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Noise has been proven to have a beneficial role in non-linear systems, including the
human brain, based on the stochastic resonance (SR) theory. Several studies have been
implemented on single-modal SR. Cross-modal SR phenomenon has been confirmed
in different human sensory systems. In our study, a cross-modal SR enhanced brain–
computer interface (BCI) was proposed by applying auditory noise to visual stimuli. Fast
Fourier transform and canonical correlation analysis methods were used to evaluate the
influence of noise, results of which indicated that a moderate amount of auditory noise
could enhance periodic components in visual responses. Directed transfer function was
applied to investigate the functional connectivity patterns, and the flow gain value was
used to measure the degree of activation of specific brain regions in the information
transmission process. The results of flow gain maps showed that moderate intensity of
auditory noise activated the brain area to a greater extent. Further analysis by weighted
phase-lag index (wPLI) revealed that the phase synchronization between visual and
auditory regions under auditory noise was significantly enhanced. Our study confirms
the existence of cross-modal SR between visual and auditory regions and achieves a
higher accuracy for recognition, along with shorter time window length. Such findings
can be used to improve the performance of visual BCIs to a certain extent.

Keywords: brain–computer interface (BCI), steady-state motion visual evoked potential (SSMVEP), auditory noise,
cross-modal stochastic resonance, functional connectivity, phase synchronization

INTRODUCTION

Brain–computer interface (BCI) is a device which enables users to control a computer or a
computer-connected device using brain activity and has shown prospects of broad application
(Wolpaw et al., 2000). However, BCI performance has long been limited by the non-linear
characteristic of human brain, as well as the weak detectability of electroencephalogram (EEG)
signals. Many studies have been conducted and plenty of new paradigms and methods have been
presented to solve this problem. Stochastic resonance (SR) theory (Benzi et al., 1981; Collins et al.,
1996; Gammaitoni et al., 1998), is one of these methods. Stochastic resonance theory claims that
random fluctuation can enhance weak signal input to improve signal transmission and sensitivity to
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environmental changes in a non-linear system, leading to an
improvement in system performance. Such SR effects have
been also demonstrated in the neuronal systems, such as the
human muscle spindle (Cordo et al., 1996), rat cutaneous
mechanoreceptor (Collins et al., 1996), and human tactile
sensation perception (Collins et al., 1997).

In the field of BCI, several studies investigating SR have been
conducted. Srebro and Malladi (1999) applied two-dimensional
spatial temporal noise to traditional visual stimuli which was
used to elicit visual evoked potential (VEP). Results indicated
that VEP could be enhanced by presenting visual noise. In
fact, the power of the second harmonic of the VEP could
increase as high as 4.2-fold under conditions of noise, peaking
at 30% noise contrast. The power of the fourth VEP harmonic
also increased 1.3-fold, peaking at 20% noise contrast. In
our previous study, a BCI technology based on pure visual
modality SR was proposed (Xie et al., 2012). In the study,
subjects were exposed to visual stimuli and visual noise at the
same time, which led to an enhancement of nervous system
excitability. In 2019, we further evaluated the performance of
visual noise imposed on two different BCI paradigms, i.e.,
motion-reversing simple ring and complex checkerboard (Xie
et al., 2019). Additionally, Nakamura et al. (2017) applied
auditory noise to auditory steady-state response (ASSR) based
BCI and achieved a better performance compared to traditional
paradigm, which confirms the existence of a SR effect in the
human auditory system.

The studies mentioned above have mainly focused on single-
modal SR, that is to say, stimulation and noise belong to
the same sensory mode and enter the same sensory channel
of the human brain. Besides single-modal SR, cross-modal
SR in the human nervous system has also been reviewed
(Krauss et al., 2018). Douglass et al. (1993) found that by
applying periodic stimulation and environmental noise to the
mechanical receptors of crayfish, the periodicity of spike intervals
generated by neurons was enhanced. Ross et al. (2006) showed
that an appropriate amount of auditory noise is conducive to
understanding audiovisual speech and information detection.
Kayser et al. (2005) tested changes in the blood oxygen level
dependent (BOLD) response of the primate auditory cortex of
monkeys to sound stimulation, tactile stimulation, as well as
a combination of sound and tactile stimulation, respectively.
This study further confirmed that the auditory cortex, including
the primary auditory cortex, has integrates auditory and tactile
information, and that such integration occurs in early sensory
areas. In 2018, Krauss et al. (2018) reviewed these cross-modal
enhancement phenomena and speculated that SR in one sensory
modality driven by input from another modality may be a
general principle, namely multisensory integration causing SR
like cross-modal enhancement. However, such cross-modal SR
phenomena have not been utilized in the field of BCI yet.
Therefore, whether cross-modal SR phenomena can be used to
promote BCI performance, like single-modal SR that used in BCI
application, remains unclear.

In this study, we applied auditory noise to a steady-state
motion visual evoked potential (SSMVEP) (Xie et al., 2012)
based BCI paradigm with an oscillating checkerboard stimulation

to investigate whether the external auditory noise can lead
to an enhancement of SSMVEP responses and improve BCI
performance. Gaussian white noise with an intensity of −30,
−10, 10, and 30 dBW was selected as auditory noise. The effect
of auditory noise on visual responses was verified by both the
fast Fourier transform (FFT) spectrum and canonical correlation
analysis (CCA) results. We found that BCI performance
progressively improved and then decreased with the increment
of noise intensities, i.e., a relationship between BCI performance
and the moderate increase of noise level. Directed transfer
function (DTF) method was applied to investigate the functional
connectivity pattern of activated brain regions under different
noise levels, which verified the theoretical research, as well as
the practical application value, of the proposed BCI paradigm.
Furthermore, weighted phase-lag index (wPLI) method was
used to analyze the phase synchronization between visual and
auditory regions which demonstrated a significant enhancement
under moderate auditory noise level. Finally, the analysis on
channel combinations and accuracy rate further confirmed the
enhancement effect of auditory noise. Our study illustrates
the existence of cross-modal SR in the human brain and the
enhancement effect of auditory noise, which can be used to
enhance visual BCI performance.

MATERIALS AND METHODS

Subjects
Ten subjects from Xi’an Jiaotong University participated in the
experiment. Seven were males and three were females (aged
25± 3 years old). All subjects had normal or corrected-to-normal
hearing and eyesight and had prior experience with SSVEP-
BCIs. All subjects had no history of visual or auditory disorders
and were not paid for their participation. The experiment was
undertaken in accordance with the recommendations of the
Declaration of Helsinki. Written informed consent was obtained
from each participant, which followed the guidelines approved by
the institutional review board of Xi’an Jiaotong University.

