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The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat
of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for
the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR),
near infrared (NIR), and mid-infrared (mIR) have arisen as strong candidates for the task. Although a body of work exists that
reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1H-
NMR, Attenuated Total Reflectance mIR (ATR-mIR), and NIR applied to fraud detection in Colombian coffee. For each technique,
we built classification models for discrimination by species (C. arabica versus C. canephora (or robusta)) and by origin (Colombia
versus other C. arabica) using a common set of coffee samples. All techniques successfully discriminated samples by species, as
expected. Regarding origin determination, ATR-mIR and 1H-NMR showed comparable capacity to discriminate Colombian coffee
samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration
and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1H-NMR and more discriminating
compared to NIR.

1. Introduction

Coffee is one of the most popular beverages in the world and
an important trade commodity for producing countries. Out
of the two most common species grown, C. robusta and C.
arabica, the latter is preferred due to its characteristic taste,
being less bitter than C. robusta. Colombia has been pro-
ducing and exporting C. arabica coffee beans of the highest
quality for at least one century, eventually garnering world-
wide recognition.

In 2007 Colombian coffee became a protected geograph-
ical indication, in recognition for its quality and thanks

to decades of efforts from more than half a million cof-
fee growers. Along with the increasing attractiveness of
coffees from specific origins in international markets, this
recognition represents a big economical plus-value for the
label 100% Colombian coffee. During the same period, the
overall production of Colombian coffee stagnated, forcing the
country to import coffee beans fromneighboring countries to
supply its internal demand.This context raises the likelihood
of fraud and thus creates a demand for robust methods
to track the origin and ensure the quality of coffee beans.
Cost-effectiveness is also a concern, since screening should
preferably take place just before shipment and immediately
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after arrival, which means working at harbour installations
and under limited operational costs.

Many efforts have been directed towards this aim. Tech-
niques such as Gas Chromatography [1, 2], Gas Chromatog-
raphy-Mass Spectrometry [3, 4], Liquid Chromatography [5],
Inductively Coupled Plasma-Atomic Emission Spectroscopy
[6], Isotope-Ratio Mass Spectrometry [7–13], Inductively
Coupled Plasma-Mass Spectrometry [8, 11, 12], Mass Spec-
trometry [14], mid-infrared (mIR) spectroscopy [15–19], near
infrared (NIR) spectroscopy [19–23], and Nuclear Magnetic
Resonance (NMR) [24–27] have all been suggested to deter-
mine species or origin of coffee and thus detect adulteration
with beans of lower quality. Moreover, combining output
from several of these techniques in a single multivariate anal-
ysis has been shown to be useful for discriminating coffees
from different continents [28].

Nontargeted approaches like fingerprinting based on
NMR [25, 27], mIR [17–19], and NIR [19, 20, 23] spectro-
scopies have been reported to be capable of discriminating
samples from nearby geographic origins. This is considered
a harder task when compared with discrimination between
transcontinental samples and an absolute must for fraud
detection in the Colombian context, since fraud ismore likely
to involve coffee from neighboring countries.

One shortcoming of the existing literature on determi-
nation of origin in coffee is the lack of comparative studies
that benchmark the performances of different analytical
techniques. A remarkable exception is a recent article by Bona
et al. [19] that compares the performance of mIR and NIR
for origin determination and reports better results with the
latter. Another contribution was found that reports on the
comparison of both NIR and Attenuated Total Reflectance
mIR (ATR-mIR) for the discrimination of coffee by species
[16]. Benchmark comparative studies are particularly relevant
when some of the techniques under consideration present
major logistical advantages (sample preparation, analysis
time, and cost per analysis), as is the case of IR spectroscopies
compared to NMR. We thus present a comparative study of
1H-NMR, ATR-mIR, and NIR spectroscopies regarding their
ability to discriminate C. arabica from C. robusta as well as
Colombian coffees from other samples collected on nearby
countries.

