
Computational and Structural Biotechnology Journal 20 (2022) 1244–1253
journal homepage: www.elsevier .com/locate /csbj
Comprehensive characterization of human–virus protein-protein
interactions reveals disease comorbidities and potential antiviral drugs
https://doi.org/10.1016/j.csbj.2022.03.002
2001-0370/� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors at: Key Laboratory of Tropical Translational Medicine of
Ministry of Education, College of Biomedical Information and Engineering, Hainan
Women and Children’s Medical Center, Hainan Medical University, Haikou 571199,
China.

E-mail addresses: xujuanbiocc@ems.hrbmu.edu.cn (J. Xu), lixia@hrbmu.edu.cn
(X. Li), liyongsheng@hainmc.edu.cn (Y. Li).

1 Si Li, Weiwei Zhou and Donghao Li contributed equally to this work.
Si Li a,1, Weiwei Zhou b,1, Donghao Li b,1, Tao Pan a, Jing Guo a, Haozhe Zou a,b, Zhanyu Tian a, Kongning Li a,
Juan Xu b,⇑, Xia Li a,b,⇑, Yongsheng Li a,⇑
aKey Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children’s Medical
Center, Hainan Medical University, Haikou 571199, China
bCollege of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China

a r t i c l e i n f o
Article history:
Received 7 December 2021
Received in revised form 4 March 2022
Accepted 4 March 2022
Available online 7 March 2022

Keywords:
Protein-protein interactions
Network analysis
Antiviral therapy
HVPPI
Disease comorbidities
a b s t r a c t

The protein-protein interactions (PPIs) between human and viruses play important roles in viral infection
and host immune responses. Rapid accumulation of experimentally validated human–virus PPIs provides
an unprecedented opportunity to investigate the regulatory pattern of viral infection. However, we are
still lack of knowledge about the regulatory patterns of human–virus interactions. We collected 27,293
experimentally validated human–virus PPIs, covering 8 virus families, 140 viral proteins and 6059 human
proteins. Functional enrichment analysis revealed that the viral interacting proteins were likely to be
enriched in cell cycle and immune-related pathways. Moreover, we analysed the topological features
of the viral interacting proteins and found that they were likely to locate in central regions of human
PPI network. Based on network proximity analyses of diseases genes and human–virus interactions in
the human interactome, we revealed the associations between complex diseases and viral infections.
Network analysis also implicated potential antiviral drugs that were further validated by text mining.
Finally, we presented the Human–Virus Protein-Protein Interaction database (HVPPI, http://bio-big-
data.hrbmu.edu.cn/HVPPI), that provides experimentally validated human–virus PPIs as well as seam-
lessly integrates online functional analysis tools. In summary, comprehensive understanding the
regulatory pattern of human–virus interactome will provide novel insights into fundamental infectious
mechanism discovery and new antiviral therapy development.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Viral infectious diseases have become a major public health
concern, as can be seen from the current status of the coronavirus
disease 2019 global pandemic. Viruses can only reproduce them-
selves by attaching to and entering host cells, such as human cells,
causing a number of diseases. To carry out these infective pro-
cesses, viruses often interact with host proteins to hijack the host
[1,2]. In this regard, knowledge of host–virus protein–protein
interactions (PPIs) is critical for understanding the mechanisms
of viral infections and host immune response.
Rapid identification of human–virus PPIs can shed light on
potential treatment options for human infectious diseases [3,4].
Considerable efforts have been made to investigate the human–
virus PPIs by multiple experimental methods, such as yeast two-
hybrid assays (Y2H) and affinity purification [5]. In particular, Gor-
don et al. cloned, tagged and expressed 26 SARS-CoV-2 proteins
individually and used mass spectrometry to measure human–virus
PPIs [6]. In total, they identified 332 interactions between viral and
host proteins. Further studies of these human–virus PPIs have
identified druggable human proteins. Han et al. identified candi-
date drugs for SARS-CoV-2 by construction of a SARS-CoV-2–
induced protein (SIP) network [7]. In addition, human–virus PPIs
based on Y2H or affinity purification mass spectrometry (AP-MS)
have been examined on several types of viruses, such as Epstein–
Barr virus (EBV) [8], dengue virus (DENV) [9] and Zika virus (ZIKV)
[10]. Although these experimentally validated human–virus PPIs
have yielded critical insights into viral infection, limited scalability
and time consumption have hampered this field. For this reason, a
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number of computational methods have been proposed to identify
human–viral PPIs. For example, P-HIPSTer is a useful method to
predict human–viral PPIs based on structural information [11].
LSTM-PHV is another method, which combines the long short-
term memory (LSTM) model with the word2vec embedding
method [12]. However, these experimentally or computationally
predicted PPIs are scattered in the literature, which limits the
use of the valuable resource.