EEG Recordings
According to the International 10–20 electrodes position system,
16-channel EEG signals were recorded from the occipital,
parietal, and temporal areas of POz, Oz, PO3, O1, PO4, O2, T7,
TP7, T8, TP8, P5, P7, PO7, P6, P8, and PO8 sites at a sampling
rate of 1200 Hz using the g.USBamp system (g.tec, Graz, Austria)
(Figure 1). EEG signals were referenced to a unilateral earlobe
and grounded over site Fpz. The impedance was kept below 5 K
ohm. After application of the analog filter, the EEG signals were
filtered between 0.1 and 100 Hz by an 8th-order Butterworth
band-pass filter. A notch filter was implemented to remove the
power line interference between 48 and 52 Hz with a 4th-order
Butterworth band-stop filter. Further analysis was performed in
Matlab environment.1

1http://www.mathworks.com
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FIGURE 1 | The EEG recording positions. EEG responses were recorded from
16 channels of POz, Oz, PO3, O1, PO4, O2, T7, TP7, T8, TP8, P5, P7, PO7,
P6, P8, and PO8 as illustrated in circles in red.

Stimulation Design
The motion-reversal visual stimulation, i.e., an oscillating
checkerboard, programed by Psychophysics Toolbox2 (Brainard,
1997; Pelli, 1997), was introduced as a spatial selective steady-
state BCI paradigm. A 27-inch ASUS liquid crystal display (LCD)
monitor with a resolution of 1920 × 1080 pixels and a screen
refresh rate of 144 Hz was used for the presentation of the visual
stimulation. The static image of the oscillating checkerboard was
made up of 10 concentric rings (Figure 2). The outer and inner
diameters of the motion checkerboard were set to 120 pixels
and 12 pixels, respectively. A black spot with radius of 3 pixels
was set at the center to keep subjects focused on it during the
experiment. Each ring was divided into 24 alternate gray and
black blocks. The areas of the bright and dark regions in each
ring were equal. The bright color was gray (120, 120, 120) and
the dark grids was black (0, 0, 0). The width of each block was set
to 10 pixels and subtended a horizontal and vertical visual angle
of approximately 4.8◦ when viewed by the subjects from a fixed
distance of approximately 80 cm, in accordance with prior studies
which have shown that a stimulation size over 3.8◦ would saturate
brain responses (Ng et al., 2012). The expansion - contraction of
the checkerboard constitutes the motion process modulated by
a sinusoid function. When the phase of the sinusoidal function
shifts from 0 to π, the motion ring contracts with an amplitude
of 10 pixels and then expands as the phase shifts from π to
0. Therefore, the direction of motion changes twice in one
cycle. This motion direction changing rate is defined as motion-
reversal frequency, which is two times the cycle frequency.
Since SSMVEP mainly comes from brain activities which are

2http://psychtoolbox.org/

FIGURE 2 | Distribution of four stimulus targets on the computer screen. The
distance from the center of the monitor to that of each target is 270 pixels
(7.2◦ visual angle in the case of approximately 80 cm distance between the
subject and the monitor).

triggered by directional changes, we adopted this motion-reversal
frequency as the fundamental frequency of visual stimulation.

Four stimuli were arranged in the corners of a rhombus layout.
The distance from each stimulus target to that of the center of
monitor is at a 7.2◦ visual angle (i.e., 270 pixels). Each stimulus
target had distinct motion-reversal frequencies. According to a
previous report, the low (4–13 Hz), medium (13–30 Hz) and high
frequency range (>30 Hz) are the three main frequency ranges
to elicit an SSVEP (Regan, 1989). In general, the low frequency
range could elicit larger amplitude SSVEP responses than the
medium and high frequency ranges. In this study, the frequencies
of 7, 9, 11, and 13 Hz were assigned to the left, right, upper,
and lower stimulus target, respectively. The four stimuli were
simultaneously presented to subjects and the distance between
each subject and LCD monitor was set to approximately 80 cm
at eye level (Wu and Lakany, 2013). When the subject gazed
at the stimulation, auditory noise (i.e., Gauss white noise) was
played in both ears of the subject. Due to our previous test, the
maximal auditory noise level our subjects can accept is around
30 dBW, and −30 dBW is barely audible. After determining the
maximal and minimal level, auditory noise level was graded by
equal division of the noise range into four levels by noise power
of −30, −10, 10, and 30 dBW, using 1 watt as a baseline. In
addition, an experiment was conducted without auditory noise,
which constituted the control group. For power calculations, it
is assumed that there is a load of 1 Ohm and measure for the
output is in Volts. Noise was generated and played using Matlab
and presented through a pair of kernel earphones (Sennheiser
IE 80s, Germany).

The experimental procedure is shown in Figure 3 and
the overall BCI system setup is depicted in Figure 4. For
each subject, four experiments were conducted for oscillating
checkerboard SSMVEP BCI, which corresponded to the target
stimuli frequencies of 7, 9, 11, and 13 Hz, respectively. Each
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FIGURE 3 | Experimental procedure. Four experiments corresponding to the target stimuli frequencies of 7, 9, 11, and 13 Hz were conducted. Each experiment is
consisted of five pseudo-random sequences with different noise intensities.

experiment contained five runs, which consisted of five pseudo-
random sequences of all four auditory noise intensities as well
as the non-noise condition. For different target frequencies and
different noise levels, the sequences were performed randomly to
avoid adaptation and habituation of long-term stimulation that
could potentially affect assessment of SR effect (Bergholz et al.,
2008). Each run consisted of 20 trials, with each trial lasting
5 s. Between two trials there was a 2-s inter-trial interval (ITI).
Additionally, after every two runs, there was a break of 2 min.
The whole experiment for each subject lasted approximately
50 min. During each trial, there were four stimuli that were
simultaneously presented. The subjects were instructed to only
pay attention to one stimulus designated by the operator at each
single run; meanwhile auditory noise was presented in both ears.
The stimulus target and noise intensity remain unchanged in each
single run. During the experiment, the subjects were asked to sit
on an armchair in a dim and quiet room. They were not allowed
to move their bodies during the experiment and were asked to
fixate on the center of screen during the ITI periods.

