
https://doi.org/10.1177/1756287220986640 
https://doi.org/10.1177/1756287220986640

Ther Adv Urol

2021, Vol. 13: 1–8

DOI: 10.1177/ 
1756287220986640

© The Author(s), 2021.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Therapeutic Advances in Urology

journals.sagepub.com/home/tau 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Artificial intelligence (AI) involves technology 
that is able to emulate tasks, previously carried 
out by humans.1–3 Machine learning (ML), deep 
learning (DL) based artificial neural networks 
(ANNs) and convolutional neural networks 
(CNNs) are commonly used forms of AI in 
healthcare.1,2 The deep learning convolutional 
neural network (DL-CNN) is a commonly used 
technique for image recognition. Classifiers are 
data from individual circumstances that is input 
onto an AI model. AI models subsequently inte-
grate this data and can potentially predict out-
comes. Common types of classifiers are k-nearest 
neighbour, linear discriminant analysis, Gaussian 
mixture model, support vector machine and ran-
dom forest classifier (RF).

Conventional manual large-scale data analysis is 
cumbersome, time-consuming and often inefficient 

in integrating multiple variables. AI-assisted mod-
els allow quick and accurate analysis of large vol-
ume data (big data) with ability to stratify 
individualized care. AI is increasingly finding appli-
cation in healthcare and is adopted in numerous 
disciplines for diagnostics, training, research, data 
management and improving operational efficiency. 
Prostate cancer is a common cancer in men, with 
the annual incidence on the rise.4,5 The growing 
incidence, novel diagnostic strategies and newer 
available therapeutic options have had resource and 
economic impacts on the healthcare organizations 
providing prostate cancer care.5,6 AI has the poten-
tial to be an adjunct to, in certain cases a replace-
ment for, human input, mitigating some of the 
aforementioned resource implications, and there-
fore reducing costs. Automation also addresses 
issues such as inter- and intra-observer variability 
and has the ability to deliver analysis of large vol-
ume datasets quickly and accurately.1–3 In this 
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article, we review the ever growing applications of 
AI and its subfields in prostate cancer (Figure 1).

Studies related to AI in diagnosis, Gleason 
grade and classification of prostate cancer 
(Table 1)
Contemporary epidemiological, diagnostic and 
therapeutic trends in prostate cancer have created 
particular stress on pathological and radiological 
services. The ability to digitalize pathological 
slides has allowed the use of two stage DL-CNNs 
with k-nearest-neighbour-based whole-slide 
Gleason grade group classification in prostate 
cancer histological evaluation [Figure 2(a) and 
(b)]. Litjens et al. reported one of the earliest 
studies using DL-CNN in the histological evalua-
tion of prostate cancer.7 They reported that all 
slides with prostate cancer were reliably identified 
by this technique and nearly 40% of benign slides 
could be excluded without the need for further 
evaluation. Campanella et al. reported the diag-
nostic performance of a novel weakly supervised 
DL model in a large dataset of 44,732 whole slide 
images from 15,187 patients. They reported an 
area under the curve (AUC) of 0.991, which is 
significantly better than the traditional model.8 
Bulten et al. reported on a DL method for 
Gleason grading.9 The model was trained using 
a data set of 4712 biopsy samples and valida-
tion was performed using a data set of 535 
biopsy cores for which three expert patholo-
gists were assigned. The test dataset consisted 
of 886 tissue cores out of which 245 were sep-
arately examined by two pathologists. The 
automated grading system had strong agree-
ment with the three expert uro-pathologists 

(quadratic Cohen’s kappa 0.918, 95% confi-
dence interval 0.891–0.941). Interestingly, the 
model had better performance than 10 general 
pathologists. Strom et al. developed an AI model 
and trained it with a data set collected prospec-
tively from a clinical trial (STLHM3 study) for 
identification, Gleason grading and localization 
of prostate cancer.10 The model was trained with 
6953 cores from 1069 individuals out of which 
330 cores from 73 men were used for validation 
and the final test set constituted 1631 biopsies 
from 246 men. DL-CNN ensembles consisting of 
30 InceptionV3 models trained on ImageNet 
were used. It achieved a diagnostic accuracy of 
0.997 (AUC) to differentiate between a malig-
nant and benign tumour and the results were 
comparable to those achieved by the expert 
pathologists. Subjectivity and long processing 
time are often issues with predictive and prognos-
tic biomarkers identification in tissue micro-
arrays when performed manually. Calle et al. 
reported an automated method using DL algo-
rithms for the analysis of these biomarkers. The 
authors used 648 samples for immunofluores-
cence staining with anti-Ki-67, ERG antibodies 
to train the model.11 The results were promising, 
with a 5% difference between manual and algo-
rithm based biomarker detection.