To guarantee a fair comparison, it is absolutely essential
to ensure that all spectra used in the study were acquired on
the same set of coffee samples. It is less obvious, however,
whether one should utilize the same data analysis protocol
for the three spectroscopic techniques or not. After careful
consideration we decided that the answer to this question is
negative: many different approaches for signal preprocessing
(first derivative, second derivative, Multiplicative Scatter
Correction (MSC), integral normalization, and probabilistic
quotient normalization), variable standardization (mean-
centering, unit variance scaling, Pareto scaling, and vast scal-
ing), and Multivariate Discriminant Analysis (Projection on
Latent Structures-Discriminant Analysis (PLS-DA), orthog-
onal PLS-DA (oPLS-DA), and orthogonal signal correction/
PLS-DA) have been used in conjunction with NMR and/or
infrared spectroscopy, and no unified standard exists that
works the best with all kinds of spectroscopic data. Fur-
thermore, since the computational cost of data analysis is

currently not a concern in the field of coffee fraud detection,
in practical scenarios one would use whatever chemometric
approach yields the best results. For these reasons, we
evaluated pipelines of different combinations of the methods
just mentioned and report on the best results achieved for
each type of spectroscopy.

2. Materials and Methods

2.1. Samples Collection and Preparation. A total of 97 samples
of roasted coffee beans (7 minutes at 200∘C) were collected
from 14 countries worldwide during the years 2012 and 2013.
These samples were provided by Almacafé S.A. (Colombia)
and include 75 samples of C. arabica (from now on Arabica)
coming from Colombia and nearby countries (Colombia: 34
samples, Guatemala: 15, Peru: 11, Brazil: 9, Costa Rica: 5,
and Panama: 1) and 22 samples of C. robusta (from now on
Robusta) coming from transoceanic countries (Vietnam: 8,
India: 4, Uganda: 3, Indonesia: 3, Togo: 1, Tanzania: 1, Ivory
Coast: 1, andCameroon: 1).TheArabica sampleswere selected
from Latin American countries in order to reproduce the
most likely real-life scenario for fraud detection in Colom-
bian coffee. Robusta samples were introduced to verify
the correctness of the chemometrics, as discussed at the
beginning of Section 3. Samples were analyzed as they were
shipped to our laboratory.There was no relationship between
shipping time and coffee origin. The complete data set used
in this work is available on Github (https://github.com/jwist/
coffee-profiler/) and as SupplementaryMaterials (see Supple-
mentary Materials available online at https://doi.org/10.1155/
2017/7210463).

Both ATR-mIR and NIR spectra were acquired directly
on the finely powdered samples (particle size 0.075mm)
provided by Almacafé S.A. Samples for 1H-NMR were pre-
pared as follows: 200mg of finely ground coffee powder was
extracted with 1mL chromatographic grade methanol at
room temperature, followed by twominutes of agitation with
vortex and 10 minutes of centrifugation, at 17∘C. 450 𝜇L of
the extract was transferred to the NMR tube, where 90𝜇L of
deuterated methanol with tetramethylsilane was added.

2.2. Analytical Techniques. ATR technology was used for
the acquisition of mIR spectra to avoid pellet preparation,
thus improving efficiency and reproducibility [29]. Spectra
were obtained with a Nicolet� iS�5 FTIR-ATR spectrometer
operating in transmittance mode in the 650–4000 cm−1
region, with 64 scans per sample at intervals of 0.96 cm−1.The
resulting spectra were stored as vectors of 3475 points after
smoothing (Savitzky-Golay with a third-degree polynomial
and a window size of 10 points).

NIR spectra were recorded from 4000 to 10000 cm−1 in
reflectance mode, at intervals of 4 cm−1 and with 64 scans
per sample, using a NIRFlex N-500 spectrometer (Büchi,
Switzerland). Spectra were stored as 1500-point vectors, after
smoothing with the Savitzky-Golay filter.

NMR experiments were performed in fully automatic
mode on a Bruker Avance II 400MHz spectrometer at 300K.
Accurate control of the sample temperature was achieved
using BVT-1000 and BCU-1 units. After the frequency of the
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presaturation pulse (25Hz) was accurately determined using
a simple presaturation-excitation experiment (zgpr), 1D spec-
tra (noesygpps) were recorded with a receiver gain of 90.5
and mixing time of 10ms. After 4 dummy scans, 64 FIDs
were added and stored in a vector of 131072 complex points. A
0.3Hz exponential apodization function was applied prior to
Fourier transformation; then each spectrum was phase cor-
rected (zero-order only) and stored in a vector of 131072 real
points using the Topspin software (V2.5 PL 6, Bruker Biospin
A.G., Rheinstetten, Germany).