To solve this problem, several databases have been established to
manage human–virus PPIs. These databases cover PPIs from single
viral species to pan-viral species. For example, HCVpro is an HCV-
specific database for human–HCV PPIs [13]. DenHunt and DenvInt
are databases for PPIs between human and dengue virus [14,15].
ZikaBase is an integrated database for the ZIKV–human interactome
map [16].VirHostNet [17], VirusMentha [18] andVirusMINT[19] are
useful platforms for host–virus PPIs of multiple types of viruses.
Recently, HVIDB has been proposed to manage human–virus PPIs
by collecting experimental and predicted PPIs [20]. This is the most
comprehensive database currently. However, the current human–
virus databases still need to be improved. First, themajority of these
databaseshavebeendesigned for specific species; otherwise theydo
not provide useful tools to analyze the PPI data. Second, these data-
bases do not provide any drug-related information to facilitate fur-
ther development of antiviral treatment. Finally, although these
human–virus PPIs data were collected, they have not been analyzed
comprehensively.We still lack knowledge about the regulatory pat-
terns of human–virus interactions.

Here, we reported a systematic interrogation of human–virus
PPIs collected from the literature and constructed the comprehen-
sive database called HVPPI (https://bio-bigdata.hrbmu.edu.cn/
HVPPI/). The current version of HVPPI includes 27,293 human–
virus PPIs with diverse experimental supporting evidence, covering
140 viral proteins involving eight virus families and 6059 human
proteins. Furthermore, we integrated a number of computational
tools to visualize the PPIs or predict the functions of viral proteins.
Moreover, we revealed diverse regulatory patterns for virus target-
ing and the disease-disease associations based on the data in
HVPPI. Finally, candidate drugs were identified for antiviral ther-
apy based on the network analysis.
2. Materials and methods

2.1. Collection of human–virus protein–protein interactions

We first collected the human–virus PPIs from the published lit-
erature (ending to June 2021). Several review or database papers
were first manually curated by three independent researchers.
Moreover, we searched the PubMed and added other literature
related to human–virus PPIs. The full-text versions were read and
the detailed information about the PPIs were collected, including
the virus names, virus proteins, human proteins, database
resource, experimental method for detecting the PPIs, and PMID.
Because numbers of protein–protein interactions collected for
InfluV were not provided the exact strains in literature, thus we
used the InfluV (including IAV, IBV and ICV) in analysis. In addition,
we found that numerous PPIs were exactly identified in H1N1; we
thus included these PPIs in H1N1 category. But for the DENV, the
majority of the literature did not provide the exact strains; we thus
used the DENV in analysis. In total, more than 200 articles were
read. All this information was integrated into HVPPI resource.
2.2. Function analysis of viral proteins

To identify the functions enriched by viral-interacting proteins,
we used clusterProfiler to perform function enrichment analysis
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[21]. Gene ontology (GO) biological processes were considered in
our analysis. We only considered the GO terms with genes ranging
from 15 to 500. The biological processes with a p value <0.01 and
p-adjusted value <0.05 were considered significant. Next, all the
GO terms were clustered based on simplifyEnrichment R package
[22]. The similarities among GO terms were calculated by the
‘GO_similarity’ function and the cluster results were visualized
by ‘simplifyGO’ function.

Moreover, we obtained the immune-related pathways from one
of our recent studies [23]. The hypergeometric test was used to
evaluate whether the interacting proteins of a virus protein were
enriched in immune-related pathways. Pathways with a p-
adjusted value <0.05 were considered significant. The enrichment
results were visualized by Circos plot [24].

