per PC are highlighted in bold and with the
ranking of the traits for each PC in parentheses. Trait abbrevia-
tions are as defined in Table 1

Trait PC1 PC2 PC3

SD_Sum 16.08 (1) 4.46 (9) 1.76 (8)
SD_Ratio 0.13 (14) 0.32 (14) 5.48 (4)
LMA 9.75 (5) 0.17 (15) 5.66 (3)

Leaf area 5.42 (9) 15.94 (3) 1.16 (9)
Midrib MF 1.14 (13) 0.93 (11) 30.73 (2)

Midrib density 0.09 (15) 2.22 (10) 42.88 (1)

GCW_Avg 1.23 (12) 7.23 (7) 0.74 (10)
SL_Avg 8.21 (6) 8.90 (5) 0.36 (12)
PL_Avg 7.38 (7) 9.13 (4) 0.13 (15)
gsmax 10.75 (4) 0.84 (13) 3.89 (6)
VLA 4.11 (11) 7.39 (6) 0.26 (13)
Second VLA 5.10 (10) 17.40 (1) 0.44 (11)
Major VLA 6.09 (8) 17.24 (2) 0.24 (14)
SV 12.65 (2) 0.91 (12) 4.25 (5)
Plant Bio 11.87 (3) 6.92 (8) 2.03 (7)

Table 3 List of all traits measured along with estimated narrow-
sense heritabilities, numbers of significantly associated regions,
and total relative effect sizes (RES Sum). Trait abbreviations are as
defined in Table 1

Trait h2
No.
Reg.

RES
Sum

SD_Bottom (stomata/mm2) 0.18 (0.10–0.26) 2 45.2
SD_Top (stomata/mm2) 0.13 (0.07–0.20) 4 89.6
SD_Sum (stomata/mm2) 0.16 (0.09–0.24) 2 61.3
Stomatal ratio (bottom/sum) 0.12 (0.05–0.19) 3 53.8
LMA (g/m2) 0.32 (0.22–0.41) – –
Leaf area (m2) 0.08 (0.04–0.12) 1 15.4
Midrib MF (gmidrib/gleaf) 0.05 (−0.01–0.12) 2 20.8
Midrib density (mg/cm3) 0.05 (−0.01–0.10) 1 12.3
GCW_Bottom (μm) 0.08 (0.03–0.14) – –
GCW_Top (μm) 0.11 (0.05–0.17) – –
GCW_Avg (μm) 0.10 (0.04–0.16) – –
SL_Bottom (μm) 0.17 (0.09–0.25) – –
SL_Top (μm) 0.14 (0.08–0.21) – –
SL_Avg (μm) 0.18 (0.10–0.25) – –
PL_Bottom (μm) 0.20 (0.12–0.28) 1 22.2
PL_Top (μm) 0.15 (0.08–0.22) – –
PL_Avg (μm) 0.19 (0.11–0.27) – –
gsmax (mol/m2s) 0.27 (0.18–0.36) 2 39.8
VLA (mm/mm2) 0.06 (0–0.11) – –
Second VLA (mm/mm2) 0.05 (0.02–0.09) – –
Major VLA (mm/mm2) 0.11 (0.05–0.17) – –
SV (stomata/mm) 0.23 (0.15–0.31) 1 19.1
AG Bio (g) 0.49 (0.40–0.58) 3 41.0
Plant Bio (g) 0.46 (0.37–0.56) 6 84.3
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Figure 5. Examples and summary of GWA results. (a) Manhattan plot of PC1 showing the single significantly associated region on chromosome 12. (b) Manhattan

plot of stomata per vein length (SV) showing the single significantly associated region on chromosome 10 and suggestive associations on chromosomes 5, 6, 8,

and 13. In both plots, the red line is the significance threshold based on the modified Bonferroni correction and the blue line is the suggestive threshold based on

the top 0.1% of all SNPs. Differently colored dots represent all SNPs in a region that are significant or suggestive for at least one trait. (c) Visual summary of all

GWA results highlighting colocalization within regions. The dendrogram to the left is based on hierarchical clustering of trait correlations. Green and gray boxes

indicate significant or suggestive associations with a given trait, respectively. The sign (+/−) refers to the sign of ꞵ (the effect of the minor allele on the trait value).