DTF and Flow Gain
Directed transfer function, a method that is based on
multivariable autoregressive model (MVAR), was used to
estimate the brain functional connectivity driven by SSMVEP

responses under different noise levels. The EEG data X can be
described in the following form:

X = [x1 (t) , x2 (t) , . . . xn (t)]T (1)

where t refers to time and n refers to the number of channels.
Through the use of MVAR, EEG data set X can be expressed as
the following autoregressive process (Bartels and Zeki, 2004):

p∑
k=0

A
(
k
)

X
(
t − k

)
= U (t) A (0) = 1 (2)

where p is the model order chosen with the Akaike information
criteria (AIC; Kamiński et al., 2001), i.e., a widely used criteria
for AR model order determination. A

(
k
)

represents the N by N
matrix of model coefficients, and U (t) is a white noise process
with zero mean and non-singular covariance matrix.

In order to investigate the spectral features of the examined
process, Eq 2 is transformed to the frequency domain:

A
(
f
)

X
(
f
)
= U

(
f
)

(3)

where

A
(
f
)
=

p∑
k=0

A
(
k
)

e−j2πf 1tk (4)
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FIGURE 4 | The overall BCI system diagram. During the experiment, the subjects were instructed to only pay attention to one of the stimuli at each single run;
meanwhile auditory noise was presented in both ears. EEG signals were recorded in both occipital and temporal brain areas.

Hence, Eq 3 can be rewritten as

X
(
f
)
= A

(
f
)−1 U

(
f
)
= H

(
f
)

U
(
f
)

(5)

H
(
f
)

is the transfer matrix of the system, in which the
element Hij represents a connection between the jth input and
the ith output of the system (Bassett and Bullmore, 2006).
Using these definitions, the causal influence of the cortical
waveform estimated in the jth channel on that estimated
in the ith channel, i.e., the DTF Hij, can be defined as
(Kaminski and Blinowska, 1991):

θ2
ij
(
f
)
=
∣∣Hij

(
f
)∣∣2 (6)

The normalization of DTF matrix constructed above is as
follows (He et al., 2011):

γ2
ij
(
f
)
=

|Hij(f )|2∑N
m=1|Him(f )|2

(7)

γij
(
f
)

represents the ratio of influence of the cortical
waveform estimated in the jth channel on the cortical waveform

estimated on the ith channel, with respect to the influence of all
estimated cortical waveforms. Normalized DTF values are in the
interval [0,1] when the normalization condition of

N∑
n=1

γ2
in
(
f
)
= 1 (8)

is applied.
The inflow and outflow of the information transmission

process in the brain can be defined as
N∑

j=1
γ2

mj and
N∑

i=1
γ2

im,

respectively. The inflow indicates the magnitude of all the
incoming links from the other channels. This information depicts
each channel as the target of functional connections from the
other channels. On the contrary, the outflow, depicting each
channel as the source, indicates the magnitude of the considered
channel linking out toward the others (Yan and Gao, 2011).

Hence, flow gain value was defined as the ratio of outflow to
inflow. For channel m:

ρm =
∑N

i=1 γ2
im∑N

j=1 γ2
mj

(9)
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The value of ρm represents the contribution that channel m
plays during information transmission process, and a higher
value represents more contribution of information output during
the transmission process.

CCA Method
Canonical correlation analysis is one of the most commonly used
algorithms to measure the maximum correlation between two
sets of multidimensional variables in multi-channel SSVEP-based
BCIs (Lin et al., 2006; Xie et al., 2012). In this case, we used CCA
algorithm to compare actual EEG signals with reference signals
to identify their correlation coefficients. The reference signals are
defined as a set of cosine and sine signals with the fundamental
frequency and harmonics as follows:

Yi =



cos
(
2π · fi · t

)
sin
(
2π · fi · t

)
·

·

·

cos
(
2π ·Hfi · t

)
sin
(
2π ·Hfi · t

)


, t = 1

Fs
, . . . , S

Fs
(10)

where Fs refers to the sampling rate, H is the number of
harmonics, fi is the stimulus frequency, t is the discrete time series
of predefined time-window length, and S is sampling numbers.
The set of EEG signals are defined as follows:

X =


x1(t)
·

·

·

xn(t)

 , t = 1
Fs

, . . . , S
Fs

(11)

where x refers to EEG signals recorded from each single channel
and n refers to the channel number.

Given the multivariable matrices of X and Yi, CCA first
projects them into one dimension by the two weight vectors Wx
and Wyi , and then calculates their correlation coefficients in one-
dimensional space. CCA seeks the weight vectors Wx and Wyi to
maximize their linear correlation ρx,yi :

x = XTWx
yi = YT

i Wyi

ρx,yi =
cov(x,yi)

√
D(x)
√

D(yi)

(12)

where ρx,yi indicates the canonical correlation between X and
Yi, and the stimulus frequency fi (i = 1, . . ., K) can be recognized
based on maximum of ρ fi .

With the corresponding correlation coefficient ρfi , CCA can be
performed on each stimulus frequency fi (i = 1, . . ., K) separately.
Then the target ftarget can be recognized as:

ftarget = max
i=1,,K

ρfi (13)

Here, the stimulus frequency fi (i = 1, . . .,4) is set to the
frequency of each oscillating checkerboard, the number of C
channels was set to 16, and the harmonics of H was set to 1.

wPLI Method
The wPLI method (Vinck et al., 2011) analyzes phase
synchronization between two time series x(t) and y(t). Weighted
phase-lag index uses only the imaginary component of the cross-
spectrum and is immune to both volume conductor effect and
measurement noise. At the same time, wPLI exhibits increased
sensitivity to phase interactions between signals (Vindiola et al.,
2014). The instantaneous phase lag and magnitude is acquired
through cross power density spectrums:

C
(
f
)
=
+∞

∫
−∞

X
(
f
)
· Y
(
t − f

)
· dt (14)

where X
(
f
)

and Y
(
f
)

are finite Fourier transform of signal x (t)
and y (t).

Then wPLI index is calculated as follow:

wPLI =
|E { {C}}|
E {| {C}|}

(15)

where {C} is the imaginary component of the cross-spectrum
C
(
f
)
.

The value of wPLI index is limited between 0 and 1, with a
higher value representing stronger phase synchronization.

Statistical Analyses
The values of each individual subject across the non-noise
and auditory noise integrated BCI conditions were analyzed
using the one-way analysis of variance (ANOVA) statistic. The
level of statistical significance was set to p < 0.05. Bonferroni
correction was employed for multiple comparisons. The results
were expressed as mean± standard deviation (SD).

