
Databases and ontologies

Reactome diagram viewer: data structures and

strategies to boost performance

Antonio Fabregat1,2,*, Konstantinos Sidiropoulos1, Guilherme Viteri1,

Pablo Marin-Garcia3,4, Peipei Ping5, Lincoln Stein6,7, Peter D’Eustachio8

and Henning Hermjakob1,9,*

1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome

Campus, Hinxton CB10 1SD, UK, 2Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK, 3Fundación

Investigación INCLIVA, Universitat de València, Valencia, Spain, 4Instituto de Medicina Genomica, Valencia, Spain,
5NIH BD2K Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of

California, Los Angeles, CA 90095, USA, 6Ontario Institute for Cancer Research, Toronto ON M5G 0A3, Canada,
7Department of Molecular Genetics, University of Toronto, Toronto ON M5G 0A3, Canada, 8NYU Langone Medical

Center, New York NY 10016, USA and 9State Key Laboratory of Proteomics, Beijing Proteome Research Center,

Beijing Institute of Radiation Medicine, National Center for Protein Sciences, Beijing 102206, China

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on May 19, 2017; revised on November 2, 2017; editorial decision on November 15, 2017; accepted on November 22, 2017

Abstract

Motivation: Reactome is a free, open-source, open-data, curated and peer-reviewed knowledge-

base of biomolecular pathways. For web-based pathway visualization, Reactome uses a custom

pathway diagram viewer that has been evolved over the past years. Here, we present comprehen-

sive enhancements in usability and performance based on extensive usability testing sessions and

technology developments, aiming to optimize the viewer towards the needs of the community.

Results: The pathway diagram viewer version 3 achieves consistently better performance, loading

and rendering of 97% of the diagrams in Reactome in less than 1 s. Combining the multi-layer

html5 canvas strategy with a space partitioning data structure minimizes CPU workload, enabling

the introduction of new features that further enhance user experience. Through the use of highly

optimized data structures and algorithms, Reactome has boosted the performance and usability of

the new pathway diagram viewer, providing a robust, scalable and easy-to-integrate solution to

pathway visualization. As graph-based visualization of complex data is a frequent challenge in bio-

informatics, many of the individual strategies presented here are applicable to a wide range of

web-based bioinformatics resources.

Availability and implementation: Reactome is available online at: https://reactome.org. The dia-

gram viewer is part of the Reactome pathway browser (https://reactome.org/PathwayBrowser/) and

also available as a stand-alone widget at: https://reactome.org/dev/diagram/. The source code is

freely available at: https://github.com/reactome-pwp/diagram.

Contact: fabregat@ebi.ac.uk or hhe@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

VC The Author 2017. Published by Oxford University Press. 1208

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(7), 2018, 1208–1214

doi: 10.1093/bioinformatics/btx752

Advance Access Publication Date: 23 November 2017

Original Paper

https://reactome.org
https://reactome.org/PathwayBrowser/
https://reactome.org/dev/diagram/
https://github.com/reactome-pwp/diagram
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx752#supplementary-data
https://academic.oup.com/

1 Introduction

Reactome (https://reactome.org) is a free, open-source, open-

data, curated and peer-reviewed knowledgebase of biomolecular

pathways. It provides bioinformatics tools for visualization,

interpretation and analysis of biomolecular data to support

basic research, genome analysis, modelling, systems biology and

education.