Regions are numbered numerically within chromosomes and box/region sizes are arbitrary. Ratio refers to the stomatal ratio. Trait abbreviations are otherwise as

defined in Table 1.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2022), 111, 1425–1438

Genomics of leaf trait variation in sunflower 1431



DISCUSSION

Stomata and leaf veins are central to plant–water relations

and thus potentially important players in determining the

performance of plants under water stress. Here, we investi-

gated patterns of variation and covariation in stomatal and

vein traits across a diversity panel of inbred cultivated sun-

flower breeding lines with the goal of improving our

understanding of covariation between these traits and their

underlying genetic basis. We additionally sought to deter-

mine the extent to which observed trait correlations result

from genomic colocalization which would indicate that trait

relationships are genetically constrained and difficult (if

not impossible) to disrupt in the interest of producing

novel combinations. In quantifying variation in stomatal

and vein traits, we observed numerous correlations among

traits (Figures 2 and 3). Across traits, we identified three

primary axes of variation that we interpreted as being most

heavily influenced by traits involved in gas exchange,

hydraulics, and leaf construction (Figure 2; Table 2). Sub-

sequently, we performed GWA analyses to examine the

genetic architecture of these traits and axes. We found

somewhat limited overlap in significant genomic associa-

tions across traits, though we did identify significant asso-

ciations for two of the three multitrait axes (Figure 5;

Table 3).

Patterns of phenotypic variation and trait correlations

Leaf anatomical traits are known to vary widely across spe-

cies and environments. For example, stomatal length has

been shown to vary globally between 10 and 80 μm with

density varying between 5 and 1000 stomata/mm2 (Shahin-

nia et al., 2016; Hetherington and Woodward, 2003). Addi-

tionally, a global dataset of 796 species revealed broad

variation in estimates of VLA, ranging from 0.1 to

24.4 mm/mm2 (Sack and Scoffoni, 2013). In cultivated sun-

flower, we documented substantial variation in stomatal

size and density as well as VLA. Indeed, observed trait val-

ues covered 14% (227.5–369.3 stomata/mm2) of the global

range in stomatal density, 18% (26.8–39.4 μm) of the global

range in stomatal length, and 23% (7.0–12.6 mm/mm2) of

the global range in VLA (Table 1). While there is a general

lack of large datasets describing intraspecific variation in

these sorts of traits, particularly for VLA, the ranges that

we observed in cultivated sunflower appear quite wide.

For example, a global collection of 62 wild accessions of

Arabidopsis thaliana, grown under benign conditions, cov-

ered just 4.3% (17–59 stomata/mm2) of the global range of

stomatal densities (Delgado et al., 2011), while a collection

of 330 accessions from across the European range of the

same species covered less than 12% (87–204 stomata/

mm2) of the global range (Dittberner et al., 2018). The wide

range of variability observed herein is perhaps even more

noteworthy given that cultivated sunflower has

experienced genetic bottlenecks associated with domesti-

cation and improvement that reduced levels of genetic

variability as compared to its wild progenitor (Liu and

Burke, 2006; Mandel et al., 2011; Park and Burke, 2020).

When analyzed together, leaf anatomical traits exhibited

many significant bivariate trait correlations that generally

followed expectations based on the literature and their

known roles in plant–water relations (Sack and Scof-

foni, 2013; Doheny-Adams et al., 2012; Shahinnia et

al., 2016; Figure 2). For example, our data showed that

stomatal density and VLA are positively correlated. This

was expected as there tends to be a balance between

stomata and veins such that water use and carbon acquisi-

tion are optimized (Carins Murphy et al., 2014; Brodribb et

al., 2007; Sack and Scoffoni, 2013). Additionally, stomatal

size and density were negatively correlated, as expected,

since the total area allocated to stomata affects total stom-

atal conductance and thus total photosynthesis (Harrison

et al., 2019; Shahinnia et al., 2016; Figure 2) both within

(Doheny-Adams et al., 2012) and across species (Hether-

ington and Woodward, 2003). Overall plant size, estimated

as biomass, correlated positively with stomatal density

and related traits (e.g., gsmax and SV) but negatively with

second/major VLA, with larger plants tending to have

higher stomatal density and lower second/major VLA. Con-

versely, stomatal size was unrelated to plant biomass

despite its correlation with other leaf traits of interest.