RESULTS

The Influence of Auditory Noise on Visual
Responses
In order to examine the influence of auditory noise on visual
responses, EEG responses acquired from the temporal-parietal
but not the occipital area were used to analyze the response
amplitude changes under different auditory noise levels. Fast
Fourier transform was performed on the EEG data obtained from
T7, P7, TP7, T8, P8, and TP8 channels in this study. Inter-subject
normalization was attained by dividing amplitude estimates by
the average computed from all amplitude values of both non-
noise and auditory noise integrated conditions, but separately
for each subject (Xie et al., 2017). There is a resonance between
normalized FFT values and the intensities of auditory noise,
i.e., moderate auditory noise enhanced the FFT value while too
much noise weakened it (Figure 5). For target frequency of 7 Hz,
normalized SSMVEP spectral amplitudes significantly increased
by 25.97% at auditory noise level of −10 dBW, when compared
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FIGURE 5 | Comparison of normalized SSMVEP spectral amplitudes with a change of noise levels across subjects. All statistics were assessed using one-way
ANOVA, *p < 0.05 represent significance among non-noise and auditory noise integrated BCI tasks, ***p < 0.001 among non-noise and auditory noise integrated
BCI tasks.

to the non-noise condition and other noise intensities (−10 dBW:
1.1277 ± 0.4977, non-noise condition: 0.8952 ± 0.3974, one-
way ANOVA: F = 2.4005, p = 0.0498). For target frequency
of 9 Hz, normalized SSMVEP spectral amplitudes significantly
increased by 32.30% at noise level of −10 dBW in comparison
to the non-noise condition and other noise intensities (−10
dBW: 1.0265 ± 0.4890, non-noise condition: 0.7759 ± 0.4796,
F = 2.4210, p = 0.0498). For target frequency of 11 Hz, normalized
SSMVEP spectral amplitudes significantly increased by 18.58% at
noise level of−10 dBW in comparison to the non-noise condition
and other noise intensities (−10 dBW: 0.9676 ± 0.4507, non-
noise condition: 0.8160 ± 0.4561, F = 2.8344, p = 0.0248).
For target frequency of 13 Hz, normalized SSMVEP spectral
amplitudes also significantly increased by 40.75% at noise level of
−10 dBW compared with non-noise condition and other noise
intensities (−10 dBW: 1.0632 ± 0.5971, non-noise condition:
0.7554 ± 0.4046, F = 2.5683, p = 0.0387). The average value
for all four frequencies at noise level of −10 dBW is 1.0510
(SD = 0.5090), which is 28.16% higher than that of non-noise
condition and other noise intensities (F = 9.0782, p < 0.001).

Auditory Noise Promoted Visual BCI
Recognition Accuracy
Figure 6 shows the recognition accuracy of all subjects under
visual stimulus frequencies of 7, 9, 11, and 13 Hz. Recognition
accuracy, obtained using the CCA recognition algorithm, is
defined as the number of correct selections divided by total
number of trials. All 16 channels that involve visual and auditory
brain areas were selected for analysis. Considering the fact that
long time window would possibly lead to high accuracy values
even in multi-choice SSVEP BCI (i.e., the ceiling effect), which
would make it difficult to inspect the impact of auditory noise on
visual BCI performance, the 5-s single-trial data was truncated
into 0.25 s and was consequently analyzed. Consistent with

the phenomena observed in the normalized SSMVEP spectra
of visual responses, a resonance is reached between the BCI
accuracy and the noise intensity (Figure 6). Additionally, for
Subject S1, S2, S3, S5, S6, S7, S8, S9, and S10, moderate
auditory noise at the resonance points significantly improved BCI
accuracies (F = 6.3667, p < 0.001 for Subject S1; F = 2.6921,
p = 0.0316 for Subject S2; F = 4.2652, p = 0.0023 for Subject S3;
F = 2.6689, p = 0.0328 for Subject S5; F = 2.8481, p = 0.0249 for
Subject S6; F = 3.2148, p = 0.0132 for Subject S7; F = 3.8410,
p = 0.0046 for Subject S8; F = 3.2224, p = 0.0137 for Subject
S9; F = 2.9871, p = 0.0204 for Subject S10). However, it was
not significant for Subject S4 (F = 2.3666, p = 0.0524). For
grand accuracies across subjects, the accuracy rates of all auditory
noise levels (i.e., −30, −10, 10 dBW as well as 10 dBW) were
significantly higher than that of non-noise condition (F = 9.8923,
p < 0.001). Such results indicate that there exist optimal noise
intensities that can improve the BCI performance using cross-
modal SR effect.

Auditory Noise Optimized the Trade-off
Between Time-Window Length and
Performance in Accuracy
In order to further investigate the effect of auditory noise on the
trade-off between time-window length, performance in accuracy,
and stability of auditory noise integrated BCI paradigm, EEG
data was truncated to different time-window lengths within
the 5-s single-trial duration. As the time window increased
gradually in steps of 0.25 s from 0.75 to 2.5 s, the changes
in mean accuracy rates and corresponding standard deviations
obtained across all target frequencies and all subjects, using the
CCA method, are shown in Figure 7. Brain–computer interface
accuracies showed sustainable improvement with increasing
time-window lengths for both non-noise and auditory noise
integrated BCI tasks. Overall, the accuracies of auditory noise
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FIGURE 6 | Recognition accuracy rates under different auditory noise levels when subjects gazed at a target stimulus of 7 Hz. All statistics were assessed by
one-way ANOVA, *p < 0.05 represent significance among non-noise and auditory noise integrated BCI tasks, **p < 0.01 among non-noise and auditory noise
integrated BCI tasks, ***p < 0.001 among non-noise and auditory noise integrated BCI tasks.

