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Abstract

The evolution of gastric carcinogenesis remains largely unknown. We established two gastric carcinogenesis models in New-
World nonhuman primates. In the first model, ACP03 gastric cancer cell line was inoculated in 18 animals. In the second
model, we treated 6 animals with N-methyl-nitrosourea (MNU). Animals with gastric cancer were also treated with Canova
immunomodulator. Clinical, hematologic, and biochemical, including C-reactive protein, folic acid, and homocysteine,
analyses were performed in this study. MYC expression and copy number was also evaluated. We observed that all animals
inoculated with ACP03 developed gastric cancer on the 9th day though on the 14th day presented total tumor remission. In
the second model, all animals developed pre-neoplastic lesions and five died of drug intoxication before the development
of cancer. The last surviving MNU-treated animal developed intestinal-type gastric adenocarcinoma observed by endoscopy
on the 940th day. The level of C-reactive protein level and homocysteine concentration increased while the level of folic acid
decreased with the presence of tumors in ACP03-inoculated animals and MNU treatment. ACP03 inoculation also led to
anemia and leukocytosis. The hematologic and biochemical results corroborate those observed in patients with gastric
cancer, supporting that our in vivo models are potentially useful to study this neoplasia. In cell line inoculated animals, we
detected MYC immunoreactivity, mRNA overexpression, and amplification, as previously observed in vitro. In MNU-treated
animals, mRNA expression and MYC copy number increased during the sequential steps of intestinal-type gastric
carcinogenesis and immunoreactivity was only observed in intestinal metaplasia and gastric cancer. Thus, MYC deregulation
supports the gastric carcinogenesis process. Canova immunomodulator restored several hematologic measurements and
therefore, can be applied during/after chemotherapy to increase the tolerability and duration of anticancer treatments.
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Introduction

Gastric cancer is the fourth most frequent cancer type and the

second highest cause of cancer mortality worldwide. Gastric

cancer prevalence is influenced by geographic, ethnic, and cultural

factors [1]. In addition, adenocarcinoma is the most common

digestive tract neoplasia [2].

Nonhuman primates offer a useful model for carcinogenesis

studies. Nonhuman primates present close phylogenic relationship

to humans and greater similarities with regard to anatomy,

physiology, biochemistry, and organ systems, as compared to

rodents. They also present a relatively large organ size which

enables repeated diagnostic procedures, such as endoscopic

examination, blood sample collection and biopsy, on the same

animal over a long period of time [3]. Although nonhuman

primate models are not common and are expensive compared to

rodent models, the long life span observed in nonhuman primates

allows for long-term carcinogenic studies.

Chemical carcinogens cause genetic and epigenetic changes that

lead to neoplastic transformation. N-methyl-nitrosourea (MNU) is

a well-known direct carcinogen, which does not need metabolic

activation to exert carcinogenicity. MNU leads to the production

of O6-methylguanine adducts, resulting in premutagenic lesions

and DNA strand breaks. MNU is a nitrosation product of

creatinine metabolism that is formed in the presence of nitrites in

the acidic gastric environment. MNU production is associated
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with the ingestion of meat products, cured meats, and seafood [4].

Moreover, it is possible that many species, including humans, are

exposed to carcinogenic MNU, generated in their alimentary tract

[5]. Thus, tumorigenesis induced by MNU is an interesting model

to study gastric cancer.

Canova may be a potential anticancer treatment in patients with

gastric carcinoma. It is a complex homeopathic immunomodulator

indicated for patients whose immune system is depressed. Canova

activates macrophages both in vivo and in vitro and indirectly induces

lymphocyte proliferation [6]. Since innate and adaptive immune

responses play a role in tumor surveillance and clearance [7],

enhancing the ability to trigger a specific immunologic response

against malignant cells is an important anticancer approach.

In the present study, we aimed to establish a gastric

carcinogenesis model in Cebus apella, a nonhuman primate. We

induced stomach tumors by gastric cancer cell line inoculation as

well as MNU treatment for the duration of approximately 2.5

years. We evaluated body weight, serum biochemistry values and

hematological parameters, as well as MYC proto-oncogene

expression and copy number, in these in vivo models. In these

models, we also assessed if Canova immunomodulator through the

enhancement of immunity can contribute to a reduction in

adverse effects of anticancer treatment.

Methods

2.1 Nonhuman Primates
36 adult Cebus apella (6–7 years old) were evaluated (2.7–3.6 kg).

Animals were identified with microchips and were individually

housed in Centro Nacional de Primatas, Pará State, Brazil. The

animals were fed a healthy balanced diet not enriched with sodium

chloride and were weighed daily. In this study, the details of

animal welfare and steps taken to ameliorate suffering were in

accordance with the recommendations of the Weatherall report,

‘‘The use of non-human primates in research’’. This study was

approved by the Ethics Committee of Universidade Federal do

Pará (PARECER MED002-10).

According to a basic veterinary examination, all animals were

considered healthy at the time of first blood sampling, endoscopy,

and ultrasound. This was confirmed by the animals’ behavior as

judged by the veterinary check.

2.2 Experimental Design
36 animals were randomly separated in six groups and included

in 2 studied models:

1o model: cell line inoculation. Negative Control (NC): 6

control C. apellas that received saline solution injections instead of

Canova or cell line inoculation.

– Canova group (CA): 6 C. apellas treated with 7 ml/g of Canova

during 14 days. These animals did not receive cell line inoculation.

– Cell line group (CL): 6 C. apellas inoculated with gastric cancer

cell line and that received saline solution injections instead of

Canova

– Cell line plus Canova during 10 days (CLCA1): 6 C. apellas

inoculated with gastric cancer cell line and after 5 days were

treated with 7 ml/g of Canova during 10 days.

– Cell line plus Canova during 14 days (CLCA2): 6 C. apellas that

received gastric cancer cell line inoculation and 7 ml/g of

Canova during 14 days (since day 0).

2o model: MNU treatment. 6 C. apellas treated with MNU.

After tumorigenesis, one animal received Canova treatment

(MNU group).

2.3 Cell line inoculation
One week before the cell line inoculation, the C. apellas of CL,

CLCA1 and CLCA2 groups were immunosuppressed by a single

dose of 50 mg/kg of cyclophosphamide.