2.3. Chemometrics

2.3.1. Preprocessing. Spectral regions containing meaning-
ful signals were selected. For ATR-mIR wavelength range
between 800 and 1800 cm−1 (1037 points) was selected, since
it covers the fingerprint region of coffee samples and also
contains the bands from carbonyl groups related to lipids and
tomolecules such as aliphatic and aromatic acids, vinyl esters,
esters, aldehydes, ketones, lactones, and others, which confer
different aroma to coffee [17, 30]. For NIR the range from
4000 to 7600 cm−1 (900 points) was selected, since the
absorption bands related to caffeine, chlorogenic acid, water
content, lipids, and aroma components among others are
found in this range [30]. For NMR, first the signals of tetram-
ethylsilane (−0.2–0.2 ppm) and methanol (3.14–3.55 ppm)
were removed; then the spectrum was trimmed to the region
containing visible peaks, from 0.5 to 9.5 ppm (80501 points),
and binned to obtain a final vector of 1100 real points.

Second derivatives were computed for NIR and mIR
spectra. In the case of NIR, an orthogonal signal correction
(OSC, see [31]) filter was applied once. ATR-mIR spectra were
normalized to a total integral of 100, while NIR spectra were
normalized using MSC. None of these normalization steps
were applied to NMR spectra. Last, spectroscopic variables
were scaled by their standard deviations (unit variance
scaling a.k.a. autoscaling).

Principal component analysis (PCA) was used to check
data quality, to identify possible outliers or detect unexpected
aggregation. For each coffee species and spectroscopic tech-
nique, samples outside 95% of Hotelling’s 𝑇 squared distri-
bution on the first two principal components were rejected.
Based on this test, 2 samples were rejected due to mIR, 5 due
to NIR, and 5 due to NMR. In the case of NMR, most
rejections were attributable to poor shims. Other rejections
were most certainly a consequence of acquisition errors.
Having removed the outliers, 66 Arabica samples (Colombia:
30 samples, Guatemala: 14, Peru: 9, Brazil: 8, and Costa Rica:
5) and 19 Robusta samples (Vietnam: 5, India: 4, Uganda:
3, Indonesia: 3, Togo: 1, Tanzania: 1, Ivory Coast: 1, and
Cameroon: 1) remained.

All the preprocessing operations were performed on R
[32] using in-house scripts and packages stats [32], Chemo-
Spec [33], and rLims [34].

2.3.2. Classifiers. PLS modelling [35] was used to build the
classifiers. The best models were obtained with oPLS-DA
[35] for ATR-mIR, oPLS-DA for NMR, and PLS-DA for
NIR. Since PLS methods are supervised and can thus be

overtrained, it is mandatory to use a robust cross-validation
scheme. All models were cross-validated through a standard
7-fold cross-validation [36]. We used a sampling algorithm
thatmaintains the class ratio of the original set when selecting
samples for training; this was done to avoid bias in the train-
ing/testing set due to one class being overrepresented. Fur-
thermore, for the species classifier only 19 randomly selected
Arabica samples were used to ensure a balanced representa-
tion of both species.

The performance of each technique was assessed on four
bases:

(i) The mean and deviation of 𝑄2 values over all models
in the validation: here 𝑄2 was defined as in [36]:

𝑄2 = 1 −
∑
𝑖
(𝑦
𝑖
− 𝑦
𝑖
)2

∑
𝑖
(𝑦
𝑖
− 𝑦)
2
, (1)

where𝑦
𝑖
is the observed value of the response variable

for the 𝑖th sample, 𝑦
𝑖
is the corresponding predicted

value,𝑦 is themean, and the sums runover all samples
in the testing set.

(ii) The Receiving Operator Characteristic (ROC) curve
over all predictions: the predicted values from all
models in the validationwere stored in a single vector,
the same was done with the observed values, and
the ROC curve was computed using these vectors as
input.