FIGURE 7 | Average recognition accuracies and corresponding standard deviations obtained across all target frequencies, noise levels and subjects by CCA
method with different time-window lengths. (A) Average recognition accuracies with different time-window lengths. (B) Standard deviations of accuracies with
different time-window lengths.

integrated tasks under noise levels of −30, 10, and 30 dBW
were higher than that of non-noise task as time-window length
increases from 1.25 to 5 s (F = 6.5139, p < 0.001). For auditory
noise level of 10 dBW, the average accuracy exceeded 90%
for a time window of 1.25 s, and 95% for a time window of
1.5 s, indicating that the auditory noise integrated paradigm can
achieve a high performance in a short time window (Figure 7A).
Comparisons of standard deviations between non-noise and
auditory noise integrated paradigms are depicted in Figure 7B.
Compared to the non-noise condition, the standard deviations

of accuracies of auditory noise integrated tasks under noise
levels of −30, 10, and 30 dBW drop sharply as time-window
length increases from 1.25 to 5 s (F = 5.6619, p < 0.001). In
particular, for a time-window length of 1.5–2.5 s, the standard
deviations of accuracies of noise level 10 dBW were almost
one-half to one-third of the standard deviations under non-
noise condition. The comparatively lower standard deviations
related to the auditory noise integrated tasks suggest that auditory
noise integrated BCI can achieve a more stable performance in
accuracy compared to the ordinary non-noise paradigm. Taken
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together, the optimal auditory noise level of 10 dBW concurrently
achieved both higher accuracy and lower standard deviations.
This indicates that when compared with non-noise condition,
it took less time to achieve a higher recognition accuracy and
more stable BCI performance when adding moderate auditory
noise to subjects in visual BCI application. Thus, the trade-off
between time-window length and performance in accuracy, a
common problem in BCI, can be optimized through the cross-
modal SR effect.

Illustration of the Functional Connectivity
Under Different Auditory Noise Levels via
Flow Gain Maps
Although the method of analysis in frequency domain such as
FFT can analyze the influence of auditory noise on visual BCI
responses, the functional connection between different regions
caused by auditory noise in the brain, such as connectivity
between occipital lobe and temporal lobe, remains unclear. For
different auditory noise intensities, the eConnectome toolbox
(He et al., 2011), based on the DTF, was applied to analyze the
direct interconnections of different brain regions. Flow gain value
was defined as the ratio of outflow to inflow of information
in a certain channel in order to measure the contribution a
channel plays in the information transmission process. As a
ratio of outflow to inflow, flow gain value integrates input and
output information simultaneously, so that the results shown
by flow gain are more direct and clearer. A higher flow gain
value indicates that the region makes more contributions to other
regions. The topographic distributions of the flow gain values
form the corresponding flow gain map. Figure 8 shows the
averaged flow gain maps of SSMVEP responses under different
auditory noise intensities. The results were an average of all ten
subjects and all four stimulus frequencies. As expected, it can be
seen on the flow gain maps that under the non-noise condition,
the EEG responses were mainly involved in the occipital region.
Then with increments of auditory noise levels, the EEG responses
started to gradually expand outward from the occipital region
to bilateral temporal cortices, which represented a wider region
of activation in the brain. Additionally, when the auditory noise
level reached to 30 dBW, the connectivity between occipital lobe
and temporal lobe lessened. In this study, the flow gain values
between temporal region (T7 and T8 sites) and occipital region
(O1 and O2 sites) were compared. For non-noise condition,
statistical results showed that the flow gain values of temporal
region are comparable with that of occipital region with no
statistical significance (F = 0.0273, p = 0.8694). With the increase
of the noise intensity, the flow gain values of temporal region are
significantly higher than that of occipital region under noise level
of −30 and −10 dBW (F = 4.3677, p = 0.0407 for −30 dBW;
F = 4.1331, p = 0.0463 for −10 dBW). When further increasing
the noise level, no statistical significant flow gain difference can
be found between temporal and occipital regions (F = 2.7200,
p = 0.1042 for 10 dBW; F = 2.1168, p = 0.1507 for 30 dBW). From
the flow gain maps and corresponding statistical analysis, we can
conclude that moderate noise can activate wider area of brain,
while too much inhibits it. This result qualitatively evaluated the

functional connectivity between visual and auditory areas of the
brain under different auditory noise levels.

The Phase Synchronization Between
Temporal Region and Occipital Region
For further quantitative evaluation of neural interactions between
the temporal and occipital region under different noise levels,
we implemented a more sophisticated analysis using wPLI to
quantify the phase synchronization between these two regions.
The wPLI between T7-O1 sites, as well as T8-O2 sites, of
all ten subjects are calculated. The values of wPLI across
all ten subjects for stimulus frequencies of 7, 9, 11, 13 Hz
exhibited an enhancement by moderately increasing the noise
intensity (Figure 9). Statistical analysis indicated that, for
the total results of the four frequencies, wPLIs under −10
and 10 dBW are significantly higher than that under the
non-noise condition (F = 4.3340, p = 0.0017) (Figure 9E).
Additionally, wPLI values increased from 0.1172± 0.0997 (range:
0.0175–0.2169) under non-noise condition to a maximum of
0.1258 ± 0.1130 (range: 0.0128–0.2388) under noise level of
−10 BW condition. Specifically, at stimulus frequency of 7 Hz,
wPLIs significantly increased by 12.0% from 0.1099 ± 0.0901
(range: 0.0198–0.2000) under non-noise condition to a maximum
of 0.1231 ± 0.1187 (range: 0.0044–0.2418) under noise level of
−10 dBW (F = 3.2071, p = 0.0122) (Figure 9A). At stimulus
frequency of 9 Hz, wPLIs significantly increased by 11.9%
from 0.1096 ± 0.0947 (range: 0.0149–0.2043) under non-noise
condition to a maximum of 0.1226 ± 0.0984 (range: 0.0242–
0.2210) under noise level of 10 dBW (F = 5.9517, p < 0.001)
(Figure 9B). At 11 Hz, wPLIs significantly increased by 14.2%
from 0.1147 ± 0.0873 (range: 0.0274–0.2020) under non-noise
condition to a maximum of 0.1310 ± 0.1205 (range: 0.0105–
0.2515) under noise level of −30 dBW (F = 3.4980, p = 0.0074)
(Figure 9C). Lastly, at 13 Hz, wPLIs significantly increased
by 29.3% from 0.1168 ± 0.0905 (range: 0.0263–0.2073) under
non-noise condition to a maximum of 0.1510 ± 0.1313 (range:
0.0197–0.2823) under noise level of −10 dBW (F = 14.85,
p < 0.001) (Figure 9D). All these results indicate that the
neural interaction between visual and auditory brain areas were
quantitatively enhanced by the cross-modal SR effect with the
combination of visual stimulation and auditory noise.