Contemporary imaging in prostate cancer involves 
independent and integrated evaluation of mor-
phological and functional parameters.6,15 This 
evaluation is therefore complex and can be bur-
densome on radiologists. Inter-observer variabil-
ity in the interpretation of these images has been 
reported both in the primary diagnosis and in 
patients on active surveillance.15,16 Preliminary 

Figure 1. Applications of artificial intelligence and its subfields in prostate cancer.
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Figure 2. (a) Two stage deep learning-convolutional neural networks with k-nearest-neighbour-based whole-
slide Gleason grade group classification and (b) illustration of the development and usage of the two-stage 
deep learning system.

reports from AI directed computer aided diagno-
sis have suggested promising outcomes, with a 
potential to mitigate some of the aforementioned 
challenges. Chen et al. reported outcomes on a 
weakly supervised CNN model.12 The CNN 
model was trained on the three-dimensional 
images obtained from the 10,000 magnetic reso-
nance–ultrasound fusion biopsy cores of 600 
patients. This model was then applied to the T2 
weighted images of multi-parametric magnetic 
resonance imaging (mpMRI). The model aimed 
to differentiate between benign and malignant 
cases and it achieved an AUC of 0.78. Yuan et al. 
reported on a novel CNN model, the mpMRI 
transfer learning (MPTL) model.13 MPTL stud-
ies the features of T2 weighted and apparent dif-
fusion coefficient sequences of mpMRI images. 
The objective of the model was to classify pros-
tate cancer based on Gleason grading. The model 
achieved an accuracy of 86.92% in Gleason score 
classification of prostate cancer. The model was 

superior to previously evaluated DL models. 
Wildeboer et al. assessed the efficacy of machine 
learning through RF algorithm to localize the 
prostate cancer lesions on transrectal ultrasound 
based on the radiomic features obtained from 
dynamic contrast-enhanced ultrasound, shear-
wave electrography and B mode.14 The tests 
showed promising results, especially for high 
grade prostate cancer.

Automated performance metrics in robotic 
assisted radical prostatectomy (Table 2)
Kinematic and systems event data can be extracted 
from the recording device in ‘the Da Vinci robotic 
system’. The automated performance metrics 
(APM) that is achieved from this information can 
be used for predicting outcomes and surgical train-
ing. Data from serial automated performance met-
rics of individual cases can be provided into ML 
algorithms. A trained machine algorithm can sub-
sequently predict outcomes following a robotic 

https://journals.sagepub.com/home/tau
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Table 1. Studies related to artificial intelligence in diagnosis, Gleason grade and classification of prostate cancer.

Study Objective Study design Algorithm/model Accuracy AUC Sensitivity Specificity

Studies related to AI in diagnosis, Gleason grade and classification of CaP

Litjens 
et al.7

To detect CaP 
from biopsy 
cores using  
DL-CNN

254 patients DL-CNN 32% slides 
not containing 
the disease 
identified

0.99 for CaP
0.80 for 
sentinel 
lymph node

99% for CaP
90% for sentinel 
lymph node

NA

Campanella 
et al.8

To detect CaP 
from biopsy 
cores using  
DL-CNN

44,732 whole 
slide images from 
15,187 patients

DL-CNN ResNet34 
model

NA 0.98 100% NA

Bulten W 
et al.9

To assign 
Gleason grade to 
prostate biopsies 
using AI

1243 patients 
(5759 biopsies)

DL system Benign versus 
malignant: 
96–97%
Grade group 
2 or more: 
79–83%
Grade group 
3 or more: 
76–82%

NA Benign versus 
malignant: 97.4%
Grade group 2 or 
more: 86–95%
Grade group 3 or 
more: 76–92%

Benign versus 
malignant: 
83–100%
Grade group 
2 or more: 
52–70%
Grade group 
3 or more: 
72–782%

Ström P 
et al.10

To diagnose and 
grade CaP in 
biopsies

Training set: 976 
patients (6682 
slides)
Test set: 246 
patients (1631 
slides)

ANN NA 0.997 99% 94.9%

De la Calle 
et al.11

To predict 
recurrence and 
progression 
of CaP based 
on biomarker 
analysis

648 samples (424 
tumours, 224 
normal tissue)
Tissue micro 
assays anti Ki-67, 
ERG antibodies

AI algorithm 100% in 
identification of 
ERG+ tumour

NA NA NA

Chen et al.12 To detect CaP 
cases from 3D 
MR–US fusion 
biopsy images

600 patients 
10,000 3D MR–US 
fusion biopsy 
images

DCNN model NA 0.78 NA NA

Yuan et al.13 To localize 
CaP lesions on 
mpMRI (T2W and 
ADC) images

DL-CNN based 
MPTL model

86.92% NA NA NA

Wildeboer 
et al.14

For automated 
localization of 
CaP based on 
radiomics of 
TRUS

50 men with 
biopsy confirmed 
CaP

ML techniques 
using B-mode, 
shear-wave 
elastography, 
and dynamic 
contrast-enhanced 
ultrasound 
radiomics