Four gastric cancer cell lines were tested: ACP02, ACP03,

AGP01 and PG100. The first 3 cell lines were established by our

research group from tumor samples of individuals from Northern

Brazil [8]. The PG100 a cell line established from a primary

gastric adenocarcinoma was obtained from Rio de Janeiro Cell

Bank, Brazil (BCRJ). Only the ACP03 cell line, that was establish

from an intestinal-type gastric cancer, was inoculated in the

animals included in the present study, since it was the only one

that was able to start a tumorigenesis process in C. apella.

One week after immunosupression, animals of CL, CLCA1 and

CLCA2 groups received percutaneous inoculation of 1010 cells of

ACP03 at the 85th passage between the mucosal and submucosal

layers of antral stomach region. Ultrasonography was used to

visualize the stomach tissues during cell line inoculation.

2.4 Canova treatment
Canova is standardized and authorized by competent agencies

for medicinal application. Experiments were performed with

commercial Canova donated by ‘Canova do Brasil’, a Brazilian

company, which holds the international patent of this medicine

(www.canovadobrasil.com.br).

Animals of CA, CLCA1 and CLCA2 groups, as well as one

animal of MNU group, were treated with Canova. These animals

received 7 ml/g of Canova daily. Canova concentration was

determined according the study of Sato et al. in mice model [9].

Dose distributions were calculated at the time of treatment.

Canova solution was succussed before treatment and injected by

slow infusion in the right femoral vein of C. apella in a single dose.

2.5 MNU treatment
The animals of the second model received oral fresh doses of

MNU (N1517 Sigma-Aldrich, USA) daily for 940 days at a dosage

of 16 mg/kg body weight. The animals also received drink water

containing MNU in light-shielded bottles daily. Water was

restricted during MNU treatment and given ad libitum during

Canova treatment.

2.6 Animal evaluation
Blood samples of all animals were collected for the determina-

tion of hematimetric and leukocytic parameters, evaluation of

hepatic and renal functions, and serum measurement of C-reactive

protein (CRP), folic acid, and homocysteine on day 0 (baseline).

During the treatment periods, the animals were inspected daily

and their clinical symptoms were recorded. Body weight was

determined and peripheral blood from the left femoral vein was

collected for all serum analyses.

Chemistry analysis included testing of levels of glucose, urea

nitrogen, creatinine, total protein, albumin, globulin, total

bilirubin, cholesterol, triglyceride, alanine aminotransferase,

aspartate aminotransferase, c-glutamyl transpeptidase, lactate

dehydrogenase, creatine kinase, amylase, calcium, inorganic

phosphorus, sodium, potassium, and chloride. Clinical hematology

included red blood cell count, hemoglobin, hematocrit, platelet

count, white blood cell (WBC) and differential (segmented

neutrophil, lymphocyte, monocyte, eosinophil and basophile)

counts. Methods and reference values for male adult animal were

previously described [10].

CRP was measured by turbidimetric assay as previously

described by Price et al. [11]. Serum level of folic acid was
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measured using chemiluminescent microparticle immunoassay

(CMIA) (Abbott System, USA). Serum homocysteine levels were

measured with high pressure liquid chromatography (HPLC)

(Betamed, Agilent 1100 series, Chromosystems Reagent Kit).

For the first studied model, our results focus mainly in the blood

analyses of days 0 and 14. The analysis of folic acid and of

homocysteine concentration was also presented on the 9th day. For

the second carcinogenesis model, our results focus mainly in the

blood analyses of the days 0, 90, 120, 300, 940 and 960.

2.7 Tissue samples and gastric mucosa examination
Biopsy samples of gastric normal and non-normal (e.g. non-

atrophic and atrophic gastritis, metaplasia, neoplasia) gastric

mucosa were collected by endoscopy. Lymphadenectomy was

performed to collect axillary and inguinal lymphonode samples.

Gastric mucosa alterations and tumor growth was followed by

endoscopy examination and ultrasonography. A pachymeter was

used to measure the tumor biopsies.

Histologic analysis of gastric mucosa and axillary and inguinal

lymphonode biopsies of Cebus apella were embedded into paraffin,

cut in 5 mm sections, and stained by hematoxylin and eosin.

2.8 MYC expression and copy number analyses
The MYC proto-oncogene has been described as a key in the

gastric carcinogenic process [12] and, thus, it was select to confirm

the presence of a gastric carcinogenesis process. For the first

studied model, gastric biopsies of tumorfactions observed on the

9th day after cell line inoculation were used to evaluate the MYC

expression and copy number, because only fibrotic lesions were

observed in the studied animals on the 14th day. For the second

studied model, C. apella gastric samples at days 0, 90, 120, 300, 940

and 960 were used to evaluate the MYC expression and copy

number.

Fluorescent in situ Hybridization (FISH) was performed to

determine MYC gene copy number according to the protocol of

Pinkel et al. [13] with modifications introduced from Calcagno et

al. [14,15]. Cells were hybridized with digoxigenin-labeled probe

(ONPON0824, Bioagency Biotechnology, Brazil) for MYC gene

region (8q24) and nuclei were counterstained with 49,6-diamidino-

2-phenylindole antifade. Positive MYC gene signals appeared as

red spots in nuclei and were scored using the criteria of Hopman

et al. [16].

Quantitative TaqMan Copy Number Variation (CNV) assays

(Applied Biosystems, USA) using real-time quantitative PCR (RT-

qPCR) were applied as a confirmation to FISH analysis. RT-

qPCR was performed using the FAM/MGB-labeled TaqMan

probe for MYC gene (Hs01764918_cn) and VIC/TAMRA-labeled

TaqMan CNV RNAse P (#4403326) for the internal control. RT-

qPCR reactions were performed in quadruplicate with genomic

DNA (gDNA) according to the manufacturer’s protocol (Applied

Biosystems, USA). A known human gDNA (Promega, USA) was

used for calibration.

MYC mRNA expression was evaluated RT-qPCR. First,

complementary DNA was synthesized using High-Capacity cDNA

Archive kit according to the manufacturer’s protocol (Applied

Biosystems, Poland). All RT-qPCR reactions were performed in

triplicate for both target gene (MYC -Hs00153408_m1) and

internal control (GAPDH - NM_002046.3). Relative quantification

(RQ) of the gene expression was calculated according to Livak and

Schmittgen [17]. In the present study, the NC group was

designated as a calibrator of the first model where as the baseline

values (from day 0) of the animals were used to calibrate the

second study model.