Optimal Noise Activates More Channels
In order to study the resonance effect of auditory noise on
activation of different EEG sites, we calculated BCI accuracy
in different EEG recording channel combinations (Figure 10).
EEG channels were divided into four different combinations. The
first was the single Oz-channel condition, the second was the
O1-Oz-O2 three-channel combination, the third encompassed
the channels from occipital-temporal region (Oz, O1, O2,
PO3, PO4, POz, T7, P7, TP7, T8, P8, TP8) condition and
fourth was the all 16-channel combination. For the non-noise
task, the accuracy rate decreased as more channels became
involved but without any statistical significance. However, for
an auditory noise integrated task, the results were surprisingly
different. Under the noise level of −30 dBW, the accuracy
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FIGURE 8 | The average flow gain maps under different auditory noise levels. (A) Non-noise condition. (B) Noise level of −30 dBW condition. (C) Noise level of
−10 dBW condition. (D) Noise level of 10 dBW condition. (E) Noise level of 30 dBW condition.

rate at a channel combination condition of occipital-temporal
region was higher compared to the single Oz condition
(F = 3.1018, p = 0.0301). Additionally, for noise level of
−10 and 10 dBW conditions, the accuracy rates at channel
combination of occipital-temporal region, as well as all 16-
channel combination, were significantly higher compared to that
of single Oz condition (F = 3.7910, p = 0.0127 and F = 4.6986,
p = 0.0040, respectively). However, for the 30 dBW noise level
condition, while the trend was similar to noise level of−30 dBW
condition, no statistical significance was found (F = 1.9126,
p = 0.1324). These results indicate a small amount of noise
can enhance occipital EEG responses, demonstrated by the
increased accuracy in the channel combination of occipital-
temporal region on noise level of −30 dBW. With further

increments of auditory noise intensity such as −10 and 10 dBW,
such effect spread to a wider region, including the temporal
region, which is demonstrated by the increased accuracy in
occipital-temporal channel combination on noise level of 10
dBW. Furthermore, when the noise level was too high, e.g.,
at 30 dBW, such enhancement effect would attenuate and the
accuracy rate decreased.

DISCUSSION

While noise can often be a harmful component, for dynamic and
non-linear system such as human brain, noise can help improve
system performance, as explained by the SR theory. Several
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FIGURE 9 | Mean and standard deviation of wPLI values under different auditory noise levels, *p < 0.05 represent significance among non-noise and auditory noise
integrated BCI tasks, **p < 0.01 among non-noise and auditory noise integrated BCI tasks, ***p < 0.001 among non-noise and auditory noise integrated BCI tasks.
(A) 7 Hz condition. (B) 9 Hz condition. (C) 11 Hz condition. (D) 13 Hz condition. (E) Total of four frequency condition.

studies that have explored both single-modality SR and cross-
modality SR phenomena, have proven this theory (Srebro and
Malladi, 1999; Xie et al., 2012; Nakamura et al., 2017; Krauss et al.,
2018). In this study, we applied Gaussian white auditory noise
with intensities of −30, −10, 10, and 30 dBW during SSMVEP-
BCI experiment to explore the cross-modal SR effect between
human visual and auditory modality.

In this study, FFT analysis revealed that, when compared
to non-noise conditions, additional auditory noise did raise
peak FFT value at a target frequency, proving that SSMVEP
response could be enhanced using auditory noise. The BCI

accuracy rate obtained using the CCA method further revealed
this phenomenon. As noise intensity moderately increases, the
correct rate of BCI recognition performance first increased and
then decreased. This finding is consistent with previous studies
in single-modality BCIs, which demonstrate that moderate noise
can enhance BCI performance (Srebro and Malladi, 1999; Xie
et al., 2014; Nakamura et al., 2017). In this study, we showed
that the proposed cross-modal BCI leads to a similar conclusion.
However, it should be noted that the participant variability has
a distinct impact on the experimental results. The optimal noise
level varies with different subjects and stimulus frequencies. For
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FIGURE 10 | BCI accuracy rates in different channel combination conditions.
The mark above each curve indicates that the value of corresponding point is
significantly higher than that of the single Oz channel, *p < 0.05 represent
significance among different channel combinations, **p < 0.01 among
different channel combinations.

some subjects, certain noise can cause a sudden drop on peak
FFT value, such as Subject S2 at noise level of −30 dBW, and
Subject S4 and S5 at noise level of 10 dBW. This may be due to
high variability of sensory thresholds and internal noise sources
of humans, leading to different sensitivities of neurons in the
visual cortex (Srebro and Malladi, 1999). To reduce the impact
of participant variability, there will be a larger participant sample
in our future work.

From the perspective of time window, we found that
it took less time to achieve a higher recognition accuracy
when we added moderate auditory noise. In other words,
under additional auditory noise, our brain tends to be more
sensitive to steady-state visual stimuli, and the response time
of the BCI system is shortened. This is especially true in
the time-window length of 0.75–1.25 s, in which optimal
auditory noise benefits much higher accuracy rate compared
to non-noise condition. Interestingly, such phenomenon is in
accordance with Harper’s finding (Harper, 1979) in 1979, which
is much earlier than the first time the SR theory was defined
(Benzi et al., 1981). Here, the accuracy rate was obtained
through CCA method, which is one of the most commonly
used algorithms in SSVEP-BCI recognition. Furthermore, we
believe that, with more powerful algorithms, better performance
can be achieved in future work. Since accuracy rate of the
proposed BCI paradigm has to be improved to a larger
extent, and the response speed can also be accelerated via the
usage of the proposed cross-modal modality, this proposed
BCI paradigm can help potentially build high speed SSVEP-
BCI systems.

In this analysis, we also drew flow gain maps to further
investigate the role that auditory noise plays in the interaction
between different brain regions. Under noise levels of −30,
−10, and 10 dBW, EEG responses may spread to more
brain regions compared to the non-noise condition. However,
for the noise level of 30 dBW, this effect may attenuate.
Considering the results of the FFT response and accuracy rate
obtained by CCA method, such results can be anticipated.

For single-modal SR, such as in the pure visual or auditory
sensory pathway, SR effect can be explained as additive noise
that turns neurons from subthreshold to superthreshold (Xie
et al., 2014; Tanaka et al., 2015). However, in the current
study, the underlying mechanism is more complicated since
auditory noise and visual stimulation belong to two different
sensory pathways.