2.3. Topological features of proteins

The topological features of proteins were calculated based on
igraph package (https://igraph.org/). Here, human PPIs were
obtained from PCNet [25]. The human PPIs included 2,724,723
interactions among 19,779 proteins. Degree, betweenness, and
closeness of each protein were calculated. We next compared the
topological features between viral-interacting proteins and other
proteins by Wilcoxon’s rank-sum test.

2.4. Disease associations based on PPIs

To evaluate the associations between viral infection and other
human complex diseases, we first collected the disease-related
genes for 299 diseases from a recent article [26]. There were
3173 genes for 299 human complex diseases and these diseases
were clustered into 10 clusters [27]. We next evaluated the
network-based overlap between the disease proteins and host pro-
tein targets of each virus [28]. We first calculated the Svb metric,
where Svb < 0 suggests a network-based overlap between the viral
targets v and genes associated with disease b. Svb was calculated as
follows:.

Svb ¼ dvb � dvv þ dbb

2

where Svb compares the shortest distances between proteins within
viral interacting proteins dvv or diseases proteins dbb, to the shortest
distances dvb between viral interacting proteins and disease pro-
teins. Proteins associated to both conditions have dvb ¼ 0.

2.5. Prioritization of potential antivirus drugs based on PPIs

Human PPIs have provided a rational method for predicting the
potential drugs or small molecules for treatment of viral infections.
We prioritized the candidate drugs based on the network-based
method [3]. Given V, the host gene encoded proteins that inter-
acted with a specific virus, and T, the targets of a drug of interest,
we calculated the network proximity measure of V with the target
proteins T of each candidate drug as follows:.

dVT ¼ 1
Vj jj j þ j Tj jj ð

X

i2V
minj2Td i; jð Þ þ

X

j2T
mini2Vd i; jð ÞÞ

where d i; jð Þ is the shortest distance between protein i and j in the
human PPI network. Next, the network proximity measure was fur-
ther transformed into Z-score based on the permutation tests:.

ZdVT ¼ dVT � dr

�

rr

where dr

�
and rr are the mean network proximity measures and

standard deviation of 1000 times permutation, respectively. We
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randomly selected gene-encoded proteins from the whole human
proteome, which were with similar degree distributions to V and
T for calculating the dVT . The p value was calculated as the propor-
tion of random conditions that were with lower dVT than observed.
Drugs with Z-score < �1.5 and p value < 0.001 were identified as
potential antivirus drugs.
2.6. Construction of HVPPI resource

All the PPI data in HVPPI were stored and managed using the
MySQL (version 5.5.21). The HVPPI web interface was built in Java-
Server Pages (JSP). The data processing programs in HVPPI were
written in Java (version 1.7.0_80), and the web services were built
based on Apache Tomcat. The web interface was developed using
Fig. 1. Overview of human–virus protein–protein interaction. A. Construction of the HVP
13 viruses. C. Box plots showing the number of interacting human proteins for each vira
different number of viral proteins across viruses.

Fig. 2. Function enrichment of viral-interacting human proteins. (A) for SARS-CoV-1 and
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HTML5 with JavaScript. The HVPPI database is freely accessible at

https://bio-bigdata.hrbmu.edu.cn/HVPPI/.
3. Results

3.1. Comprehensively curated human–virus protein–protein
interactions resource

To collect the experimentally validated human–virus PPIs, we
manually read more than 200 published articles. The details of
the interactions, including viral protein, human protein, experi-
mental methods, and PubMed ID were all collected (Fig. 1A). In
total, we obtained 27,293 human–virus PPIs with diverse experi-
mental supporting evidence, involving eight virus families (includ-
ing 13 viruses), 140 viral proteins, and 6059 human proteins. All
PI resource for human–virus protein–protein interactions. B. Number of PPIs across
l protein. D. Line charts showing the number of human proteins that interact with a

(B) for SARS-CoV-2. GO terms were clustered into groups based on gene similarities.

https://bio-bigdata.hrbmu.edu.cn/HVPPI/
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these interactions were integrated into a web-based resource
named HVPPI. Users can browse and query of viral proteins or
human proteins to get the detailed interactions in this platform
(Fig. 1A). We also provided a number of useful tools for predicting
the function of viral proteins based on the interacting human
proteins.