(iii) The distribution of areas under ROC curve (AUC):
a ROC curve was computed for each model in the
validation and the corresponding distribution ofAUC
values was visualized as a box plot.

(iv) The stability of the first loading: for each validation
we computed the relative error (standard deviation/
mean) of the first loading over the different models.

All the analyses were performed using in-house scripts
written for the R software [32] and based on the pROC [37]
and rLims [34] packages. All source code used is available
on Github (https://github.com/jwist/coffee-profiler/) and as
Supplementary Materials.

3. Results and Discussion

Two different classifiers were built for each spectroscopic
technique: one for classification of beans by species (Arabica
versus Robusta) and a second for classification of Arabica
samples by origin (Colombia versus others). The former
was a reference task used to check the adequacy of the
chemometrics: according to the literature, all three spectro-
scopic techniques should be able to perfectly discriminate the
samples by species [15, 16, 21, 22, 26, 27].

The results of discrimination by species are summarized
in Figure 1. The plot shows the behavior of the 𝑄2 values
as we add predictive components (or subtract orthogonal
components, in the case of oPLS) to the classifier. The error
bars represent the range of variation of the 𝑄2 values across
the validation for the corresponding number of components.

https://github.com/jwist/coffee-profiler/


4 International Journal of Analytical Chemistry

−1.0

−0.5

0.0Q
2

0.5

1.0

4 6 8 10 12 142
Number of components

Figure 1: Results of discrimination by species, 7-fold cross-validation. Black represents ATR-mIR, red NIR, and blue 1H-NMR.The squares
show the mean of the 𝑄2 values averaged over all 7 models; the error bars show the standard deviation of these 𝑄2. All techniques produced
100% accurate predictions at the top of the curves (2–4 components).
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Figure 2: Scores plots of typical models for discrimination by species. These models were chosen from the top of the curves in Figure 1. By
“typical” we mean that all models generated in the 7-fold validation presented pretty much the same behavior as the ones depicted. Squares:
Arabica and circles: Robusta.

As more components are added to the classifier the𝑄2 values
increase, showing the classifier’s improvement. At some
point, however, the 𝑄2 values start to decrease. This means
that themodel is being overfit, causing predictions on the test
samples to fail. The first optimum of each curve is then a key
point for evaluating the performance of the corresponding
spectroscopic technique. We found that all techniques pre-
sented comparable and very high 𝑄2 values at their optima
(around 2–4 components) with very low variation across the
validation, a clear sign of top performance. In fact, they were
all able to successfully predict the species of all test samples.
Thiswas the expected result, in agreementwithwhat has been
reported in previous publications, as said above. Since the
three spectroscopic techniques presented 100% accuracy, the
shapes of the corresponding ROC curves and AUC box plots
are straightforward and we omitted them in Figure 1. Scores
plots of typical models are presented in Figure 2, where the
quality of the discrimination can be verified once more.

Furthermore, in Figure 3 (top) we check the stability of
the first loadings vector across the validation. This is an
important factor in order to ensure that class-discriminating
variables are independent of the selection of training data. In
chemical terms this means that classes are distinguished by
concentrations of a definite set of components. On the other
hand, small loadings close to noise level are irrelevant for the
discrimination but may vary wildly; to avoid this distraction,
we sorted the loadings vector prior to plotting. It can be seen
that high-valued loadings representing discriminating vari-
ables are very stable, oscillating in a <10% interval around the
mean as we switch the training samples. This confirms that
the discriminant variables do not depend on the sampling
of the test set, meaning that the classification is indeed the
result of variations in chemical composition depending on
the species. Among the discriminating variables we found
signals at 5.8, 6.2, 6.3, and 7.3 ppm attributed to Kahweol, a
molecule that is mostly present in the Arabica species [38].
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Figure 3: Loadings stability analysis. The first loadings vector was sorted before plotting. The smooth and coloured curve that drops from
left to right corresponds to the values of the loadings in decreasing order. The oscillating curve falling from right to left corresponds to the
relative error (std. dev./mean) of these loadings. Above each plot, the corresponding preprocessed spectrum prior to scaling, sorted to match
the loadings’ order. Results shown were obtained for the 7-fold validation, and results for the Monte Carlo validation are virtually identical.