Besides scaling with plant mass (Wang et al., 2020), the

potential scaling of traits with leaf area is of interest as cor-

relations can arise as a byproduct of trait values scaling

with size. Given that stomatal and vein traits were not sig-

nificantly correlated with leaf area, however, it appears that

observed correlations between these traits exist indepen-

dently of variation in leaf size (Figure 2).

When compared to minor VLA, lower-order vein traits

(i.e., second and major VLA) exhibited a distinct pattern

of trait correlations. These traits were not significantly

correlated with any stomatal traits; rather, they exhibited

significant correlations with traits related to the invest-

ment in leaf production (i.e., LMA and leaf area; Fig-

ures 2 and 3). Contrary to expectations based on cross-

species comparisons (e.g., Walls, 2011; Kawai and

Okada, 2016), second and major VLA were negatively

correlated with LMA (Figure 2), suggesting that variation

in LMA at this scale may be driven by other, perhaps

unmeasured traits such as leaf thickness. Similarly, sec-

ond and major VLA were negatively correlated with leaf

size. This pattern was, however, expected given that

major veins are typically formed early in leaf develop-

ment before being pushed apart as leaf expansion accel-

erates (Sack and Scoffoni, 2013). In contrast, minor veins

are expected to show no such relationship (consistent

with our results) because they can be initiated through-

out leaf development.
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As compared to bivariate analyses, multivariate analyses

provide a more holistic view of trait relationships along

with possible impacts of leaf anatomical variation on

‘higher-level’ traits such as biomass, leaf size, and LMA.

When analyzed via PCA, nearly two-thirds of the observed

trait variation was captured by the first three PC axes. As

noted above, these axes are most heavily influenced by

suites of traits involved in gas exchange, hydraulics, and

leaf construction. More specifically, plants with lower

stomatal density (estimated as stomatal sum) and fewer

SV, which are primary players in stomatal conductance,

tended to be smaller overall. In terms of hydraulic traits,

and consistent with the results of our bivariate analyses,

plants with greater second and major VLA tended to have

smaller leaves. Interestingly, this trait combination is

thought to confer greater leaf drought tolerance (Scoffoni

et al., 2011). Finally, in terms of leaf construction traits,

plants that produced more costly leaves (i.e., leaves with

higher LMA) tended to have a greater relative investment

in major structural features including midrib density and

midrib mass fraction (Figure 4; Table 2), likely reflecting an

increase in the mechanical strength of such leaves

(Méndez-Alonzo et al., 2013).

Genetic architecture of observed trait variation

Estimates of narrow-sense heritability ranged from 0.05 to

0.49 across traits. Notably, vein (including midrib) traits

had low heritability estimates while stomatal traits had

higher estimates (Table 3). The highest estimates were for

biomass-related traits, LMA, and gsmax, indicating a more

substantial contribution of additive genetic effects to

observed variation in these traits as compared to others

(Kruijer et al., 2015). Somewhat surprisingly given the

highly significant effect of genotype on VLA, the heritabil-

ity estimate for that trait was not significantly different

from zero (Tables 1 and 3), indicating little to no contribu-

tion of additive genetic effects to observed variation. Mid-

rib density and midrib mass fraction had similarly low

heritability estimates, though the evidence of a genotypic

effect on the former was less clear, and genotype had no

apparent effect on the latter. Interestingly, heritability esti-

mates for the composite trait SV were noticeably higher

than estimates for vein traits alone, indicating an additive

genetic component of the observed variation in this trait.

Collectively, these results suggest that traits with the low-

est heritability estimates have limited potential for

improvement via breeding while others are likely to be

more amenable to such efforts.