Immunohistochemical analyses for MYC protein were per-

formed on formalin-fixed, paraffin-embedded sections. Immuno-

histochemical staining was performed on the paraffin sections

according to Calcagno et al. [15] with primary mouse monoclonal

antibody against MYC (dilution 1:50; DBS, USA). Positive protein

expression was defined as clear nuclear imunostaining in more

than 10% of the cells.

2.9 Data Analysis
In the first model (cell line inoculation), we first evaluated the

normal distribution of all data using the Shapiro-Wilk normality

test to determine subsequent use of appropriate tests for

statistical comparison. Data that were not normally distributed

were transformed (z-score transformation) for analysis such that

they followed a normal distribution. Analysis of variance in

body weight, serum biochemistry values, hematological param-

eters, MYC expression, and copy number were performed by

univariate General Linear Model (GLM) followed by Bonferroni

post-hoc test. The effect size for GLM analyses was based on

Eta Squared (g2), in which 0.15 and below was determined as a

small effect size; 0.16–0.40, medium effect size; and above 0.40,

large effect size. Chi-square test was performed to compare

MYC immunostaining among groups. In these analyses, the

confidence interval was 95% and p values less than 0.05 were

considered significant.

In the second model (MNU treatment), only non-parametric

tests to repeated measures were used due to the small number of

samples. The Friedman test followed by Wilcoxon analysis with

Bonferroni’s adjustment were performed to analysis of variance in

body weight, serum biochemistry values, hematological parame-

ters, MYC expression, and copy number at days 0 (baseline), 90

and 120. In these statistical analyses, one animal was excluded due

to its early death. In these analyses, p,0.016 was considered

statistically significant. Also, due to small numbers of animals, the

statistical data analysis concerning MNU treatment among days

300–940 and Canova treatment among days 940–960, was not

possible and results are presented in a descriptive format.

Results

3.1 First model – cell line inoculation
Before this study, several methods of cell line inoculation were

tested including intraperitoneal, subcutaneous, gavage, orthopic

implantation and percutaneous (data not shown). The percutane-

ous inoculation was the only via that resulted in the development

of a tumorigenic process. We also previously detected that 1010

cells was the cell number needed to increase the total tumorous

percentage compared to small number of cells (108 e 109).

However, the high number of cells did not increase the total

tumorous percentage (data not shown).

In the first model, eighteen C. apella received percutaneous

inoculation of 1010 of ACP03 cells. On the 9th day after cell line

inoculation, these animals presented tumorfactions in the antral

region of the stomach (Figure 1A). The tumor volumes of CL,

CLCA1, and CLCA2 groups were similar and all animals were

able to eliminate the tumors. On the 14th day, they presented only

an inflammatory zone and fibrotic lesions in the region.

Among the cell inoculation methods, we also evaluated the

intraperitoneal inoculation. The intraperitoneal ACP03 inocula-

tion induced lymphatic congestion in C. apella. After 48 h of cell

line inoculation, the animals presented auxiliary and inguinal

lymph node enlargement. Lymphadenectomy was performed and

the histopathologic analysis showed only reactive lymphoid

hyperplasia.

Gastric Carcinogenesis Model in Nonhuman Primates
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During this study, the animals in the NC group presented

normal levels of the biochemical and hematologic evaluated

parameters according to Riviello et al. study in C. apella [10]. To

our knowledge, there are no CRP, homocysteine, and folic acid

reference ranges determined for C. apella. However, the non-

treated animals presented homocysteine and folic acid levels

similar to those described for healthy Macaca fascicularis [18].

One week before the cell line inoculation, the C. apellas of CL,

CLCA1 and CLCA2 were immunosuppressed by a single dose of

50 mg/kg of cyclophosphamide. However, on the day of cell line

inoculation, no significant difference was observed among these

groups, nor between NC and CA groups, regarding the animal’s

baseline weight, biochemical, hematologic, folic acid, and

homocysteine measurements.

Concerning the biochemical analysis, significant changes in

triglycerides (F4,25 = 335.695, p,0.001, by GLM test; g2 = 0.982),

urea nitrogen (F4,25 = 33.537, p,0.001; g2 = 0.843) and CRP

(F4,25 = 20.135, p,0.001; g2 = 0.763) levels were observed among

the studied groups on the 14th day (Figure 2A–C, Table S1). The

Bonferroni post-hoc analyses demonstrated a significant increase

of triglycerides, urea nitrogen, and CRP level in CL, CLCA1 and

CLCA2 compared to NC and CA groups (p,0.001, for all pair

wise comparisons). No significant difference in biochemical

measurements was observed between NC and CA groups. The

increase of triglyceride level in the cell-line inoculated animals was

inside the normal reference level according to Riviello et al. [10].

On the other hand, abnormal levels of the other biochemical

parameter were observed in the cell-line inoculated animals.

To our knowledge, no previous study reported the normal level

of CRP in healthy C. apella. In the present study, we observed that

the range of CRP levels were between 0.34–0.99 mg/dL (n = 36,

on day 0). The serum CRP level increased 5.7–13.6 folds due to

cell line inoculation.

We observed that the levels of folic acid changed significantly

among the studied groups on the 9th (F4,25 = 7.446, p,0.001, by

GLM test; g2 = 0.544) and on the 14th day (F4,25 = 4.056,

p = 0.011; g2 = 0.394). Bonferroni post-hoc analyses demonstrated

a significant reduction of folic acid in CL and CLCA2 group than

NC (p = 0.008 and p = 0.003, respectively) and CA (p = 0.03 and

p = 0.009, respectively) on the 9th day and in animals from CLCA2

group compared to NC group (p = 0.031) on the 14th day, which

suggests an effect of cell line inoculation (Figure 2D, Table S1). In

the present study, we observed that the range of folic acid level was

13.29–18.84 nmol/dL in healthy C. apella (n = 36, on day 0).

However, on the 9th day, 4 animals of CL, 4 of CLCA2 and 1 of

CLCA1 presented lower levels of folic acid (less than 13 nmol/L)

as well as 3 animals of CL, 3 of CLCA2, and 1 of CLCA1 on the

14th day.