Next, we counted the number of interactions in each virus. A
higher number of interactions were identified in DENV, HCV,
H1N1, and ZIKA, and the number of interactions was the highest in
DENV (Fig. 1B). In particular, 389 interactions were validated in
SARS-CoV-2. Given that there are different numbers of proteins in
viruses, we also calculated the number of interacting human pro-
teins for each viral protein. We found that DENV, ZIKA, HCV, and
H1N1 proteins were likely to interact with a higher number of
human proteins (Fig. 1C). Moreover, we found that proteins in sev-
eral viruses, such as ZIKA, HPV and EBOV, interacted with different
numbers of human proteins, while proteins in DENV, HCV, and HIV
interacted with a similar number of human proteins (Fig. 1C). We
calculated the number of viral proteins interactingwith eachhuman
protein. The majority of human proteins only interacted with one
viral protein across viruses (Fig. 1D); however, we also identified
that some human proteins can interact withmore than seven DENV
proteins. Function analysis revealed that these genes were signifi-
cantly enriched in ‘viral gene expression’, ‘translational initiation’
and ‘RNA catabolic process’ (Figure S1). These results suggest that
multiple viral proteins might co-regulate the RNA synthesis-
related pathways to facilitate the virus replication in host.
3.2. Viral proteins widely interact with cell cycle and immune-related
genes

To identify the functions of these viral proteins, we next charac-
terized the function of human proteins interacting with viral pro-
Fig. 3. Virus-interacting proteins enriched in immune-related pathways. A. Circos pl
pathways. B. Network visualization of viral–human protein–protein interactions in antig
protein–protein interactions in antimicrobials pathway.
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teins. We first performed functional enrichment analysis for each
virus and found that these virus-interacting proteins (VIPs) were
significantly enriched in cell cycle and immune response-related
functions. For example, the majority of SARS-CoV-1-interacting
human proteins were significantly enriched in cell cycle-related
functions (Fig. 2A). Particularly, four interacting proteins of nsp1
in SARS-CoV-1 were all annotated in ‘DNA replication’, ‘G1/S tran-
sition of mitotic cell cycle’ and ‘telomere maintenance’ (Table S1).
Moreover, SARS-CoV-2-interacting proteins were also significantly
enriched in cell cycle and DNA replication-related functions
(Fig. 2B). For example, four of six nsp1-interacting genes were sig-
nificantly enriched in ‘DNA replication initiation’, ‘cell cycle G1/S
phase transition’ and ‘telomere maintenance’ (Table S1).

Moreover, we also found that viral-interacting proteins were
significantly enriched in a number of immune-related functions,
such as ‘regulation of type I interferon production’ in DENV and
ZIKA, and ‘regulation of innate immune response’ in HCV and
HPV (Figure S2). Thus, we next focused on 17 immune-related
pathways collected in the literature and performed functional
enrichment analysis for viral-interacting proteins. We found that
six types of virus-interacting proteins were enriched in at least
one immune-related pathway (Fig. 3A). Particularly, the majority
of proteins were significantly enriched in ‘antigen processing and
presentation’, ‘antimicrobials’ and ‘TCR (T cell receptor) signaling
pathway’. For example, human proteins that interact with eight
DNEV proteins were significantly enriched in antigen processing
and presentation pathway (Fig. 3B). Antigen presentation is closely
associated with vital immune process, which is essential for trig-
gering the T cell immune response [29]. Several critical genes, such
as CD8A (CD8a Molecule), IFNG (Interferon Gamma), CD4 (CD4
Molecule), and CD74 (CD74 Molecule), were found to interact with
viral proteins and play important roles in immune regulation
(Fig. 3B). In addition, antibiotics have commonly been used to treat
ot showing the viral-interacting proteins annotated in different immune-related
en processing and presentation pathway. C. Network visualization of viral–human