Consistent with our heritability estimates, the two

biomass-related traits exhibited the largest number of sig-

nificant associations in our GWA analyses (Table 3; Fig-

ure 5c; Figure S8). These traits colocalized with leaf area,

midrib density, and LMA, but not with any other vein or

stomatal traits. Similarly, we identified significant

associations for multiple stomatal traits, including stomatal

density (bottom, top, and sum) and pore length (bottom),

many of which colocalized with suggestive associations

(i.e., SNPs with −log10(P) values in the top 0.1%) for other

stomatal traits. Consistent with the low heritability esti-

mates for traits related to vein density (i.e., VLA, second

VLA, and major VLA), no significant genomic associations

were found for any of these traits. There was, however,

one suggestive association for VLA that colocalized with a

significant association for gsmax (region 03–01) and sugges-

tive associations for stomatal density (bottom and sum),

consistent with a presumed functional relationship

between these traits. Despite the lack of significant associa-

tions for vein-related traits considered on their own, we

identified one significant and five suggestive associations

for the composite trait SV. These regions tended to colo-

calize with stomatal traits, suggesting that variation in

stomatal characteristics is the primary driver of this trait

relationship (Figure 5c, Table S1).

Taken together, our trait-by-trait analyses revealed lim-

ited evidence for colocalization between stomatal and vein

traits despite the existence of widespread and significant

correlations between such traits. While this result could be

due, at least in part, to the high stringency of our signifi-

cance threshold and thus the failure to detect true positives

– a common challenge in GWA analyses (Gupta et

al., 2019) – the identification and inclusion of suggestive

regions in our analyses should have helped to mitigate this

issue. Nonetheless, observed trait correlations did not

appear to be accompanied by clear patterns of genomic

colocalization on a single-trait basis, suggesting a largely

independent genetic basis of our traits of interest. How-

ever, when multivariate trait relationships were taken into

account, our GWA analyses revealed significant associa-

tions for two of the three major PC axes (i.e., PC1 and PC3)

and a suggestive association for the third (i.e., PC2). For

PC1, which is most heavily influenced by traits related to

gas exchange (i.e., stomatal density and SV) along with

plant biomass, the single significant association (i.e.,

region 12–01) colocalized with suggestive associations in

second VLA and SV. In contrast, the analysis of PC3, which

had midrib density and mass fraction as well as LMA as its

top three contributors, identified a novel association (i.e.,

region 03–02). This region was not identified as being sig-

nificantly or suggestively associated with any of the indi-

vidual traits analyzed herein, illustrating the potential value

of employing a multivariate approach to GWA analyses

(see also, e.g., Yano et al., 2019; Ma et al., 2021). These

results also highlight the challenges associated with genet-

ically decoupling certain traits to produce novel phenotypic

combinations even though individual trait analyses

revealed largely independent genetic architectures.

In terms of effect sizes, the significantly associated

regions that we identified tended to have had small to
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moderate effects (estimated as RES) on trait values. In fact,

only three trait/region combinations individually accounted

for >25% of the observed range of trait values across the

population (stomatal density [top and sum] in region 05_01

and stomatal density [sum] in region 09_01; Table S1). This

result is perhaps not surprising given the relatively low

heritability estimates observed for many traits. It is worth

noting, however, that the traits with the highest heritability

estimates (i.e., biomass-related traits and LMA) tended to

be associated with regions of relatively minor effect (i.e.,

RES < 15%), suggesting that they have a complex genetic

basis. In contrast, stomatal traits were associated with

some of the largest RES values, suggesting the presence

of genes of larger effect and a simpler genetic basis over-

all. This result was mirrored in the multivariate analyses

with the single association underlying PC1 (region 12–01),
which is heavily influenced by stomatal traits, accounting

for nearly 21% of the observed range of variation in this

‘trait’ across the population. Unfortunately, most of the

genes contained within the significantly associated regions

identified herein did not yield obvious candidates for the

traits of interest.

While many of the genes in regions of interest were

annotated as hypothetical proteins or otherwise showed

no clear connection with leaf anatomy, two regions did

contain potential genes of interest. Region 10–01, which is

significant for total biomass and suggestive aboveground

biomass, leaf size, and several stomatal size traits (Fig-

ure 5b), includes a gene annotated as a Putative transcrip-

tion factor SSXT (Ha412HOChr10g0435021; GO:0048366

[leaf development]; Table S2). Members of this gene family

are thought to play a role in cell size determination in

leaves in Arabidopsis (Nozaki et al., 2020). This is, how-

ever, one of the larger regions that we identified (Figures

S7 and S9) and contains 135 genes, so, while this gene

appears to be a promising candidate for one or more of

the size-related traits that map to this region, this result

should be interpreted with caution until functional evi-

dence is available to support its effect on one or more of

the associated traits. Nonetheless, it is interesting to note

that epidermal cell size is also known to be negatively

associated with vein and stomatal densities such that

smaller epidermal cells facilitate greater stomatal and vein

densities (Brodribb et al. 2013; Carins Murphy et al. 2017;