The wPLI results are helpful when it comes to understanding
the underlying mechanism. As the noise intensity increases, the
wPLI values first increase and then decrease, just as observed
in FFT value and BCI accuracy. Although the absolute value
is not high, statistical analysis indicates that this conclusion
is robust. On one hand, low absolute value indicates that the
normal neural interaction between auditory and visual regions
is relatively weak. On the other hand, the relationship between
wPLI values and auditory noise levels implies that the auditory
noise enhances synchronization between temporal and occipital
regions, and such enhancement is consistent with enhancement
of brain responses and BCI performance, as characterized by
the SR effect. At stimulus frequencies of 11 and 13 Hz, the BCI
performance elevation under optimal noise condition, compared
to the non-noise condition, could be as high as 24 and 43%,
respectively. Furthermore, from the analysis of different channel
combinations, we can see how such effect changes with increases
in noise level. When applied to a noise intensity of −30 dBW,
SR effect concentrates on the visual region and combination of
other channels even weakens the efficiency of target recognition.
At noise level of −10 and 10 dBW tasks, there is no significant
accuracy differences between O1-Oz-O2 combination condition
and the single Oz-channel condition. Once the auditory region
related EEG channels were included, the BCI accuracy rate
significantly increased.

Based on these findings, we can extrapolate that cross-modal
SR may involve integration of different sensory processing
regions. In fact, in sensory processing, cross-modal interactions
are quite common and many studies have further confirmed
this phenomenon. For example, it has been proven that the
dorsal cochlear nucleus, the earliest processing stage in the
auditory pathway, receives not only input from the cochlea,
but also from the somatosensory system that process tactile
information (Ryugo et al., 2003; Shore and Zhou, 2006;
Dehmel et al., 2012; Zeng et al., 2012). Furthermore, Huang
et al. (2017) found that electro-tactile stimulation applied
to the index finger significantly improves speech perception
thresholds. As for audio-visual integration, it is well-known
that sometimes hearing can be misled by vision input, which
is well-known as the McGurk effect (McGurk and MacDonald,
1976). Additionally, Caclin et al. (2011) found that visual
perception can be enhanced by auditory stimulation, and
even subthreshold visual stimuli may be perceived through
spatially converging audio-visual inputs (Bolognini et al., 2005).
For these cross-modal improvement phenomena, Krauss et al.
(2018) speculated that SR in one sensory modality driven
by input from another modality may be a general principle,
namely multisensory integration, which would cause SR-like
cross-modal enhancement. Our findings in this study support
this speculation.
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CONCLUSION

In this study, we propose an auditory-noise-enhanced visual
SSMVEP-BCI paradigm with application of cross-modal SR
mechanism. The results indicate that moderate auditory
noise can increase BCI recognition accuracy and reduce
response time, which provides a novel method to improve
BCI performance. The combination of flow gain maps and
wPLI values both qualitatively and quantitatively revealed that
the existence of auditory noise may spread EEG responses
to a wider brain area. Furthermore, this phenomenon could
be caused by enhancing neural interaction between auditory
and visual pathways via the cross-modal auditory-noise-
induced SR mechanism. Such findings reveal the principle
of cross-modal SR of the brain and provide a potentially
novel approach for designing more effective audiovisual
hybrid BCI systems.
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Kamiński, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001). Evaluating
causal relations in neural systems: Granger causality, directed transfer function

Frontiers in Neuroscience | www.frontiersin.org 13 December 2020 | Volume 14 | Article 590963

https://doi.org/10.1109/SMC.2013.317
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1007/s10633-007-9085-6
https://doi.org/10.1007/s10633-007-9085-6
https://doi.org/10.1007/s00221-004-2005-z
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1016/j.brainres.2011.04.016
https://doi.org/10.1152/jn.1996.76.1.642
https://doi.org/10.1152/jn.1996.76.1.642
https://doi.org/10.1103/PhysRevE.56.923
https://doi.org/10.1103/PhysRevE.56.923
https://doi.org/10.1038/383769a0
https://doi.org/10.1523/JNEUROSCI.4608-11.2012
https://doi.org/10.1038/365337a0
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.2466/pms.1979.48.3.791
https://doi.org/10.2466/pms.1979.48.3.791
https://doi.org/10.1016/j.jneumeth.2010.11.015
https://doi.org/10.1038/s41598-017-02429-1
https://doi.org/10.1038/s41598-017-02429-1
https://doi.org/10.1007/BF00198091
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-590963 December 16, 2020 Time: 15:22 # 14

Xie et al. BCI Enhancement With Cross-Modal SR

and statistical assessment of significance. Biol. Cybern. 85, 145–157. doi: 10.
1007/s004220000235

Kayser, C., Petkov, C. I., Augath, M., and Logothetis, N. K. (2005). Integration of
touch and sound in auditory cortex. Neuron 48, 373–384. doi: 10.1016/j.neuron.
2005.09.018

Krauss, P., Tziridis, K., Schilling, A., and Schulze, H. (2018). Cross-modal stochastic
resonance as a universal principle to enhance sensory processing. Front.
Neurosci. 12:578. doi: 10.3389/fnins.2018.00578

Lin, Z., Zhang, C., Wu, W., and Gao, X. (2006). Frequency Recognition Based on
Canonical Correlation Analysis for SSVEP-Based BCIs. IEEE Transact. Biomed.
Engine. 53, 2610–2614. doi: 10.1109/TBME.2006.886577

McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices. Nature
264:746. doi: 10.1038/264746a0

Nakamura, H., Matsubara, A., and Nishifuji, S. (2017). “Noise-assisted auditory
brain computer interface,” in 2017 IEEE 6th Global Conference on Consumer
Electronics (GCCE), (Japan: IEEE GCCE), 1–5. doi: 10.1109/GCCE.2017.
8229231

Ng, K. B., Bradley, A. P., and Cunnington, R. (2012). Stimulus specificity of a
steady-state visual-evoked potential-based brain–computer interface. J. Neural.
Eng. 9:036008. doi: 10.1088/1741-2560/9/3/036008

Pelli, D. G. (1997). The Video Toolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vis. 10, 437–442. doi: 10.1163/
156856897X00366

Regan, D. (1989). Evoked potentials and evoked magnetic fields in science and
medicine. Human brain electrophysiology. Amsterdam: Elsevier, 59–61.