NA 0.75–0.90 NA NA

ADC, apparent diffusion coefficient; AI, artificial intelligence; ANN, artificial neural network; AUC, area under the curve; CaP, prostate cancer; 
DCNN, deep convolutional neural network; DL, deep learning; DL-CNN, deep learning and convolutional neural network; ML, machine learning; 
mpMRI, multiparametric magnetic resonance imaging; MPTL, mpMRI transfer learning; MR–US, magnetic resonance–ultrasound; NA, not 
available; T2W, T2 weighted; TRUS, transrectal ultrasound.

assisted radical prostatectomy.17 Hung et al. 
reported one of the earliest studies that evaluated 
three trained ML algorithms to predict peri-opera-
tive outcomes following a robotic assisted radical 

prostatectomy (RARP).17 The random forest clas-
sifier-50 algorithm was the most accurate algo-
rithm. The classifier’s prediction of operative time, 
length of stay and duration of catheter had 
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Table 2. Automated performance metrics in robotic assisted radical prostatectomy (RARP).

Study Objective Study design Algorithm/
model

Accuracy AUC

Hung et al.17 To evaluate RARP performance 
and predict outcomes

78 RARP cases APMs ANN 
based random 
forest-50 
classifier

87.2% NA

Hung et al.18 To predict the recovery of urinary 
continence after RARP based 
on the APMs of the surgeon to 
perform robotic surgery

100 cases of RARP performed by two 
groups of four each. Group 1/APM 
consisted of expert surgeons, Group 
2/APM consisted of other surgeons

DL-based 
model 
DeepSurv

85.9% in 
predicting 
continence

NA

Jian et al.19 To measure surgeon performance 
during robotic vesicourethral 
anastomosis and methodical 
development of a training tutorial

70 cases 1745 stitches APMs NA NA

ANN, artificial neural network; APM, automated performance metrics; AUC, area under the curve; DL, deep learning; NA, not available.

a statistically significant association with the 
respective true outcomes. Hung et al. utilized a 
DL-based model (DeepSurv) using APMs and 
clinico-pathological features in predicting conti-
nence outcomes.18 The model had higher predic-
tive accuracy than ML models and conventional 
regression analysis models. Additionally the model 
reported APMs to be more accurate predictors of 
continence than clinico-pathological features. 
Chen et al. compared APM and non-APM 
(NAPM) to evaluate the skills of a surgeon while 
performing vesicourethral anastomoses (VUAs) 
during a RALP.19 Seventy VUAs with 1745 
stitches were assessed. Classification of needle 
driving gestures was performed and compared. 
Differentials such as operative time, camera move-
ment and manipulation, efficiency of instrument 
movement and articulation of EndoWrist could be 
accurately evaluated with APMs. These factors 
were found to be superior in expert surgeons (more 
than 100 console cases) when compared with nov-
ice surgeons (fewer than 100 console cases). 
NAPM could identify fewer differential features 
such as fewer traumas by the experts, less needle 
driving attempts and optimal angle of needle entry.

Prediction of treatment outcomes in 
prostate cancer and other applications 
(Table 3)
Lee et al. reported outcomes of an AI-assisted 
model which was able to predict biochemical 
recurrence (BCR) rates following radical prosta-
tectomy. A RF was used to predict BCR rates. 
The model achieved a mean and a maximum 

AUC of 0.74 and 0.9286 respectively.20 Panfilo 
et al. reported outcome of two ML methods (RF 
and binary tree classifier) to predict the histo-
logical upgrading of prostate cancer following a 
radical prostatectomy. The model integrated 
multiple variables such as PSA density, total 
PSA, volume of prostate, clinical stage, body 
mass index, number of positive cores, primary 
Gleason, percentage of cancer, secondary 
Gleason and ASA (American Society of 
Anaesthesiologits) score. The RF was superior 
to a conventional logistic regression model in 
predicting histological upgrading in prostatec-
tomy specimens.21 Deng et al. reported a ML 
model which was able to predict adverse side 
effects following docetaxel chemotherapy.22 
One of the earliest reported applications of ML 
methods in genomic studies was to predict 
metastasis free survival rate by validating the 
genomic classifier Decipher.23 This classifier 
was used by Nguyen et al. to predict prostate 
cancer-specific mortality (PCSM) following a 
radical prostatectomy or radiation therapy.24 It 
achieved a C-index of 0.71 and 0.74 in predict-
ing metastases and PCSM respectively. Koo 
et al. used ANNs to predict survival out-
comes.25 The authors used multilayer percep-
tron and long–short term memory ANN 
models. A data set of 7267 prostate cancer 
patients was used to train the models. Nineteen 
clinical and pathological variables were inte-
grated into the models. The ANN models were 
superior to conventional Cox regression analy-
sis models in predicting 5–10 year survival 
outcomes.