Simonin and Roddy 2018). The other region containing a

potential gene of interest, 11–01, contains Putative Epider-

mal Patterning Factor-like protein (EPF;

Ha412HOChr11g0479421; GO:0010052 [guard cell differenti-

ation]; Table S2). This region is significant for MidribMF

and suggestive for top stomatal length. EPFs are known to

be involved in the density of guard cells and epidermal

cells (Hara et al., 2009), but how this might relate to midrib

mass fraction is unclear. Establishment of a (potential) role

for these genes in producing variation in any of the leaf

anatomical traits analyzed herein awaits further investiga-

tion. Nonetheless, the genomic regions identified during

the course of this work, particularly those with larger

effects, represent potential targets for future efforts aimed

at modifying leaf anatomical traits in sunflower.

EXPERIMENTAL PROCEDURES

Plant material

The cultivated sunflower lines analyzed in this study comprise the
SAM population (Mandel et al., 2011), which includes 288 inbred
lines that capture approximately 90% of allelic diversity in crop
sunflower (Mandel et al., 2013). This population has since been
subjected to whole-genome resequencing, thereby enabling the
identification of a genome-wide collection of SNPs from the full
set of lines (Hübner et al., 2019).

Experimental design

In the summer of 2017, 239 inbred lines from the SAM population
(four replicates each; N = 4 × 239 = 956 total individuals) were
grown in the greenhouse in a randomized block design. The
plants used in this study correspond to the control plants from
Temme et al. (2020) and detailed plant growth methods are
described therein. Briefly, 239 of the 288 lines in the mapping pop-
ulation were used due to greenhouse space constraints and to
remove lines with greater than expected levels of heterozygosity.
Following germination, all plants were grown for 1 week in seed-
ling trays to allow for establishment before being transplanted
into 2.83-L pots (TP414; Stuewe & Sons, Tangent, OR) filled with a
3:1 mixture of sand and a calcined clay mixture (Turface MVP, Tur-
face Athletics). Pots were fertilized with 40 g Osmocote Plus (15-
12-9 NPK; ScottsMiracle-Gro, Marysville, OH) and 5 mL each of
gypsum (Performance Minerals Corporation, Birmingham, AL)
and lime (Austinville Limestone, Austinville, VA) powders for sup-
plemental Ca2+. All pots were well watered, and plants were
allowed to grow for 3 additional weeks before being harvested at
the age of 4 weeks. Plants were grown under typical summer tem-
peratures and natural light levels in Georgia. At harvest, biomass
was collected and dried in ovens at 60°C for at least 72 h. Roots
were washed and dried in the same manner. Dried samples were
weighed to calculate total and aboveground biomass. During har-
vest, the two most recently fully expanded leaves (MRFELs) were
also collected from each plant. One leaf was arbitrarily designated
for use in the estimation of LMA and the other was used for leaf
anatomy analyses. Due to our focus on sampling at an equivalent
stage during leaf development, we chose the MRFEL at the time
of harvest such that the specific leaf pair varied across the popula-
tion (though generally leaves came from the top 90% of the plant
with the number of underdeveloped leaves above varying). The
adaxial (top) and abaxial (bottom) surfaces of one half of one
MRFEL per plant were pressed into dental putty (President Dental
Putty; Coltène/Whaledent Inc., Cuyahoga Falls, OH) to create an
impression of the epidermis of each leaf surface to allow for the
visualization and analysis of stomatal traits following the general
methods of (Weyers and Johansen, 1985). The other half of the
same leaf was stored in formalin–acetic acid–alcohol (FAA) fixative
for imaging and analysis of vein traits.