Fig. 4. Topological features of viral-interacting proteins in human PPIs. A. Degree distributions of viral interacting proteins and other proteins. B. Betweenness distributions of
viral interacting proteins and other proteins. C. Closeness distributions of viral interacting proteins and other proteins.
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patients with acute viral infection in hospital [30]. We found that
several HIV, DENV, and ZIKA proteins interacting with a number
of human proteins were enriched in antimicrobials pathway
(Fig. 3C). These genes included CCR5 (C–C Motif Chemokine Recep-
tor 5), IL10 (Interleukin 10), PPIA (Peptidylprolyl Isomerase A) and
B2M (Beta-2-Microglobulin), which have been demonstrated to
play important roles in immunology [31,32]. Taken together, these
results suggest that the global virus–human map for various types
of viruses can provide a more comprehensive view of the targeting
pathways involved in viral pathogenesis.
3.3. Viral proteins are likely to interact with central proteins in PPI
network

The locations of proteins in human PPI network represent their
functional importance [33–35]. Thus, we next investigated the
location of viral targeting proteins in the context of human PPI net-
work. Degree is one of the most important topological features of a
network and indicates local centrality of protein in the network
(Fig. 4A). The degree is defined as the number of interacting pro-
teins. We divided all the proteins in PPI network into two groups:
viral-targeting proteins and other proteins. We found that viral-
targeting proteins have significantly higher degrees in PPI network
than other proteins (Fig. 4A, all p-values < 0.01, Wilcoxon rank-
sum tests). Moreover, betweenness centrality is another widely
used measure for centrality in a network based on shortest paths
[36]. The betweenness centrality of each protein is defined as the
number of shortest paths that pass through the protein in the net-
1248
work. We next compared the betweenness of viral targeting pro-
teins with others and found that they were likely to have higher
betweenness across all viruses (Fig. 4B, all p-values < 0.01, Wil-
coxon rank-sum tests). Closeness is a way of detecting proteins
that are able to spread biological information very efficiently
through the PPIs. Protein with a high closeness score has the short-
est paths to all other proteins. When we compared the closeness of
viral targeting proteins with other proteins, we found that they
were also likely to have higher closeness scores (Fig. 4C, all p val-
ues < 0.01, Wilcoxon rank-sum tests). Taken together, all these
results suggest that viruses are likely to interact with proteins that
are located in the center of the network or with those that play
important roles in information spread.
3.4. Human–virus protein–protein interactions reveal disease
associations

Emerging evidence has revealed complications and comorbidi-
ties of viral infections [28,37]. We thus systematically evaluated
the disease associations with viral infection based on the state-
of-art network proximity measure. We found that central nervous
system diseases, brain diseases, and neurodegenerative diseases
frequently showed close association with SARS-CoV-1 (Fig. 5A).
In addition, SARS-CoV-2 infection showed significant association
with metabolic diseases, central nervous system diseases, and con-
genital diseases (Fig. 5B). Network visualization can further show
the associations between viral infection and other diseases in
detail. For instance, we found that several SARS-CoV-1-



Fig. 5. Association of viral infections and human complex diseases. A. Disease comorbidity measured by the network overlap between SARS-CoV-1 targets and 299 diseases.
The dots represent diseases whose radius reflects the number of associated diseases genes. The diseases closest to the center, whose names are marked, are expected to have
higher comorbidity with viral infection. (B) for SARS-CoV-2. C. Network visualization showing the protein–protein interactions among viral-interacting proteins and diseases-
associated proteins. (C) for SARS-CoV-1 and central nervous systems disease and (D) for SARS-CoV-2 and central nervous systems disease.
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interacting proteins, such as PEX14 (Peroxisomal Biogenesis Factor
14), PEX3 (Peroxisomal Biogenesis Factor 3), PSEN1 (Presenilin 1)
and GSN (Gelsolin) directly interact with the central nervous sys-
tem disease-associated proteins (Fig. 5C). PSEN1 is a protein-
coding gene that is associated with Alzheimer disease [38]. M pro-
tein of SARS-CoV-1 can directly interact with PSEN1, suggesting
that PSEN1 plays important roles in mediating viral infection-
related central nervous system diseases.