We observed that homocysteine levels changed significantly

among the studied groups on the 9th day (F4,25 = 7.887, p,0.001,

by GLM test; g2 = 0.558) and on the 14th day (F4,25 = 5.6,

p = 0.002; g2 = 0.473). On the 9th day, CLCA1 and CLCA2

groups presented higher homocysteine levels than animals from

NC (p = 0.007 and p = 0.028, respectively, by Bonferroni analyses)

and CA (p = 0.003 and p = 0.011, respectively). The CL group also

presented higher homocysteine levels than animals from CA group

(p = 0.028). However, on the 14th day, only animals from CLCA1

group presented higher homocysteine levels than animals from NC

(p = 0.026) and CLCA1 and CLCA2 groups presented higher

levels than CA (p = 0.013 and p = 0.29, respectively) group, which

suggests some effects of cell line inoculation and of Canova

treatment (Figure 2E, Table S1). In the present study, we observed

that the range of homocysteine was between 2.5–5.21 mmol/L in

healthy C. apella (n = 36, on day 0). In addition, we observed that 2

animals of CL, 4 of CLCA1 and 3 of CLCA2 presented

homocysteine levels higher than 5.21 mmol/L on the 9th and

14th days.

Concerning hematologic analyses, we observed a significant

alteration in leukocyte (F4,25 = 10.506, p,0.001, by GLM test;

g2 = 0.627), lymphocyte (F4,25 = 55.213, p,0.001; g2 = 0.898),

erythrocyte (F4,25 = 6.405, p = 0.001; g2 = 0.506), haemoglobin

(F4,25 = 4.798, p = 0.005; g2 = 0.434), and haematocrit

(F4,25 = 12.028, p,0.001; g2 = 0.658) counts among the studied

groups on the 14th day (Figure 2F–J, Table S1). The Bonferroni

post-hoc analyses demonstrated a significant increase of leukocyte

and lymphocyte count in CA (p,0.001 and p,0.001, respective-

ly), CL (p = 0.017 and p,0.001, respectively), CLCA1 (p,0.001

and p,0.001, respectively) and CLCA2 (p,0.001 and p,0.001,

respectively) as compared to the NC group, which suggests that

Canova and cell line inoculation affect leukocyte and lymphocyte

levels. Although CA group presented abnormally high lymphocyte

count according to Riviello et al. [10], these animals were clinically

healthy.

We also detected that CL group presented a significant

reduction of erythrocyte (p = 0.006 and p = 0.001, respectively

by Bonferroni analyses) and haemoglobin count (p = 0.011 and

p = 0.007, respectively) as compared to NC and CA groups, which

suggests a cell line inoculation effect that is improved by Canova

treatment. According to Riviello et al. [10], all animals of the CL

group were anemic. We also observed a significant reduction of

haematocrit count in CL and CLCA2 groups as compared to NC

group (p,0.001 and p = 0.022, respectively). The CL group also

presented reduced haematocrit count as compared to the CA

group (p,0.001). According to Riviello et al. [10], 5 animals of the

CL and 1 of the CLCA1 group presented abnormal haematocrit

level. The hematocrit count difference among groups again

suggests a cell line inoculation effect that is in part improved by

Canova treatment.

3.2 Second model – MNU treatment
We treated six C. apella with MNU for a duration of

approximately 2.5 years. All animals developed pre-neoplastic

lesions and five died of drug intoxication before the development

of gastric cancer. All animals presented non-atrophic gastritis on

the 90th day. On the 110th day, one animal died from drug

intoxication and the other five animas presented atrophic gastristis

on the 120th day. On the 134th, 140th and 290th days, three more

Figure 1. Ultrasonography, immunohistochemistry and FISH analysis in C. apella gastric carcinogenesis models. A) ultrasound image
showing a ‘‘space’’ between the stomach wall where ACP03 cell line was inoculated and developed a tumor (2.5 cm); B) ultrasound image showing a
tumor mass in a MNU-treated animal on the 940th day (5 cm); C); MYC immunoreactivity in a tumor sample of a CLCA1 animal (4006); D); lack of MYC
immunoreactivity in non-atrophic gastritis sample in a MNU-treated animal (4006); E) MYC immunoreactivity in intestinal metaplasia sample of a
MNU-treated animal (4006); F) MYC immunoreactivity in a tumor sample of a MNU-treated animal (4006); G) lymphocytes of a healthy C. apella
showing two signals for MYC probe (10006); H) normal gastric mucosa cells of NC animal presenting two MYC signals (10006); I) neoplastic gastric
mucosa of CL animal showing MYC amplification (10006); J) intestinal metaplasia sample of MNU-treated animal presenting 1, 2 and 3 MYC signals
(10006); K) tumor sample of MNU-treated animal showing MYC amplification (10006). Arrow indicates the space with gastric cancer cell line;
arrowhead indicates a normal gastric wall thickness; circle indicates the proliferative process.
doi:10.1371/journal.pone.0021988.g001
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animals died due to drug intoxication. On the 300th day, the two

surviving C. apella presented intestinal metaplasia in gastric

mucosa. One animal died with symptoms of drug intoxication

on the 520th day and the last surviving animal developed

intestinal-type adenocarcinoma in the antral region of stomach.

This tumor was observed by ultrasonography (Figure 1B) and

endoscopy on the 940th day and this finding was confirmed by

histopathologic analysis. None of the animals developed any other

tumor types.

The deceased animals showed the typical symptoms of

intoxication: mydriasis, confusion, sleepiness, giddiness, loss of

balance, tremor, hyperthermia, low food consumption, nonspecific

gastrointestinal symptoms (diarrhea and vomiting), urinary

retention, cutaneous eruptions, and caustic and ulcerative oral

lesions. They also presented renal, hepatic and respiratory failure,

hypokalemia, chronic cholecystitis and steatosis.