Ross, L. A., Saint-Amour, D., Leavitt, V. M., Javitt, D. C., and Foxe, J. J. (2006).
Do you see what I am saying? Exploring visual enhancement of speech
comprehension in noisy environments. Cereb. Cortex 17, 1147–1153. doi: 10.
1093/cercor/bhl024

Ryugo, D. K., Haenggeli, C. A., and Doucet, J. R. (2003). Multimodal inputs to
the granule cell domain of the cochlear nucleus. Exp. Brain Res. 153, 477–485.
doi: 10.1007/s00221-003-1605-3

Shore, S. E., and Zhou, J. (2006). Somatosensory influence on the cochlear nucleus
and beyond. Hearing Res. 216, 90–99. doi: 10.1016/j.heares.2006.01.006

Srebro, R., and Malladi, P. (1999). Stochastic resonance of the visually evoked
potential. Phys. Rev. E 59:2566. doi: 10.1103/PhysRevE.59.2566

Tanaka, F., Matsubara, A., and Nishifuji, S. (2015). “Evidence of stochastic
resonance of auditory steady-state response in electroencephalogram for brain
machine interface,” in 2015 IEEE 4th Global Conference on Consumer Electronics
(GCCE), (Japan: IEEE), 195–199. doi: 10.1109/GCCE.2015.7398638

Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., and Pennartz, C. M.
(2011). An improved index of phase-synchronization for electrophysiological
data in the presence of volume-conduction, noise and sample-size bias.
Neuroimage 55, 1548–1565. doi: 10.1016/j.neuroimage.2011.01.055

Vindiola, M. M., Vettel, J. M., Gordon, S. M., Franaszczuk, P. J., and
McDowell, K. (2014). Applying EEG phase synchronization measures to

non-linearly coupled neural mass models. J. Neurosci. Meth. 226, 1–14.
doi: 10.1016/j.jneumeth.2014.01.025

Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H.,
Schalk, G., et al. (2000). Brain-computer interface technology: a review of the
first international meeting. IEEE Trans. Rehabil. Eng. 8, 164–173. doi: 10.1109/
TRE.2000.847807

Wu, C. H., and Lakany, H. (2013). “The Effect of the Viewing Distance of
Stimulus on SSVEP Response for Use in Brain-Computer Interfaces,” in
Proceedings of the International IEEE Conference on Systems, Man, and
Cybernetics (SMC), (San Antonio: IEEE), 1840–1845. doi: 10.1109/SMC.
2013.317

Xie, J., Du, G., Xu, G., Zhao, X., Fang, P., Li, M., et al. (2019). Performance
Evaluation of Visual Noise Imposed Stochastic Resonance Effect on Brain-
Computer Interface Application: A Comparison Between Motion-Reversing
Simple Ring and Complex Checkerboard Patterns. Front. Neurosci. 2019:1192.
doi: 10.3389/fnins.2019.01192

Xie, J., Xu, G., Luo, A., Li, M., Zhang, S., Han, C., et al. (2017). The Role
of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State
Motion Visual Evoked Potential-Based Brain-Computer Interface. Sensors
17:s17081873.

Xie, J., Xu, G., Wang, J., Zhang, F., and Zhang, Y. (2012). Steady-state motion
visual evoked potentials produced by oscillating newton’s rings: implications
for brain-computer interfaces. PLoS One 7:e39707. doi: 10.1371/journal.pone.
0039707

Xie, J., Xu, G., Wang, J., Zhang, S., Zhang, F., Li, Y., et al. (2014). Addition of visual
noise boosts evoked potential-based brain-computer interface. Sci. Rep. 4:4953.
doi: 10.1038/srep04953

Yan, Z., and Gao, X. (2011). Functional connectivity analysis of steady-
state visual evoked potentials. Neuroence Lett. 499, 199–203.
doi: 10.1016/j.neulet.2011.05.061

Zeng, C., Yang, Z., Shreve, L., Bledsoe, S., and Shore, S. (2012). Somatosensory
projections to cochlear nucleus are upregulated after unilateral deafness. Int.
J. Neurosci. 32, 15791–15801. doi: 10.1523/JNEUROSCI.2598-12.2012 doi: 10.
1523/jneurosci.2598-12.2012

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Xie, Cao, Xu, Fang, Cui, Xiao, Li, Li, Xue, Zhang and Han.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 December 2020 | Volume 14 | Article 590963

https://doi.org/10.1007/s004220000235
https://doi.org/10.1007/s004220000235
https://doi.org/10.1016/j.neuron.2005.09.018
https://doi.org/10.1016/j.neuron.2005.09.018
https://doi.org/10.3389/fnins.2018.00578
https://doi.org/10.1109/TBME.2006.886577
https://doi.org/10.1038/264746a0
https://doi.org/10.1109/GCCE.2017.8229231
https://doi.org/10.1109/GCCE.2017.8229231
https://doi.org/10.1088/1741-2560/9/3/036008
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1093/cercor/bhl024
https://doi.org/10.1093/cercor/bhl024
https://doi.org/10.1007/s00221-003-1605-3
https://doi.org/10.1016/j.heares.2006.01.006
https://doi.org/10.1103/PhysRevE.59.2566
https://doi.org/10.1109/GCCE.2015.7398638
https://doi.org/10.1016/j.neuroimage.2011.01.055
https://doi.org/10.1016/j.jneumeth.2014.01.025
https://doi.org/10.1109/TRE.2000.847807
https://doi.org/10.1109/TRE.2000.847807
https://doi.org/10.1109/SMC.2013.317
https://doi.org/10.1109/SMC.2013.317
https://doi.org/10.3389/fnins.2019.01192
https://doi.org/10.1371/journal.pone.0039707
https://doi.org/10.1371/journal.pone.0039707
https://doi.org/10.1038/srep04953
https://doi.org/10.1016/j.neulet.2011.05.061
https://doi.org/10.1523/JNEUROSCI.2598-12.2012
https://doi.org/10.1523/jneurosci.2598-12.2012
https://doi.org/10.1523/jneurosci.2598-12.2012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Auditory Noise Leads to Increased Visual Brain-Computer Interface Performance: A Cross-Modal Study
	Introduction
	Materials and Methods
	Subjects
	EEG Recordings
	Stimulation Design
	DTF and Flow Gain
	CCA Method
	wPLI Method
	Statistical Analyses

	Results
	The Influence of Auditory Noise on Visual Responses
	Auditory Noise Promoted Visual BCI Recognition Accuracy
	Auditory Noise Optimized the Trade-off Between Time-Window Length and Performance in Accuracy
	Illustration of the Functional Connectivity Under Different Auditory Noise Levels via Flow Gain Maps
	The Phase Synchronization Between Temporal Region and Occipital Region
	Optimal Noise Activates More Channels

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