Moreover, there is emerging evidence that SARS-CoV-2 can
cause neurological complications [39,40]. A recent study has found
that approximately 36% of SARS-CoV-2 infection patients from
China had neurological manifestations [41]. Network visualization
showed that the SARS-CoV-2-interacting proteins can significantly
interact with central nervous system diseases-associated proteins
(Fig. 5D). In particular, nsp16 protein directly interacts with dis-
ease proteins, tripartite motif-containing 32 (TRIM32) and ubiqui-
tin protein ligase E3A (UBE3A). Previous studies have
demonstrated that TRIM32 plays important roles in cancer and
antiviral immunity processes [42,43]. UBE3A is a gene responsible
for the pathogenesis of intellectual disability, delayed development
and severe speech impairment [44]. In addition, UBE3A is also
known as an important regulator of the immune system in the
brain tissue. These results indicate that UBE3A plays a critical role
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in SARS-CoV-2 associated central nervous system diseases. More-
over, we also revealed the close association between SARS-CoV-
1- or SARS-CoV-2-associated brain diseases and neurodegenerative
diseases (Figure S3). All these results suggest that the comprehen-
sive interactome map helps to understand the association between
viral infections and other human complex diseases.

3.5. Network analyses identify potential drugs for antiviral therapy

Knowledge of the complex interactions between viral-
interacting proteins and human diseases-associated proteins
implies possibilities of predicting novel drugs. For example, the
drugs or small molecules that target other human diseases could
potentially target viral infection via the shared human PPI net-
works. Thus, we developed a network-based model for predicting
the potential antiviral drugs based on the known drug–target net-
work and the manually curated human–virus interactome col-
lected in this study (Fig. 6A). First, Food and Drug Administration
(FDA)-approved drug–target interactions were downloaded from
DrugBank [45], including 2170 drugs and 2694 targets. Based on
network analysis, we prioritized candidate drugs in each virus
(Fig. 6B). In particular, we identified 46 candidate drugs for treat-
ment of SARS-CoV-2, including 45 small molecule drugs and one



Fig. 6. Prioritization of potential antiviral drugs. A. Network-based method for prioritization of potential drugs. B. Number of potential drugs prioritized across viruses. C.
Number of viruses that can potentially be targeted by drugs. D. Heat map showing the Z-scores of different drugs across viruses. (E) and (F). Network visualization of protein–
protein interactions among viral-interacting proteins and drug targets. (E) for SARS-CoV-1 and (F) for SARS-CoV-2.
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biotech drug (Table S2). We found that 28/46 (60.87%) drugs sup-
ported by the literature.

Next, we calculated the number of viruses for each drug that
can be used for treatment. We found that most of the prioritized
antiviral drugs were effective against a small number of viruses
(Fig. 6C), which is consistent with previous observation [46]. In
contrast, we identified 32 candidate drugs in 13 viruses that could
be used to develop broad-spectrum antiviral agents. In addition,
we found that the top five candidate drugs in each virus showed
consistent z-scores across viruses. For example, epirubicin, nor-
floxacin and ribavirin showed significantly larger z-scores across
all viruses (Fig. 6D), and there is evidences for their broad-
spectrum antiviral effects [47,48]. Next, we analyzed the network
of two coronaviruses in detail. For SARS-CoV-1, the top five identi-
fied drugs were ribavirin, mycophenolic acid, mycophenolate
mofetil, omacetaxine mepesuccinate and doxorubicin (Fig. 6E). In
particular, Inosine Monophosphate Dehydrogenase 2 (IMPDH2)
interacts with viral proteins and can be targeted by candidate
drugs. It has been demonstrated that IMPDH2 knockdown or
chemical inhibition using ribavirin and mycophenolic acid abol-
ishes NF-jB activation and cytokine induction [49]. IMDPH2 inhi-
bitors efficiently block coronaviruses infection [49]. Moreover,
valrubicin, idarubicin, epirubicin, teniposide, and doxorubicin were
identified as top five drugs for SARS-CoV-2, which were all target-
ing DNA Topoisomerase II Alpha (TOP2A) (Fig. 6F). TOP2A has been
found to play important roles in proliferation, clone formation and
invasion of virus [50]. Thus, TOP2A could be used for the develop-
ment of therapeutic intervention. Moreover, DNA Methyltrans-
ferase 1 (DNMT1) was identified to interact with viral proteins
and can be targeted by drugs. It has been demonstrated that
SARS-CoV-2 infection significantly reduced the levels of DNA
methyltransferases [51]. Taken together, these results suggest that
network-based analysis offers a powerful method for rapid identi-
fication of candidate antiviral drugs.
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3.6. HVPPI: a web-based resource for Human–Virus Protein-Protein
interactions