To estimate LMA, the designated MRFEL from each plant was
scanned on a flatbed scanner at 300 dpi (Temme et al., 2020). This
image was then used to calculate leaf area using ImageJ v1.52b
(Schindelin et al., 2012). The leaf was then dried at 60°C for 48 h
and weighed (the petiole was not included). Using both the mass
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and area measurements, LMA was calculated as LMA = dry mass/
unit area (g/m2).

For stomatal traits, clear nail polish was applied to the epider-
mal impressions of the top and bottom leaf surfaces and subse-
quently peeled off using clear tape and placed on microscope
slides (Hilu and Randall, 1984; Weyers and Johansen, 1985).
Slides were imaged using a Zeiss Axioskop 2 microscope along
with ZEN software (Carl Zeiss Microscopy; White Plains, NY, USA)
under the 100× objective to enable estimation of stomatal size. A
second set of images (four different fields of view per impression)
were taken using the 20× objective to enable estimation of stom-
atal density. Size estimates were based on 10 stomata per leaf,
separately for the top and bottom surfaces of each leaf, for a total
of 20 stomata per plant. Stomatal length, pore length, and guard
cell width were measured for each stoma using ImageJ (Fig-
ure 1a). Stomatal densities were estimated by counting the num-
ber of stomata in each of the four fields of view (counting partial
stomata on only two sides of each image) per side of each leaf
(eight images total per plant). Stomatal ratio was then calculated
as number of bottom stomata/total stomata and stomatal sum
was calculated as number of top stomata + number of bottom
stomata. For consistency with the literature, we used stomatal
sum instead of average density of stomata (e.g., Muir, 2018;
Richardson et al., 2020). Finally, maximum stomatal conductance
(gsmax), the theoretical maximum rate of gas exchange if all stom-
ata were fully open (calculated as sum of top and bottom), was
calculated based on stomatal density and size measurements fol-
lowing the approach of Dow et al. (2014). This was used instead
of directly measuring gs since direct measurements were not fea-
sible for such a large sample size.

For vein traits, the half of each leaf that was fixed in FAA was
cleared and stained for analysis using a modification of established
procedures (Berlyn et al., 1976; Scoffoni and Sack, 2013). Leaves
were cleared in 5% NaOH at 55°C for 5–7 days. Subsequently,
leaves were rinsed with deionized water and run through an etha-
nol dilution series of 30, 50, and 70% to dehydrate. After dehydra-
tion, leaves were stained with a 0.01% safranin dye solution for
30 min to make the veins more visible. Images of the stained leaves
were captured using both a flatbed scanner at 2400 dpi to image
the entire leaf half and a microscope (Zeiss Axioskop 2) using the
5× objective on a small section of leaf with three to four different
fields of view per leaf (Vasco et al., 2014; Figure 1a,b). Second-
order vein length was measured by manually tracing veins that
branched off the midrib (primary vein) and joined together in
arches (Ellis et al., 2009). Major vein length was estimated by add-
ing the length of the midrib to the second-order vein length. Minor
vein lengths were estimated from a subset of the microscopic
images by manually tracing the veins with ImageJ. The subset that
was manually traced was then used to train a deep learning algo-
rithm (see below) to process the rest of the images. The results of
these analyses of minor veins were used to calculate VLA. Midrib
density (expressed as mg/cm3) was estimated from the mass of the
midrib and an estimate of its volume; the latter value was calcu-
lated from the length of the midrib and its diameter at the base of
the leaf and assuming a conical shape. Midrib mass fraction is the
ratio of mass of the midrib to mass of the leaf. A composite trait of
stomata number per vein length was also calculated as SV = aver-
age stomatal density (i.e., calculated as the average of the top and
bottom density estimates) divided by VLA (Zhao et al., 2017).

Image segmentation using a neural network

A modified version of the U-Net (Xu et al., 2020; Ronneberger et
al., 2015) deep neural network was used to segment leaf-vein

pixels from background pixels (Figures S1–S3). Network structure,
hyperparameter tuning, and training details are included in Meth-
ods S1. Briefly, a test set of 85 images was created by randomly
selecting one image from each of 85 randomly selected (without
replacement) genotypes. These images were not used during
training of the network or hyperparameter estimation. All remain-
ing, manually traced (i.e., hand-segmented) images were used in
the training set (747 images). Training was performed on 572 pix-
els wide × 572 pixels high × 3 color (RGB) channels randomly
selected regions of the bright-field leaf images. Each region was
normalized to a mean of 0 and a standard deviation of 1. The net-
work was trained with a batch size of 1 (Ronneberger et al., 2015)
for 1900 batches with a learning rate of 10−4.