At the cellular level, life is a network of molecular reactions

that include signal transduction, transport, DNA replication, pro-

tein synthesis and intermediary metabolism. In Reactome, these

processes are systematically described in molecular detail to gener-

ate an ordered network of molecular transformations, resulting in

an extended version of a classic metabolic map described by a sin-

gle, consistent data model (Fabregat et al., 2016). The Reactome

knowledgebase thus systematically links human proteins to their

molecular functions, providing a resource that functions both as an

archive of biological processes and as a tool for exploring and dis-

covering unexpected functional relationships in data such as gene

expression pattern surveys or somatic mutation catalogues from tu-

mour cells. In Reactome the steps of a pathway are represented as

connected molecular events termed ‘reactions’. Reactome’s content

is organized into a set of canonical pathways that corresponds to

distinct biological processes with minimal overlap of reactions and

proteins, arranged in a hierarchy corresponding to the GO biolo-

gical process hierarchy. Each pathway is represented in a pathway

diagram laid out following the Systems Biology Graphical

Notation (SBGN) (Le Novère et al., 2009) process description lan-

guage (Fabregat et al., 2016). Additionally, Reactome offers a path-

way analysis service that supports enrichment and expression

analysis (Fabregat et al., 2016, 2017). Users can submit their own

dataset for analysis and visualize the result as overlays on top of

pathway diagrams.

Web browsers are one of the main types of application used for

retrieving, presenting and traversing information resources on the

World Wide Web. Creating an interactive pathway diagram viewer

for web browsers poses a series of challenges that need to be ad-

dressed in order to offer a fast-loading and responsive product. On

the one hand, implementing a custom solution enables full control

over features and capabilities at the cost of longer development

time. On the other hand, reusing existing software has the advantage

of launching the final product in a shorter period of time but

with additional features limited by the existing capabilities of the se-

lected third party software (Krueger, 1992). Some resources like

MINERVA (Gawron et al., 2016) and NAVICELL (Kuperstein

et al., 2013) have adopted the Google mapTM engine. Others such as

Pathway Commons (Cerami et al., 2011), WikiPathways (Kutmon

et al., 2016) and KEGG (Kanehisa et al., 2014) developed and use

their own viewers.

Reactome has always used an in-house developed diagram

viewer which has evolved over the years to include enhancements

in usability and performance as a response to extensive usability

testing sessions aiming to improve the tool towards the needs of the

community (Roto et al., 2009). When the second version of the dia-

gram viewer was released in 2013, systematic user experience test-

ing and informal user feedback pointed out that the loading time

and user interactivity needed to be improved. We describe here

how we addressed these challenges, by implementing a more effi-

cient diagram storage format, and by adopting new strategies for

client data storage, retrieval and rendering. Additionally, this study

aims to provide guidance to other researchers or groups working

on similar visualization tools.

2 Implementation

The usability testing sessions showed that the users (i) had trouble

using the diagram search functionality, (ii) found the diagrams too

crowded/complex, especially in zoomed-out views and (iii) often

lost diagram context while navigating through the event hierarchy

due to the diagram’s flashing and abrupt changes of location, in-

stead of an animated transition to the target position. Other com-

ments highlighted the fact that the zoom was not progressive, but

instead users could only zoom in predefined steps.

Aiming to address these challenges and enhance the overall user

experience, a new version of the Pathway Diagram Viewer was im-

plemented. The new version (version 3) was also focused on faster

data loading, diagram rendering and element seeking. This decision

was made based on the fact that users retain the feeling of being in

control when an interaction between them and the computer

takes no more than one second (http://www.nngroup.com/articles/

powers-of-10-time-scales-in-ux).

Improvements targeted different levels and included: (i) restruc-

turing of the data format used to send the data from the server to

the client, (ii) using a graph data structure to store the pathway con-

tent on the client side, (iii) boosting the client content load strategy,

(iv) implementing a multi-layer canvas approach, (v) utilising a

space partitioning data structure to store the elements to be rendered

and (vi) employing the delegate design pattern to control the flow of

information based on the level of zoom. This section delves deeper

into each aspect to describe them in finer grain.

2.1 Data format update
The first step to improve the overall user experience was to reduce

the client loading time by replacing the eXtensible Markup

Language (XML) format (https://www.w3.org/TR/REC-xml) for

diagram data storage with JavaScript Object Notation (JSON)

(http://www.json.org). JSON is less verbose than XML and thus has

a smaller footprint. More important, JSON’s natural mapping to

JavaScript objects is faster and uses fewer resources than its XML

counterpart (Boci et al., 2012; Nurseitov et al., 2009; Wang, 2011).