https://journals.sagepub.com/home/tau
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Big data in prostate cancer
Big Data for Better Outcomes Programme 
(BD4BO) is a European research programme aim-
ing to develop key enablers to support health care 
system transformation using big data. Innovative 
Medicines Initiative-2 and BD4BO launched a 
comprehensive network across Europe known as 
Prostate Cancer Diagnosis and Treatment 
Enhancement through the Power of Big Data in 
Europe (PIONEER). PIONEER aims to achieve 
high quality outcomes with automated analysis of 
big data.28,29 Observational Medical Outcomes 
Partnership and Observational Health Data 
Sciences and Informatics technology will be used 
for the collection and analysis of the data from the 
registries while tranSMART technology will be 
used for genomics/radiomics and clinical data.

Other applications
Nouranian et al. developed learning based multi-
label segmentation algorithm with an aim to 
reduce the planning time and segmentation vari-
ability during radiotherapy planning.26 The algo-
rithm was tested on a data set of 590 treatment 
plans. The authors reported the outcomes to be 
clinically acceptable. Nicolae et al. reported ML 
algorithm to automatically generate high quality, 
prostate low-dose-rate brachytherapy treatment 
plans.27 The algorithm was trained with 100 treat-
ment plans. The results showed that the ML 
based algorithm was faster than the expert brachy-
therapists in planning a treatment without com-
promising quality. The use of AI will have a big 
role in future cancer and non-cancer guidelines 
and revolutionize the decision-making process.30

Table 3. Prediction of treatment outcomes in prostate cancer and other applications.

Study Objective Study design Algorithm/model Accuracy AUC

Lee et al.20 To predict BCR in patients of prostate 
cancer who underwent RP and had 
Gleason score of 6–8

189 features 40 patients ML based random 
forest classifier

NA 0.92 (max)  
0.74 (mean)

Panfilo et al.21 To predict the upgrading of 
prostate cancer post robotic radical 
prostatectomy using multiple 
variables and AI

8357 patients ML based random 
forest classifier 
BT classifier

NA RF: 0.78
BTC: 0.76
Logistic model: 0.67

Deng et al.22 For treatment stratification of patients 
with metastatic castrate resistant CaP

78 features associated 
with the patient clinical 
and medical history, lab 
reports and metastases

ML based model NA NA

Nguyen et al.24 To predict PCSM and metastases in 
intermediate to high risk patients who 
have undergone RP or RT

235 patients ML based 
genomic classifier 
Decipher

NA Metastases: 0.71
PCSM: 0.74

Koo et al.25 To predict the treatment outcomes 
in terms of OM, CSM and CRPC free 
survival

7267 patients 19 
variables

ANN models
MLP
Long–short term 
memory

5 years
CRPC: 85.5%
CSM: 80.2%
OM: 79.5%
10 years
CRPC: 84.6%
CSM: 79.5%
OM: 96.4%

NA

Nouranian et al.26 To reduce the segmentation variability 
of TRUS images and planning time by 
proposing an efficient learning-based 
multi-label segmentation algorithm

590 brachytherapy 
treatment records by 
5-fold cross validation

Learning based 
multi-label 
segmentation 
algorithm

NA NA

Nicolae et al.27 To plan RT in CaP cases using AI 100 high-quality 
LDR treatment plans 
(training set).

ML algorithm NA NA

AI, artificial intelligence; ANN, artificial neural network; AUC, area under the curve; BCR, biochemical recurrence; BT, binary tree; BTC, binary 
tree classifier; CaP, prostate cancer; CRPC, castrate resistant prostate cancer; CSM, cancer specific mortality; LDR, low dose radiotherapy; ML, 
machine learning; MLP, multilayer perceptron; NA, not available; OM, overall mortality; PCSM, prostate cancer-specific mortality; RF, random 
forest; RP, radical prostatectomy; RT, radiation therapy; TRUS, transrectal ultrasound.
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Conclusion
The roles of various facets of AI in prostate cancer 
are in their infancy. The preliminary outcomes of 
AI models in various domains of prostate cancer 
care are promising. The continuous training and 
testing of AI algorithms will facilitate development 
of futuristic AI models that will have integral roles 
to play in diagnostics, enhanced training and sur-
gical outcomes and developments of prostate can-
cer predictive tools. These AI related innovations 
will enable clinicians to provide individualized 
care. Despite its potential benefits, it is vital that 
governance with AI related care is maintained and 
responsible adoption is paramount.
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