In the second model of carcinogenesis, we observed that the

MNU treatment led to significant changes in triglycerides

(x2 = 7.6, df = 2, p = 0.0224, by Friedman test), urea nitrogen

(x2 = 10, df = 2, p = 0.0067), phosphorus (x2 = 10, df = 2,

p = 0.0067), alanine aminotransferase (x2 = 10, df = 2,

p = 0.0067), total bilirubin (x2 = 8.4, df = 2, p = 0.015), creatinine

(x2 = 8.4, df = 2, p = 0.015), CRP (x2 = 8.4, df = 2, p = 0.015), folic

acid (x2 = 8.4, df = 2, p = 0.015) and homocysteine (x2 = 10, df = 2,

p = 0.0067) levels (Figure 3A–I, Table S2). However, no significant

difference was confirmed by Wilcoxon test with Bonferroni

correction. The largest fold chance was observed in the CRP

levels. After 90 days of MNU treatment, the CRP levels increased

5.3–13 folds compared to baseline level. The folic acid

concentration was reduced more than 2-fold change and the

homocysteine concentration increased almost 5-fold on the 120th

day as compared to baseline levels (Figure 3).

Concerning hematologic analyses, we observed a significant

alteration of leukocyte (x2 = 8.4, df = 2, p = 0.015), lymphocyte

(x2 = 10, df = 2, p = 0.0067), neutrophil (x2 = 10, df = 2,

p = 0.0067), erythrocyte (x2 = 8.4, df = 2, p = 0.015), haemoglobin

(x2 = 10, df = 2, p = 0.0067) and haematocrit (x2 = 10, df = 2,

p = 0.0067) counts during MNU treatment (Figure 3J–O, Table

S2). Although no significant difference was confirmed by Wilcoxon

test with Bonferroni correction, all animals reached abnormal

levels of these hematologic parameters following MNU treatment,

consistent with Riviello et al. [10].

The analysis of Canova treatment was based on the observation

of its effects in only one animal that developed gastric cancer. After

20 days of Canova treatment, the tumor volume did not change

(about 1 cm3). In addition, no change (less than 1.2 fold-change)

was observed between the 940th and 960th day concerning the

biochemical, including folic acid and homocysteine, measurements

in the surviving animal. However, we observed that Canova acted

mainly on the hematologic measurements. The surviving animal

presented more than 2-fold increase in leukocyte, lymphocyte, and

erythrocyte counts after Canova treatment as well as a 1.4-fold

increase in the neutrophil count. Canova treatment restored

normal count of leukocyte, lymphocyte and neutrophil according

Riviello et al. [10].

On the 960th day, the survinving C. apella was submitted for

surgical removal of the tumor. This animal was clinically

monitored for one year after the end of the experiment and he

did not show any complications resulting from the treatments.

3.3 MYC copy number
The MYC probe for FISH analysis was first tested in the

lymphocytes of a healthy C. apella. In C. apella (Figure 1G), the

MYC probe had similar efficiency as that observed in our previous

results with human cells [19].

Table 1 shows the mean and standard deviation of the MYC

copy number by FISH and qRT-PCR of the groups included

in the first carcinogenesis model. By FISH assay, the number of

cells presenting 2 (F4,25 = 2578.912, p,0.001, by GLM test;

g2 = 0.998), 3 (F4,25 = 150.51, p,0.001; g2 = 0.960), 4

(F4,25 = 590.872, p,0.001; g2 = 0.99) and 5 or more MYC signals

(F4,25 = 117.013, p,0.001; g2 = 0.949) as well as high MYC

amplification (F4,25 = 22.973, p,0.001; g2 = 0.786) was signifi-

cantly different among the studied groups (Figure 1H–I). By

qRT-PCR, we also observed that the number of MYC copies

were significantly different among the studied groups

(F4,25 = 95.986, p,0.001, by GLM test; g2 = 0.939). The

Bonferroni post-hoc analyses of FISH results also showed that

the number of cells presenting 3, 4, 5 or more MYC signals and

high amplification was significantly higher in CL, CLCA1 and

CLCA2 groups than in NC and CA groups (p,0.001, for all pair

wise comparisons), confirming RT-qPCR results. These MYC

signal number alterations were observed in the biopsies of all CL,

CLCA1 and CLCA2 animals. No significant difference was

observed between CL and CLCA groups, suggesting no Canova

effect in the MYC copy number.

Table 2 shows the median and interquartile range of MYC copy

number by FISH and qRT-PCR in samples from animals treated

with MNU (second model of carcinogenesis). Using the FISH and

RT-qPCR assays, no significant difference was observed among

biopsies of day 0, 90 and 120 after Wilcoxon test with Bonferroni

correction. On the 300th day, intestinal metaplasia was observed in

the two surviving animals. They had approximately 30% of cells

with 3 MYC signals and about 9.5% of cells with 4 MYC signals as

determined by FISH and almost 3 copies by qRT-PCR (Figure 1J).

The animal that survived the end of the MNU treatment showed a

continuous increase in the number of cells with MYC amplification

during gastric carcinogenesis. On the 940th day, the animal

developed intestinal-type gastric cancer and had 46% of cells with

3 or more MYC copies, including 5% of cells with high

amplification as determined by FISH and 3 MYC copies by

qRT-PCR (Figure 1K). In the second carcinogenesis model,

Canova treatment during 20 days did not appear to change the

number of MYC copies.

3.4 MYC expression
Table 1 shows the mean and standard deviation of MYC mRNA

expression and its immunoreactivity in biopsy samples of animals

of the first carcinogenesis model. All normal gastric samples (NC

and CA groups) showed standard staining for MYC protein

Figure 2. Abnormal biochemical and hematologic measurements in animals of the first carcinogenesis model. A) triglycerides; B) urea
nitrogen; C) C-reactive protein; D) leukocyte; E) lymphocyte; F) erythrocyte; G) haemoglobin; H) haematocrit; I) folic acid; J) homocysteine. NC:
negative control; CA: Canova group; CL: animals inoculated with ACP03 cell line; CLCA1: animals inoculated with ACP03 cell line and treated with
Canova during 10 days; CLCA2: animals inoculated with ACP03 cell line and treated with Canova during 14 days. N = 6/group. * Significantly different
from NC group (p,0.05) on the 14th day. ** Significantly different from NC and CA groups (p,0.05) on the 14th day. 1 Significantly different from NC
group (p,0.05) on the 14th day. { Significantly different from CA group (p,0.05) on the 9th day. {{ Significantly different from NC and CA groups
(p,0.05) on the 9th day.
doi:10.1371/journal.pone.0021988.g002
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expression. We also observed an association between MYC

immunoreactivity and cell line inoculation (x2 = 12, df = 1,

p = 0.001). All the tumor biopsies of animals inoculated with

ACP03 (CL, CLCA1 and CLCA2 groups) presented MYC protein

overexpression (Figure 1C). We did not observe an increase in MYC

mRNA expression in gastric mucosa of CA group compared to NC

group. The MYC expression differed among CA, CL, CLCA1 and

CLCA2 groups (F3,20 = 885.646, p,0.001, by GLM test;g2 = 0.993).