For all these reasons, resources that rely heavily on XML for their stor-

age format, could potentially benefit from transitioning to JSON.

Therefore, all Reactome pathways containing diagram layout in-

formation are converted from XML to JSON and stored on the ser-

ver side as static resources during the quarterly release process. In

the same process, for every diagram, a graph of all the contained

entities and reactions is generated and stored in an additional JSON

file to enable a richer browsing and search experience throughout

the diagram content. The next subsection elaborates on the creation

of the graph and its usage along with the layout information.

2.2 Underlying graph structure
Among other elements, diagrams contain macromolecular com-

plexes and entity sets comprised of components and members, re-

spectively. Entity sets are used to group entities together based on

common properties. Sets and complexes may have other complexes

or sets as their constituents (D’eustachio, 2011). This approach

quickly builds up to a highly structured network of contained enti-

ties that, in most diagrams, is conveniently represented by a single

glyph that simplifies the view. Thus, the diagram viewer must be

aware of all this information and able to take full advantage of it, in

order to provide a much richer search function and smarter inter-

action with the constituents of complexes/sets.

For example, a search for a protein should highlight not only in-

stances of the protein visible in the diagram but also any complex

Reactome diagram viewer: data structures and strategies to boost performance 1209

https://reactome.org
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: ,
http://www.nngroup.com/articles/powers-of-10-time-scales-in-ux
http://www.nngroup.com/articles/powers-of-10-time-scales-in-ux
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: 5
Deleted Text: 6
https://www.w3.org/TR/REC-xml
http://www.json.org
Deleted Text: ; Boci et<?A3B2 show $146#?>al., 2012

instances of which the protein is a part and any set of which it is a

member.

In previous versions, the client retrieved a file with the identifiers

defining each element present in the diagram from the server side. In

the new version, a file with a graph representing the content of the

different complexes and sets for each diagram and annotating the

participants of every included reaction is required (Fig. 1). This ap-

proach introduced an additional file with the graph content that has

to be consumed separately by the client and merged with the layout

data, once both are loaded.

The graph and layout content have elements in common, but in

most cases the graph will contain more information. In the example

presented in Figure 1, the pathway diagram layout contains 7 elem-

ents; 5 entities and 2 reactions (Fig. 1a), and the graph contains

11 elements; 9 entities and 2 reactions (Fig. 1b). The 4 extra elements

in the graph can be justified by the fact that none of the components

of C2 (4 entities) are present in the layout. Another benefit of the

graph is that entities that are part of different complexes or sets are

represented only once and remain accessible via graph traversing.

Because of the complementary nature of information stored in

the layout and the graph files, the client side needs to implement a

technique that merges both contents and allows them to seam-

lessly work together (Fig. 1c). Our approach is to propagate user

actions from the layout level down to the graph level in order to

have an easy way to traverse the content and identify the relevant

entities to be highlighted by traversing up to the layout again. In

addition, the built-in search feature can now take into account not

only entities that are represented by a glyph in a diagram, but also

all the contained entities composing that glyph. For instance, users

can search among all components/members of the complexes/sets

present in a single diagram. The client is able to highlight all

those diagram entities containing a component (or member) that

matches the search term.

For most applications that feature interactive visualizations, ac-

companying layout information with additional semantic metadata

can prove a good practice, as it enriches the visualizations by assign-

ing a meaning to all visual entities. In addition, this extra informa-

tion can be used to enrich any existing search functionality by

extending it to more than what is visualized.