Per-pixel in-vein predictions were performed by mirror padding
each full-size (2584×1936 pixels) bright-field image, normalizing to
a mean of 0 and a standard deviation of 1, and passing the images
through the trained network. To reduce the creation of small, non-
real branches during medial-axis thinning, the probabilities were
filtered with a Gaussian kernel with a standard deviation of 12,
about the width of a typical vein. The smoothed images were seg-
mented with a cutoff of 0.2. The resulting segmented images were
thinned to single-pixel-wide lines using the medial-axis transform
(Bucksch, 2014). Vein lengths were then calculated as the sum of
all pixels within the thinned line. The hand-segmented and
network-segmented vein lengths of the testing set images have a
Pearson correlation of 0.97 (Figure S2). All code can be found at
https://github.com/aatemme/burke_leaf_veins/. For additional
methodological details, see Methods S1 and Figures S1–S3.

Data analysis

All data analysis was conducted using R v3.4.3 (R Core
Team, 2013). Bivariate plots were made for all pairwise compar-
isons using the R package ggplot2 (Wickham, 2016) to show the
range of trait variation. A two-way analysis of variance with geno-
type and block as the main effects was performed to test for varia-
tion among genotypes and to calculate estimated marginal trait
means for genotypes after removing block effects. Marginal
means calculated with the R package emmeans (Lenth, 2020) were
also used to estimate trait correlations and to create a correlation
matrix using the R package corrplot (Wei and Simko, 2017). PCA
was conducted using the function prcomp() and the package
ggfortify (Tang et al., 2016; Horikoshi and Tang, 2018) to visualize
multivariate correlations. Narrow-sense heritabilities (h2) were cal-
culated using the package heritability (Kruijer et al., 2019) by
inputting the kinship matrix (see below) for all genotypes and indi-
vidual pot-level trait data.

All traits of interest, including the first three PCs from the PCA,
were analyzed via GWA analyses to identify genomic regions that
are significantly associated with each trait. These analyses were
performed using a custom pipeline as described in Temme et
al. (2020; https://github.com/aatemme/Sunflower-GWAS-v2). SNPs
used in these analyses were called as described in Hübner et
al. (2019) and reordered based on the improved HA412-HOv2 sun-
flower genome assembly (Todesco et al., 2020). SNPs were fil-
tered to retain those with minor allele frequency ≥ 5% and a
residual heterozygosity of <10% (Temme et al. 2020). The GWA
analyses were performed using GEMMA v.98.1 (Zhou and Ste-
phens, 2012) to test for associations while correcting for kinship
(as calculated by GEMMA) and population structure (using the
first four PCs from an analysis using a subset of independent
SNPs in SNPRelate; Zheng et al., 2012). The significance threshold
was corrected for multiple comparisons using a modified Bonfer-
roni correction based on the number of multi-SNP haplotypic
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blocks within the genome as determined by an analysis of LD
across the population (Temme et al., 2020); any SNPs exceeding
this threshold were considered to be significantly associated with
the trait of interest. Following this step, significant SNPs were
grouped into significantly associated genomic regions, with all
SNPs occurring within a previously identified haplotypic block
being assumed to mark a single region (see Temme et al., 2020
for details; Figure S10). Suggestive associations were then identi-
fied as SNPs in the top 0.1% of all SNPs that colocalized with sig-
nificant associations for one or more other traits. The RESs of
associated SNPs/regions were then estimated as the percentage
of the observed range of variation in a particular trait that is
explained by each association, as follows:

RES ¼ j 2� �=range of observed trait valuesð Þ j �100%:

Here, β represents the effect of the minor allele on the trait value
and the range is based on the distribution of trait values across all
genotypes (Masalia et al., 2018). In cases of multi-SNP blocks, the
RES value was estimated as the maximum value for all SNPs
within that block. These values can also be summed to represent
the total percentage variation explained by all significant associa-
tions for a particular trait.
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