CL, CLCA1 and CLCA2 groups presented a higher MYC expression

than the CA group (p,0.001). A six-fold increase in mRNA

expression was observed in tumor samples of CL, CLCA1 and

CLCA2 groups relative to the NC group. No difference in MYC

expression was observed among CL, CLCA1 and CLCA2, which

suggests Canova does not effect MYC expression.

Table 2 shows the median and interquartile range of MYC

mRNA expression and its immunoreactivity in samples from

animals treated with MNU (second model of carcinogenesis). By

qRT-PCR, we observed a continuous increase in MYC expression

during MNU-induced gastric carcinogenesis. Although negative

MYC immunoreactivity was observed (Figure 1D), the mRNA

expression was about 2-fold higher on 120th day (atrophic gastritis)

compared to baseline. On the 300th day, we observed an about 3-

fold increase of MYC mRNA expression in the metaplasia lesions

of the two surviving animals in this period relatively to their

baseline level. On the 940th day, the surviving animal presented

about 5-fold increase in MYC mRNA expression relative to its

baseline level. MYC nuclear immunoreactivity was observed only

in the intestinal metaplasia and gastric cancer biopsies (Figure 1E–

F). No change in MYC expression was observed in the tumor

biopsy of this animal after 20 days of Canova treatment.

Discussion

4.1 C. apella gastric carcinogenesis
Spontaneous tumors have been reported in nonhuman

primates, usually due to the aging process [3]. Nonhuman

primates offer a useful model for cancer research and other basic

research into genetic and immunopathogenesis mechanisms as

well as for the development and validation of new therapies for

several diseases. Cebus apella, a New World monkey, is a convenient

model for biomedical studies because they can be easily housed in

Primate Research Centers due to their flexibility, opportunism,

adaptability, and small size. To our knowledge, this is the first

study that established a gastric carcinogenesis model in Cebus apella.

Gastric adenocarcinoma is divided mainly into intestinal and

diffuse types according to Laurén classification [20]. The

intestinal-type gastric cancer progresses through a number of

sequential steps beginning with atrophic gastritis followed by

intestinal metaplasia, intraepithelial neoplasia, and carcinoma

[21]. On the other hand, diffuse-type gastric cancer generally does

not evolve from precancerous lesions [2]. Here, we induced

intestinal-type gastric adenocarcinoma in C. apella by treatment

with MNU carcinogen and by human cancer cell line (ACP03)

inoculation.

Cell lines derived from human cancers are useful to understand

the chromosomal alterations and other molecular alterations in the

carcinogenesis process. Cell lines are also an important tool for the

study of anticancer treatments in in vitro and in animal xenograft

models. For the induction of gastric cancer by cell line inoculation

in C. apella, we initially tested four different gastric cancer cell lines.

ACP02, AGP01 and PG100 cell lines did not induce tumors in C.

apella despite the method of inoculation. Only the ACP03 cell line

was able to induce gastric cancer in the animals. The tumorigenic

potential of a cell line is attributed to the presence of a subset of

cells called cancer stem cells, which have capability to recapitulate

the development of the original tumors in vivo. The study of human

cancer stem cells largely relies on models of xenograft transplan-

tation into immunodeficient mice [22]. Probably, only ACP03 cell

line has cancer stem cell proprieties.

One week before ACP03 inoculation, animals of CL, CLCA1

and CLCA2 groups received a single dose of 50 mg/kg of

cyclophosphamide. Our group previously observed that white

Table 1. Immunohistochemistry, relative quantitation of mRNA MYC expression and MYC gene copy number variation by Taqman
and fluorescence in situ hybridization in tumor biopsies of animals included in the first carcinogenesis model on the 9th day of
treatments.

Group IHQ
mRNA expression
(mean±SD)

CNV
(number
[mean ± SD]) Nuclei exhibiting MYC signals (mean±SD)

1 signal 2 signals 3 signals 4 signals $5 signals HA

NC Negative - 2 (2.0360.04) 3.1761.17 196.8361.17 - - - -

CA Negative 20.5160.22 2 (2.0460.56) 3.3361.21 196.3361.37 0.3360.52 - - -

CL Positivea 6.4560.24b 5 (4.6560.43)a 5.8361.94 19.8365.98a 49.17610.57a 69.0064.29a 37.3366.35a 18.3367.78a

CLCA1 Positivea 6.2460.29b 5 (4.660.34)a 3.561.76 17.1766.34a 45.3364.32a 70.1766.911a 39.1767.68a 24.6766.4a

CLCA2 Positivea 6.0160.35b 4 (4.2460.52)a 4.3362.34 17.6765.65a 47.561.64a 72.6763.14a 38.8363.82a 1968.69a

IHC: immunohistochemistry; CNV: copy number variation; HA: high amplification; NC: negative control; CA: Canova group; CL: animals inoculated with ACP03 cell line;
CLCA1: animals inoculated with ACP03 cell line and treated with Canova during 5 days; CLCA2: animals inoculated with ACP03 cell line and treated with Canova during
9 days.
aSignificantly different from NC and CA groups (p,0.05).
bSignificantly different from CA group (p,0.05).
doi:10.1371/journal.pone.0021988.t001

Figure 3. Abnormal biochemical and hematologic measurements in animals MNU-treated and Canova-treated. A) triglycerides; B) urea
nitrogen; C) phosphorus; D) alanine aminotransferase; E) total bilirubin; F) creatinine; G) C-reactive protein; H) leukocyte; I) lymphocyte; J) neutrophil; K)
erythrocyte; L) haemoglobin; M) haematocrit; N) folic acid; O) homocysteine; P) weight. N = 6 on the 0–90th days (non-atrophic gastritis); N = 5 on the 120th

day (atrophic gastritis); N = 2 on the 300th day (intestinal metaplasia); N = 1 on the 940th (gastric cancer development) and 960th (Canova treatment effect).
doi:10.1371/journal.pone.0021988.g003
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blood cell count decrease after 4 days of cyclophosphamide

treatment (unpublished observation). However, total tumor

remission was observed after 14 days of ACP03 inoculation

probably due to immune system activation. We did not give a

second cyclophosphamide dose, because in a previous study we

observed that it was lethal to 50% of C. apella (unpublished

observation). Furthermore, the ACP03 cell line may have low

tumorigenic potential and therefore, did not present the same

proliferation and metastatic patterns of the original human tumor

in these animals. This model can be applied to other gastric cancer

cell lines, especially with high tumorigenic potential, in C. apellas

after their immunosupression. This may be useful for the

identification of hematological and biochemical markers that can

help to guide immunotherapy cancer treatments.