2.3 Updated loading and caching strategies
The introduction of separate layout and graph files was accompa-

nied by the adoption of a render-first loading strategy in the client

(Fig. 2). The client makes concurrent XMLHttpRequest calls for the

layout and the graph data content (https://xhr.spec.whatwg.org). As

soon as the layout data is available, the viewer processes it and ren-

ders the diagram on the canvas. Once the graph content is ready, the

latter is processed and linked to the diagram layout to be used for

interactive navigation, search and future analysis overlay purposes.

Following this render-first approach, the new version of the diagram

viewer primes the display of the layout while it retrieves the graph

behind the scenes. This strategy boosts the user experience by reduc-

ing both the true and perceived loading time.

Adopting a similar strategy that prioritizes the loading of that bit

of information necessary to render something useful on the screen

and, thus, engage the user, can prove particularly useful to any visu-

alization application that requires excessive loading time. People

can define a duration only when there is a clear start time and a clear

end time (Seow, 2008). As a result, when users get to a point where

they finally see something rendered on the screen that they can inter-

act with, they naturally and mentally assume as the end. The rest of

the loading can continue behind the scenes.

While browsing pathways, users often go back and forth among

several pathways of interest, causing the viewer to load and show

the same diagram several times in a relatively short period of time.

Fig. 1. Schematic view of a pathway made up of two reactions. (a) The pathway diagram as presented to the final user. (b) Underlying graph with the whole con-

tent of the pathway. (c) Representation of the merging of both the diagram and graph on the client side. In the figure, Pn are proteins, SMn are chemicals, Cn are

complexes and Rn are reactions. From the graph, it can be extracted that C1 contains [P1, P2], C2 contains [P3, P4, SM1, SM2] and C3 contains [C1, C2], but by tra-

versing the graph it can be easily inferred that C3 actually contains [P1, P2, P3, P4, SM1, SM2]

1210 A.Fabregat et al.

Deleted Text: s
Deleted Text: s
Deleted Text: s
https://xhr.spec.whatwg.org
Deleted Text: s
Deleted Text: s

A pathway diagram that has been loaded is very likely to be revisited

shortly after visits to other pathways. In computer science, this is

known as locality of reference (Denning, 2005), being a very clear

use case for cache mechanisms. Hence, the diagram viewer imple-

ments a Least Recently Used (LRU) caching mechanism (Denning,

1968) to keep the layout and the view status (zoom level and pan-

ning) of the most recently viewed diagrams. When a diagram is re-

visited, the viewer does not need to request data from the server but

uses the cached one in order to display the content as the user previ-

ously left it.

2.4 Multi-layer HTML5 canvas strategy
The new version of the diagram viewer responds to common user ac-

tions, such as hovering over an element with the mouse and selecting

an entity in the diagram, by highlighting the hovered element and

marking the selected entity, respectively. Aiming to provide a richer

user experience and visually reinforce user actions, the diagram

viewer draws a halo around the elements (reactions and participat-

ing entities) related to the selection. In addition, when the user se-

lects an entity that is repeated in the same diagram, the viewer

marks all instances of that entity as selected and draws halos around

all elements related to them.

To improve the visual feedback and optimize the diagram ren-

dering process, the new version of the viewer implements a set of

advanced techniques developed and used by the gaming industry. In

particular, the multi-layer canvas approach (www.ibm.com/develo

perworks/library/wa-canvashtml5layering) was adopted to reduce

the processing and redrawing overhead inherent to a single canvas

update. Each of the stacked canvases in Figure 3 represents a con-

ceptual layer and is reserved for drawing specific types of glyphs

corresponding to different diagram objects such as compartments,

reactions, nodes, entities or interactors. By employing this tech-

nique, only layers that require redrawing are updated, resulting in

reduced rendering times in actions like highlighting or selection.

This contributes to enhancing the user experience due to a more re-

sponsive behavior.

For instance, while the user moves the mouse pointer across a

diagram, only the ‘Selection and Highlighting’ layer needs to be

updated in order to reflect the changes in the highlighted element.