In order to facilitate the analysis of human–virus PPIs, we con-
structed the web-based resource, HVPPI (https://bio-bigdata.
hrbmu.edu.cn/HVPPI). Currently, HVPPI provides 27,293 human–
virus PPIs with diverse experimental supporting evidence, involv-
ing 140 viral proteins from eight virus families and 6059 human
proteins. HVPPI provides multiple browsing/querying modules,
allowing users to easily access the interactome of proteins of inter-
est (Fig. 7). Users can browse through virus names or they can click
the proteins in virus genome structure figure (Fig. 7A). In addition,
entries can be searched by selecting the species, inputting the
names or IDs of proteins, and clicking the ‘submit’ button for
querying the PPIs (Fig. 7B). HVPPI provides the PPIs about the quer-
ied proteins, including viral proteins, virus names, human proteins,
PMID, database resources, experimental methods and details
(Fig. 7C). In the ‘Detail’ pages, the basic information for the PPIs
and several functional modules are provided. The users can predict
the function of viral proteins by their interactions with human pro-
teins. Protein–protein interactions and drug–target interactions
are visualized by network (Fig. 7D). Users can download all PPIs
from the Download page for local use and the Help page provides
a step-by-step instruction on the usage of HVPPI (Fig. 7E-F).
4. Discussion

In this study, we comprehensively collected the human–virus
PPIs and analyzed the regulatory patterns of interacting with
viruses. We found that viral interacting proteins were significantly
enriched in cell cycle and immune-related functions. Viral proteins
were likely to interact with human proteins located in the central
regions of the PPI network. Based on network analysis, we also

https://bio-bigdata.hrbmu.edu.cn/HVPPI
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Fig. 7. Usage of HVPPI resource for human–virus PPIs. A. Users can browse the PPIs in different viruses by virus names or by clicking on the virus figure. B. Users can query of
PPIs by species of interest, and protein of interest. C. The results page for human–virus PPIs. D. Detail pages for human–virus PPIs, including basic information, function
prediction, network visualization, and potential drugs. E. Download pages of HVPPI. F. Help pages of HVPPI.
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revealed the associations between viral infection and human com-
plex diseases, and we prioritized several candidate drugs.

Recent studies have implied that SARS-CoV-2 infection can
affect multiple organs in addition to lungs [52]. Emerging studies
have also revealed that the disease-related genes are likely to show
tissue-specific expression patterns [23,53]. We next investigated
the association between viral-interacting proteins and tissue-
specific expressed proteins. We observed that SARS-CoV-1-
interacting proteins were likely to interact with genes specifically
expressed in adrenal gland, heart, liver, muscle and brain (Fig-
ure S4). In addition, SARS-CoV-2-interacting proteins were likely
to interact with genes specifically expressed in liver, brain and
heart (Figure S4). These results are consistent with previous obser-
vations [54].

There were several potential limitations of this study. First,
although we collected PPI data from databases and the literature
to construct the human–virus interactome, they are still incom-
1251
plete. Moreover, for specific virus families, limited papers have
been taken into account. Considering the increasing interest of
the research community on virus infection, we further efforts will
be devoted to identification of HVPPIs in the future. We will con-
tinually update the web resource for collecting the comprehensive
HVPPIs. Second, different datasets from multiple sources may be
different in quality and bias, which may have influenced the
revealed regulatory patterns in our analysis. Moreover, our net-
work analysis can only be applied to diseases with known associ-
ated genes and not to diseases lacking disease-related genes,
such as rare diseases. We also identified several candidate antiviral
drugs; these drug candidates need to be validated using experi-
mental methods and clinical trials with larger number of patients
before recommendation for the use in patients with viral infection.

In summary, our study provides a comprehensive, integrative
network pipeline for understanding viral infection and reveals
the regulatory patterns of viruses. The comprehensive human–
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virus interactome helps with the prediction of drug candidates for
antiviral therapy. The network-based medicine strategy applied in
this study could provide novel insights for developing effective
treatment strategies for emerging infectious diseases.
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