The presence of gastric tumor due to ACP03 inoculation was

confirmed by MYC deregulation. The MYC proto-oncogene has

been described as a key in the gastric carcinogenic process [12].

Groups of genes involved in cell cycle regulation, metabolism,

ribosome biogenesis, protein synthesis, and mitochondrial function

are over-represented in the MYC target gene network. MYC also

consistently represses genes involved in cell growth arrest and cell

adhesion and also has a direct role in the control of DNA

replication [23]. MYC amplification has been observed in gastric

cancer cell lines and primary stomach tumors [8,14,15,19,24,

25,26,27,28,29,30].

In the first carcinogenesis model, we observed MYC immuno-

reactivity, amplification (more than 3 MYC copies) and mRNA

overexpression in the tumor biopsies. Four MYC copies was the

most frequent copy number alteration in the tumor biopsies

supporting our FISH findings in the ACP03 cells culture at the

85th passage [31].

In the second studied model, we induced gastric carcinogenesis

by MNU treatment. MNU accumulation leads to the development

of several types of tumors in the digestive tract, i.g. in oral cavity,

larynx, pharynx and mainly esophagus and stomach of nonhuman

primates [3,32,33]. MNU induces pre-neoplastic lesions before the

development of intestinal type gastric adenocarcinoma [34],

usually in antral stomach region of treated animals [35]. In the

present study, all MNU-treated C. apellas presented pre-neoplastic

lesions: non-atrophic gastritis (6 animals), atrophic gastritis (5

animals) and intestinal metaplasia (2 animals). We also observed

the development of intestinal-type gastric adenocarcinoma in the

antral stomach region of one animal. MNU induced intestinal-

type gastric carcinogenesis in C. apella, presented the sequential

steps similar to those described for humans [21]. Therefore, this

model allows for the study of the evolution of intestinal-type gastric

cancer, the identification of genes evolved in the early steps of the

carcinogenesis process, and the determination of specific targets of

gastric neoplastic transformation.

The multistep process of intestinal-type carcinogenesis was also

supported by the detection of an increased of mRNA expression and

MYC copy number during the sequential steps, which begins with

atrophic gastritis and is followed by intestinal metaplasia and

carcinoma. FISH assay and CNV analysis by qRT-PCR showed

that normal mucosa, non-atrophic gastritis, and atrophic gastritis

samples of MNU-treated C. apellas presented mainly cells with 2

MYC copies. Intestinal metaplasia presented cells with 3 MYC copies

as a clonal alteration (30% of cells) and this gene amplification was

observed in about 40% of cells. In gastric cancer samples induced by

MNU, almost 50% of cells presented MYC amplification, including

5% of cells with MYC high amplification. The findings in C. apella

gastric cancer corroborate our observations in human gastric

carcinogenesis, in which the presence of MYC amplification,

including high amplification, was detected in all human intestinal-

type gastric cancer [14,15,25,26,27,28] and a significant increase of

MYC copy number was seen with the evolution of human

carcinogenesis process: normal mucosa, intestinal metaplasia, and

gastric cancer [27].

MYC immunoreactivity was only observed in the intestinal

metaplasia and cancer samples, corroborating our previous study

with human samples [27]. MYC protein overexpression was

previously detected in intestinal metaplasia and neoplastic tissue

from all patients with intestinal type gastric cancer [15,27,28].

Immunohistochemistry results demonstrated that clonal MYC

amplification is necessary to induce its protein immunoreactivity.

To our knowledge, this is the third study to describe gastric

adenocarcinoma in experimental model in monkeys. Takayama et

al. reported 2 nonhuman primates of the Old Word with gastric

adenocarcinoma after 10 years of continuous MNU treatment

(10 mg/kg) [3]. The small size of C. apella, a New World monkey,

may contribute to the faster development of gastric adenocarci-

noma compared to the Old-World monkeys treated with MNU.

Another previous study in literature reported intraepithelial

neoplasia induced by ethyl-nitro-nitrosoguanidine treatment in

Table 2. Immunohistochemistry, relative quantitation of mRNA MYC expression and MYC gene copy number variation by Taqman
and fluorescence in situ hybridization in biopsies of MNU-treated animals.

Treatment IHQ

mRNA expression
(median ±
interquartile range)

CNV
(number [median ±
interquartile range]) Nuclei exhibiting MYC signals (median ± interquartile range)

1 signal 2 signals 3 signals 4 signals $5 signals HA

Baseline Negative - 2 (2.0460.32) 361.5 19663 161 - - -

MNU/90th day Negative 1.5261.06 2 (1.8760.55) 361.5 19463 2.561.75 - - -

MNU/120th daya Negative 2.2461.73 2 (1.9260.74) 460.5 18865 564 262 - -

MNU/300th dayb Positive 3.3560.09 3 (2.8560.11) 3.560.5 115.560.5 59.561.5 1963 2.562.5 -

MNU/940th dayc Positive 4.75 3 (3.12) 3 105 61 16 5 10

Canova/960th dayc Positive 5.04 3 (3.04) 4 109 52 18 9 8

IHC: immunohistochemistry; CNV: copy number variation; HA: high amplification.
aFive animals;
bTwo animals;
cOne animal.
doi:10.1371/journal.pone.0021988.t002
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combination with H. pylori infection during 5 years in 3 rhesus

monkeys [36]. Moreover, the carcinogenesis model described in

this study did not infect the animals with H. pylori, as frequently

described in Mongolian gerbil gastric carcinogenesis model (for

review, see [35]).