Similarly, in case a diagram element is selected, only the ‘Halo ef-

fect’ and ‘Selection and Highlight’ layers need to be updated. Other

resources featuring interactive visualizations that contain a lot of

elements can take advantage of this strategy to improve the user

experience.

2.5 Space partitioning data structure
Identifying the elements under the mouse pointer is a computation-

ally demanding task if it is performed by a brute force or exhaustive

search algorithm (Knuth, 1997). The cost of an exhaustive search al-

gorithm is a linear function of the number of elements to be

searched, O(n) in big O notation. Determining whether the mouse

pointer position intersects with the area each element occupies can

be slow, delaying the action of highlighting and making the interface

appear unresponsive to the user.

Fig. 2. UML sequence diagram comparing sequential and render-first loading strategies. The difference between the blue and red lines shows the true loading

time improvement. The improvement in the perceived loading time is highlighted by the difference between the green and red lines

Fig. 3. A simplified example of the adopted multi-layer canvas strategy. First four images from left to right represent different layers composing the final image:

(1) Cellular compartments, (2) Halo effect, (3) Nodes & Edges and (4) Selection and Highlight. The rightmost image shows the pathway diagram as seen from the

user’s perspective

Reactome diagram viewer: data structures and strategies to boost performance 1211

Deleted Text: s
http://www.ibm.com/developerworks/library/wa-canvashtml5layering
http://www.ibm.com/developerworks/library/wa-canvashtml5layering
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: s
Deleted Text: ,

To speed the search of the hovered element, our new implemen-

tation employs a space partitioning data structure, an approach

often used to optimize performance. The main advantage of this

data structure is that it provides a much less computationally inten-

sive way to query for elements present in a given point or area in

space, with a cost that is a logarithmic function of the number of

elements to be searched O(log n) (Agarwal and Erickson, 1998).

Here, we employed a QuadTree, a tree data structure used to par-

tition a two-dimensional space by recursively subdividing it into four

quadrants or regions (Finkel and Bentley, 1974). The QuadTree is em-

ployed to efficiently (i) query only those diagram entities present in

the viewport that need to be rendered and (ii) identify the entities hov-

ered over, or selected by the mouse without having to follow the brute

force method and exhaustively check every diagram object.

Figure 4 provides an example of how the elements in a diagram

are located in a QuadTree with quadrant size 2, meaning that only

two objects are allowed per quadrant. The red line in Figure 4b

highlights the path traversed in the tree to identify the element under

the mouse pointer (red dot) based on a series of quick comparisons

between the mouse coordinates and every quadrant center starting

for the root and progressively moving down the nodes of the tree.

From the root (center of the viewport) the red dot (Fig. 4a) is the 3rd

quadrant (Q3); from the center of Q3 the red dot is in the first quad-

rant (Q1); from the center of Q1 the red dot is again in its first quad-

rant (Q1). Since this last quadrant is not further split, the position of

the mouse pointer only needs to be compared against the contents of

that quadrant, which in this case is only P3. Thus, determining that

P3 is the element hovered over by the mouse pointer takes three

quadrant comparisons and checking only one element of the nine

present in the diagram. This provides a significant improvement

over the brute force method that would check the mouse position

against every element present in the diagram.

For the new diagram viewer, the QuadTree was extended to

work not only with points but also with shapes that occupy diagram

areas. The aim was to use it in order to narrow down the number of

elements to be drawn depending on whether they are in the part of

the diagram visible in the client viewport. This allows a fast, select-

ive redraw limited to visible regions of the diagram, again improving

interactivity of the diagram viewer.

Hence, the usage of this data structure could prove particularly

useful for other resources featuring interactive visualizations that

contain a lot of elements where the requirements include one or

more of the following features: (i) determining the element hovered

over by the mouse pointer, (ii) determining the selected element

upon user’s click or tab action, (iii) smooth animated view transi-

tions or (iv) progressive zoom.