Having checked the adequacy of our chemometrics, we
proceeded to compare the spectroscopic techniques regard-
ing their potential for fraud detection in Colombian coffee.
Figure 4 presents the results of this comparison regarding dis-
criminating power. No technique reached a 100% accuracy,
so this time we analyzed the ROC curves and AUC on top
of the Q2 values. Scores plots of typical models are shown in
Figure 5.

Figure 4 (top) summarizes the results obtained using
7-fold cross-validation. It is clear that NIR performed the
worst, with the lowest 𝑄2 values (left) and worst rate of
accurate predictions as revealed by the ROCcurves (mid) and
AUCs (right). 1H-NMR and ATR-mIR, on the other hand,
appear to yield equally high-quality results. However, we note
that the ROC curves present “low resolution” due to the
limited sampling achieved in a cross-validation that uses only
7 models. Suspecting that the inability to rank 1H-NMR
and mIR could be due to this factor, we ran a Monte Carlo

cross-validation with a sampling size of 100models (Figure 4,
bottom). The larger number of models computed this way
improved the resolution of the ROC curves (mid) but the tie
between 1H-NMR and ATR-mIR remained.

Interestingly, these results are contrary to those found by
Bona et al. [19]. In this recent publication, whichwas probably
the first to compare results of two spectroscopic techniques
applied to the determination of origin in coffee, better results
were reported for NIR than formIR using KBr pellets. On the
contrary, we found that NIR fell short of the desired discrim-
inating power, while ATR-mIR matched the performance of
1H-NMR. The only two evident differences between both
studies were that we used ATR technology to acquire themIR
spectra and that they were discriminating coffees within the
same country (Brazil). Different biomarkers may be respon-
sible for the differences between within-country samples
and between off-country samples, which could potentially
explain why we found opposing results. Regarding the use
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Figure 5: Scores plots of typical models for discrimination by origin. These models were chosen from the top of the curves in Figure 4 (left).
By “typical” we mean that their 𝑄2 values are the most frequent over the 100-model sample generated in the Monte Carlo validation. Black
squares: Colombia and white squares: other countries.

of ATR technology, previous applications of IR spectroscopy
in food science have reported superior results using ATR-
mIR for vitamin C analysis [39] and for determination of
milk fatty acid content [40] when compared to other IR
spectroscopy techniques. At the same time, Pillonel et al.
[41] report better results for NIR when compared to ATR-
mIR for determination of origin in cheese and achieved even

better discrimination with mIR transmission spectroscopy
(mIR/Tr). Then, it must be noted that sample preparation
protocols differed, with ATR-mIR spectra being acquired on
unprocessed slices, while NIR and mIR/Tr were taken on
grated and further processed cheese. These differences may
very well account for the quality of the results to a greater
degree than the different spectroscopic techniques applied.
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4. Conclusions

We provide what, to the best of our knowledge, the first
benchmark is of Nuclear Magnetic Resonance (NMR) and
state-of-the-art infrared spectroscopic techniques (near
infrared (NIR) and Attenuated Reflectance mid-infrared
(ATR-mIR)) for the origin determination of coffee. NIR
spectroscopy, while arguably being the most attractive
technique in terms of efficiency and cost, was found to yield
results that put its ability to successfully classify Colombian
coffee samples in doubt. Previous results by the authors were
confirmed regarding the satisfying performance of 1H-NMR.
On the other hand, ATR-mIR emerged as an attractive
experimental setup due to its competitive performance,
simpler implementation, and shorter time of analysis. We
have thus provided valuable insight into the potential for
fraud detection of three important spectroscopic techniques.

Our results regarding the relative performances of mIR
and NIR were opposite to those of Bona et al. [19]. However,
this disagreement is not inexplicable in light of the differences
between these studies and considering previous findings on
the application of IR spectroscopy to food science. Further
research and comparative studies are required to understand
the root of the disagreement, thus taking another step towards
turning efficient coffee fraud detection by nontargeted chem-
ical analysis in a practical reality.
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