4.2 Biochemical and hematologic measurements in
gastric carcinogenesis models

Chronic inflammation is involved with malignant change in

several neoplasias. In both studied models, we observed that CRP

levels increased significantly with cell line inoculation and MNU

treatment. CRP is a representative marker for inflammatory

conditions and it has been reported that the risk of cancer is

increased when pre-diagnostic CRP levels are high [37]. Elevated

CRP has been associated with progressive disease or an advanced

stage and a worse survival rate for gastric cancer patients [38].

Chang et al. suggested that although serum CRP is not a specific

biomarker for gastric cancer, it might be a potential prognostic

biomarker and a promising therapeutic target for gastric cancer

patients [39]. In the first carcinogenesis model, elevated CRP may

be due to an inflammatory process in the local of cell line

inoculation in addition to the tumor cell proliferation. In the

second model, we observed that CRP increased 5.3–13 folds on

the 90th day of MNU treatment compared to baseline level. The

inflammatory process was confirmed by detection of non-atrophic

gastritis in all treated C. apella. During MNU treatment, the CRP

level continually increased until the presence of intestinal

metaplasia was elevated in the surviving animal that developed

gastric cancer, confirming that CRP is not a specific gastric cancer

biomarker.

In both studied models, we observed a reduction of folic acid

associated with gastric carcinogenesis. Folic acid maintains

genomic stability by regulating DNA biosynthesis, repair and

methylation. It has been reported that folic acid deficiency induces

and accelerates carcinogenesis by the induction of DNA strand

breaks, chromosomal and genomic instability, uracil misincor-

poration, and impaired DNA repair [40,41]. Our results in the

experimental model of gastric carcinogenesis showed an inverse

correlation between folic acid concentration and the risk of gastric

cancer development as reported in several experimental and

epidemiologic studies with colorectum, esophagus, stomach,

pancreas, lungs, cervix, ovary, neuroblastoma cancers, and

leukemia [42].

In the first model, homocysteine concentration increased with

the presence of gastric cancer on the 9th day. In the second

studied model, we observed a continuous increase in homocys-

teine concentration with cancer development. Serum homocys-

teine concentration has been suggested as a tumor marker for

monitoring cancer patients during anticancer treatment. Ele-

vated circulating total homocysteine has been observed in

cancer patients due to cancer cell proliferation and a decline of

the high concentration of homocysteine is observed with the

death of cancer cells [43]. Hyperhomocysteinemia may induce

oxidative stress and DNA hypomethylation, leading to an

increase in the risk of cancer, including gastric cancer [44],

which corroborate our findings in both carcinogenesis models.

In the present study, we did not observe a significant difference

between the CL and NC groups on the 14th day of the first

studied model, suggesting that homocysteine concentration

began to decrease with the tumor regression. Thus, homocys-

teine concentration can be used for monitoring the efficiency of

anticancer treatment.

Concerning hematologic measurements, cell line inoculation

leads to anemia and leukocytosis in the first studied model.

Anemia is a common complication in patients with inflamma-

tory diseases of many kinds, including cancer. The mechanisms

include cytokine-mediated changes in both the production of

and the response to erythropoietin, as well as alterations in iron

metabolism and increase in the leukocyte production [45]. The

increase of white blood cell counts, in agreement with the

elevated CRP levels, may be due to an inflammatory process

and may have a role in the response against human malignant

cells and the tumor remission after 14 days of cell line

inoculation.

In the second carcinogenesis model, we observed that urea

nitrogen, phosphorus, alanine aminotransferase, total bilirubin

and creatinine levels increased with MNU treatment, which may

be associated to typical symptoms of drug intoxication presented

by 5 Cebus apella at the time before their death. We also observed

that leukocyte, lymphocyte, neutrophil, erythrocyte, haemoglo-

binhemoglobin, and haematocrit were significantly reduced with

MNU treatment, in agreement with the MNU effects in a broad

spectrum of target organs, including particularly the lympho-

hematopoietic system [5].

4.3 Canova effect in C. apella gastric carcinogenesis
In the present study, we observed that Canova acted mainly in

hematopoietic system. In the first studied model, Canova induced

an increase in leukocyte and lymphocyte and protected ACP03-

inoculated animals to present anemia. Although only one animal

was evaluated, the Canova treatment seems to restore the normal

counts of leukocyte, lymphocyte, and neutrophil and also induced

an increase in erythrocyte count that was abnormal after MNU

treatment in the second carcinogenesis model.

Abud et al. described that the number of macrophages

increased in cultures of bone marrow cells treated with Canova

[46], corroborating previous in vivo and in vitro studies which

showed macrophage activation by Canova treatment

[47,48,49,50,51,52]. According to Abud et al., Canova-active

macrophages induce the production of lymphocytes and

erythrocytes [46]. Our group also previously observed that

Canova induces macrophage activation and indirectly leads to

human lymphocyte proliferation in vitro [47]. Therefore, these

findings are in agreement with those observed in Canova-

treated C. apella.

In the first studied model, we observed some combinatory

effects of cell line inoculation and Canova treatment in

homocysteine level on the 14th day, when we observed total

tumor regression. However, no conclusion can be made since the

normal reference range of homocysteine in C. apella is still

unknown.

In the second studied model, the tumor volume did not change

after 20 days of Canova treatment. We also did not observe

differences in the tumor volume among CL, CLCA1 and CLCA2

groups. In addition, MYC expression and copy number did not

change with Canova treatment in both studied models. These

findings suggest that Canova treatment did not lead to tumor

regression in C. apella gastric carcinogenesis. However, Sato et al.

reported that sarcoma 180 tumor size was significantly smaller in

mice treated with Canova (20 days) compared to untreated

animals and that 30% of Canova-treated animals presented total

tumor regression [9]. These authors also described that all animals

of Canova-treated group survived.

Although we did not observed that Canova has a role in gastric

tumor regression, the ability of Canova immunomodulator to

increase leukocyte count supports a human therapeutic applica-

tions such as restoring the hematopoietic system during/after
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chemotherapy and, thus, increasing the tolerability and duration

of anticancer treatments.
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