2.6 Renderer delegates
In order to tackle users’ requests for less cluttered pathway dia-

grams, but at the same time preserve access to all information stored

in Reactome knowledgebase, the new viewer enables the user to

control the flow of visualized information through the level of

zoom. This practically means that depending on the zoom level, the

viewer enriches or abstracts layers of information. Thus, each dia-

gram entity is rendered in a slightly different way according to the

level of zoom, progressively revealing more details as the user zooms

in. For instance, as illustrated in Figure 5, common ‘house-keeping’

molecules, such as ADP, ATP, AMP, water, etc., are hidden in the

zoomed out view, resulting in simpler and less crowded diagrams, as

explicitly requested by our users.

This strategy also improves rendering time when many elements

are in the viewport because fewer details are drawn. Other simplifi-

cations are to avoiding rounded corners, only showing reaction

backbones without central decorators, or removing node attach-

ments or stoichiometry. As users zoom in to specific areas, the num-

ber of elements in the viewport falls and more detail is added.

The adoption of this strategy could prove particularly useful for

other resources featuring complex visualizations as it allows control-

ling the granularity of information displayed for a given object and

level of zoom. Usability-wise, this enables resources to show different

views of the same element based on the zoom, determining the optimal

level of detail and type of information to be displayed in each case.

3 Results and discussion

The new pathway diagram viewer combines the set of strategies and

data structures described above to improve performance and to

include new features that aim to address the shortcomings of the

previous version highlighted by the usability testing sessions. The

updated diagram storage format combined with the improved

‘Render-first’ loading strategy resulted in faster loading of diagrams.

Additionally, faster rendering was accomplished via the combined

use of (i) a QuadTree that efficiently filters down the elements to be

drawn based on the visible area, (ii) rendering delegates that declut-

ter the view by regulating the level of detail to be drawn depending

on the number of visible elements and (iii) a multi-layer html5 can-

vas strategy that optimizes rendering by updating only the layers

Fig. 4. Hypothetical diagram composed of two separate reactions where (a) shows how the viewport is recursively split into different quadrants, so each of them

contains two or less elements, (b) is the representation of the resulting QuadTree to achieve the two-dimensional space partitioning while (c) presents the same

diagram elements placed in a normal collection for comparison purposes. The red dot in (a) represents the mouse pointer location and the red path in (b) depicts

the tree traversing steps to narrow down the elements to be checked against the mouse location

1212 A.Fabregat et al.

Deleted Text: s
Deleted Text: s
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: s
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: s
Deleted Text: D
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: s

that require redrawing. Optimized rendering enabled the introduc-

tion of animation and smooth transitions that, in turn, help users to

maintain diagram context while navigating through pathways. The

use of an underlying graph structure provided the basis for improv-

ing the built-in search feature, by including all the participating mol-

ecules of the pathway whether or not they are visible in the diagram.

Updating the underlying storage format had a positive impact on

the performance of the new version of the pathway diagram viewer.

To assess this performance boost, we compared the resulting file

sizes for both the previous (XML) and the new data format (JSON),

as well as the respective times required by the client to process them.

This included the time required to populate the model in the client

with the diagram data once they were retrieved from the server.

To measure the improvement in performance, a series of experi-

ments were conducted and the results are presented graphically in

Figure 6. In particular, Figure 6a presents a chart comparing the file

sizes of the Reactome diagrams against the total number of graph-

ical entities present in them for both XML and JSON data format.

As expected, for any given pathway diagram, its JSON version has a

smaller file size compared to its XML version.

Figure 6b presents a comparison between the times required by the

previous (2) and current (3) versions of the client to process diagrams

stored in XML and JSON format, respectively, against the number of

the diagram entities. The new client requires significantly less time to

process any given diagram, which can be attributed to JSON’s smaller

file size as well as its natural mapping to JavaScript objects, which

eliminates the need for complex parsing infrastructure.

The update in the storage format combined with the new render-

first loading strategy contributed to reducing the overall diagram

loading time, as it is perceived by the user. This includes the time

required until the diagram is loaded and fully rendered by the client.

Figure 6c presents a chart comparing the times required by the previ-

ous and the new version of the client to display diagrams stored in

XML and JSON format respectively against the diagram size (meas-

ured in number of entities present in a diagram).

A striking feature of the comparison of perceived loading times

(Fig. 6c) is that the new diagram viewer is both faster and more

consistent. One can easily notice that the times measured for the

previous diagram viewer exhibit high variability, especially for

smaller diagrams. This can be explained by the fact that the number

of items to be drawn in diagram does not represent the actual size of

the pathway in terms of participating molecules. Complexes and

sets often contain several participating molecules, and encapsulated

pathways might also contain a large number of participants. Also,

taking into account that the top-level pathways, in the Reactome

event hierarchy, are represented with diagrams which mostly con-

tain subpathways, it is expected that they will contain a quite large

number of participating molecules. This fact combined with the pre-

vious sequential loading strategy, presented in Figure 2, provides a

simple explanation for those relatively small pathways, with only a

few entities, that require up to 1.5 s to load. Simply put, before ren-

dering anything on screen, the previous client had to retrieve and

parse a large amount of information in order to create the map of all

participating entities.

As illustrated in Figure 6c, the new version of the pathway dia-

gram viewer achieves better performance in any given Reactome

diagram. In particular, the new version of the client accomplishes

loading and rendering of 97% of the diagrams in Reactome in less

that 1 s (versus 57% previously); 74% of the total number of dia-

grams are loaded and rendered in under 0.5 s (versus 31% previ-

ously). As previously stated, keeping the application’s response

times as low as possible has a positive impact on the user experience.

This is particularly the case in a web application that is supposed to

run inside a web browser environment, where most of its code is

executed in a single thread, without use of concurrency. As a result,

the adoption of the multi-layer html5 canvas strategy and the space

partitioning data structure contributed to minimize CPU workload

and therefore allowed room for new features such as animated tran-

sitions to be included without penalising the user’s experience.

We have conducted a usability testing session centered on the im-

provements described here (Supplementary Table S1). Users appreci-

ated the animated transitions and progressive zoom functionality as

they allowed for smoother and easier navigation. Users also found

the new diagram viewer more responsive as it reacted to common

user actions by highlighting a hovered element and marking a se-

lected entity. Users did not express concern about crowded/complex

Fig. 5. In the new pathway diagram viewer, the flow of displayed information is controlled through zooming in and out. As a result, depending on the zoom level,

the viewer abstracts or enriches the view with layers of information

Reactome diagram viewer: data structures and strategies to boost performance 1213

Deleted Text: s
Deleted Text: second
Deleted Text: second
Deleted Text: second
Deleted Text: s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx752#supplementary-data

pathway diagrams, but did react positively to the features in the new

diagram that enable users to control the amount of detail displayed

by zooming in and out. Regarding our improved search functional-

ity, users made positive comments on the fact that they could now

search for entities that were indirectly part of a given diagram such

as members of a complex or set.

The new diagram viewer was developed in a way that can be

both extended or easily integrated as it is in third party applications.

Currently, Reactome offers two options for integrating this pathway

diagram viewer in other web applications; either using the GWT im-

plementation or the JavaScript wrapper. More details and examples

on how to reuse this as a widget can be found at https://reactome.

org/dev/diagram/.

Conclusions

Through the use of highly optimized data structures and algorithms,

Reactome has improved the pathway diagram viewer in terms of

performance and usability. The new version of the diagram viewer

provides a robust, scalable solution to pathway visualization that is

easily integrated into third party applications.

Funding

National Institutes of Health BD2K grant (U54 GM114833); National

Human Genome Research Institute at the National Institutes of Health (U41

HG003751); European Bioinformatics Institute (EMBL-EBI); Open Targets

(The target validation platform); Medicine by Design (University of Toronto).

Funding for open access charge: National Institutes of Health (U54

GM114833). The funding bodies had no role in the design or conclusions

of the study.

Conflict of Interest: none declared.

References

Agarwal,P.K. and Erickson,J. (1998) Geometric range searching and its rela-

tives. Adv. Discret. Comput. Geom. Am. Math. Soc., 23, 1–56.

Boci,L. et al. (2012) Comparison between JSON and XML in applications

based on AJAX. In: International Conference On Computer Science and

Service System, Nanjing, China.

Cerami,E.G. et al. (2011) Pathway Commons, a web resource for biological

pathway data. Nucleic Acids Res., 39, D685–D690.

D’eustachio,P. (2011) Reactome knowledgebase of human biological path-

ways and processes. Methods Mol. Biol., 69, 49–61.

Denning,P.J. (1968) The working set model for program behavior. Commun.

ACM, 11, 323–333.

Denning,P.J. (2005) The locality principle. Commun. ACM, 48, 19–24.

Fabregat,A. et al. (2016) The reactome pathway knowledgebase. Nucleic

Acids Res., 44, D481–D487.

Fabregat,A. et al. (2017) Reactome pathway analysis: a high-performance

in-memory approach. BMC Bioinformatics, 18, 142.

Finkel,F. and Bentley,J.L. (1974) Quad trees: a data structure for retrieval on

composite keys. Acta Inf., 4, 1–9.

Gawron,P. et al. (2016) MINERVA – a platform for visualisation

and curation of molecular interaction networks. Syst. Biol. Appl., 2, doi:

10.1038/npjsba.2016.20.

Kanehisa,M. et al. (2014) Data, information, knowledge and principle: back

to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205.

Knuth,D. (1997) The Art of Computer Programming. 3: Sorting and

Searching. 3rd edn. Addison-Wesley, Reading, MA, pp. 396–408.

Krueger,C.W. (1992) Software reuse. ACM Comput. Surv., 24, 131–183.

Kuperstein,I. et al. (2013) NaviCell: a web-based environment for navigation,

curation and maintenance of large molecular interaction maps. BMC Syst.

Biol., 7, 100.

Kutmon,M. et al. (2016) WikiPathways: capturing the full diversity of path-

way knowledge. Nucleic Acids Res., 44, D488–D494.

Le Novère,N. et al. (2009) The systems biology graphical notation. Nat.

Biotechnol., 27, 735–741.

Nurseitov,N. et al. (2009) Comparison of JSON and XML data interchange

formats: a case study. CAINE, 9, 157–162.

Roto,V. et al. (2009) User experience evaluation methods in academic and in-

dustrial contexts. In: Proceedings of Workshop on User Experience

Evaluation Methods Interact’09.

Seow,S. (2008) Designing and Engineering Time: The Psychology of Time

Perception in Software, Addison-Wesley Professional, Boston.

Wang,G. (2011) Improving data transmission in web applications via the

translation between XML and JSON. In: Third International Conference

On Communications and Mobile Computing (CMC), April 2011,

pp. 182–185.

Fig. 6. (a) Comparison of file sizes for both XML and JSON formats versus the

diagram size in terms of number of entities present in a diagram. (b)

Comparison of processing times achieved by Diagram Viewer v2.0 (consum-

ing diagrams in XML) and Diagram Viewer v3.0 (consuming diagrams in

JSON) versus the total number of diagram entities. (c) Comparison of per-

ceived loading times achieved by Diagram Viewer version 2 (consuming dia-

grams in XML) and version 3 (consuming diagrams in JSON) versus the

diagram size (in number of diagram entities). Measured over all human path-

way diagrams from Reactome data version 52

1214 A.Fabregat et al.

https://reactome.org/dev/diagram/
https://reactome.org/dev/diagram/
Deleted Text: s
Deleted Text: s

