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Understanding the structure–activity relationships (SAR) of endocrine-disrupting chemicals has a major

importance in toxicology. Despite the fact that classifiers and predictive models have been developed for

estrogens for the past 20 years, to the best of our knowledge, there are no studies of their activity

landscape or the identification of activity cliffs. Herein, we report the first SAR of a public dataset of 121

chemicals with reported estrogen receptor binding affinities using activity landscape modeling. To this

end, we conducted a systematic quantitative and visual analysis of the chemical space of the 121

chemicals. The global diversity of the dataset was characterized by means of Consensus Diversity Plot,

a recently developed method. Adding pairwise activity difference information to the chemical space gave

rise to the activity landscape of the data set uncovering a heterogeneous SAR, in particular for some

structural classes. At least eight compounds were identified with high propensity to form activity cliffs.

The findings of this work further expand the current knowledge of the underlying SAR of estrogenic

compounds and can be the starting point to develop novel and potentially improved predictive models.
1. Introduction

Endocrine disrupting chemicals (EDCs) affect normal
hormonal action related to the endocrine system of humans
and other organisms.1,2 These chemicals can produce a vast
range of adverse effects including developmental, reproduc-
tive, neurological, and immune system related effects. EDCs
act through endocrine system pathways, including those
related to estrogens, androgens, and thyroid hormones. Many
investigations to derive robust and predictive quantitative
structure–activity relationship (QSAR) models for EDCs inter-
acting with endocrine hormone receptors, and in particular
the estrogen receptor (ER), have been performed over the past
15 years.3–13 Xenoestrogens are known to have large chemical
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diversity including, for instance, estrogen diethylstilbestrol,
polychlorinated biphenyls, alkylphenols, phthalates, and
parabens, among others.14 Several structure–activity relation-
ship (SAR) analysis and predictive models of estrogens have
been developed over the past years and commented on
extensively.14 However, there are no reports on the activity
landscape of the EDCs.

One of the consistent manners to characterize the SAR of
compound data sets is through the systematic pairwise
comparison of the structure with the activity. This approach
termed “activity landscape modeling”15–17 is based upon the
similarity principle of chemical data sets, i.e., structurally
similar compounds have similar activity values. Activity land-
scape modelling identies activity cliffs i.e., pairs of
compounds with high structure similarity but large potency
difference.18 Depending on the scope, activity cliffs can have
benecial or detrimental consequences in many cases of study
because they are major exceptions to the similarity principle.
On one hand, activity cliffs challenge the development of many
predictive models founded on the similarity principle. On the
other hand, activity cliffs lead directly to key structural infor-
mation that inuence the property.19 Over the past few years,
several quantitative and/or visual approaches have been pub-
lished to get the prole of the activity landscape of compounds
with one20 or several endpoints.21 Of note, to the best of our
knowledge, these approaches have not been used to explore
the property landscapes of estrogenic binding compounds
despite their major importance.
RSC Adv., 2018, 8, 38229–38237 | 38229
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Because all pairwise comparisons can lead to large amounts
of structure–activity information difficult to mine and visualize,
an approach called ‘activity landscape sweeping’was developed.
This is a dissection of the global activity landscape i.e., global
SAR, into smaller but more structural interpretable local land-
scapes i.e., local SARs.22

Herein we report an activity landscape study of 121 chem-
icals with measured ER binding affinities. One of the main
goals was to identify activity cliffs and “activity cliff genera-
tors”,23 i.e., compounds that are frequently associated with
cliffs. The activity landscape sweeping approach was imple-
mented to further understanding the activity landscape of
particular groups of compounds. To this end, an analysis of
the chemical space, diversity and clustering of the compounds
was conducted before doing the activity landscape modeling.

2. Materials and Methods
2.1. Data sets

We focused the study on a set of 121 molecules with published
values of measured binding affinities.14 This is a set of experi-
mentally active estrogens of different structural families
including steroids, DES-like, phytoestrogens, diphenyl-
methanes, biphenyls and phenols. The chemical structures
were prepared and standardized with MOE 2016, including
manual curation to avoid duplicate entries and structural
errors, as well as salt removal, charges neutralization and
keeping only the largest fragment if more than one molecule
was present.

2.2. Molecular representations

Standard 2D chemical features were studied to characterize the
chemical space. The analysis focused on molecular ngerprints
(ECFP4, i.e., Extended Connectivity Fingerprints diameter 4),24

molecular scaffold (as computed using the Bemis and Murcko
approach25), and six physicochemical properties (PCP) of phar-
maceutical relevance, namely: octanol/water partition coeffi-
cient (Slog P), molecular weight (MW), topological polar surface
area (TPSA), number of rotatable bonds (RB), number of
hydrogen bond donors and number of hydrogen bond accep-
tors (HBD/HBA). The molecular ngerprints, scaffolds and
properties were computed with KNIME26 RDkit and CDK
nodes.27

2.3. Chemical space and clustering

In order to aid the activity landscape modeling of the 121
chemicals and explore local SARs, we conducted an analysis of
the chemical space. It has been previously shown that prin-
cipal component analysis (PCA) and k-means clustering
applied to structural similarity data using ECFP4 is a useful
approach for nding and visualizing different subsets of
compounds that are structurally related, for which it is feasible
to nd local SAR differences.22 Herein this approach was fol-
lowed, and by direct inspection of the rst 3 principal
components (55.7% of variance) we concluded that at least
four clusters could be dened. Clustering was performed with
38230 | RSC Adv., 2018, 8, 38229–38237
k-means on the rst 7 principal components (72.7% of the
variance). To further characterize these subsets, we analyzed
their structural diversity through the molecular scaffolds
(computed as described in Section 2.1).

2.4. Global diversity

The “global” or total diversity of the entire compound data set
and each individual cluster was evaluated using Consensus
Diversity Plots.28 Briey, these are low dimensional graphs that
are aimed to integrate different but complementary measures of
diversity of databases. Typically, Consensus Diversity Plots
represent ngerprint, scaffold, property diversity and size i.e.,
number of compounds in different datasets. The position of the
data points in the plot, the color and size provide a quick
assessment of the relative diversity of data sets. Further details
of these plots and their use are elaborated elsewhere28,29 As
discussed in the Results and discussion section, it would be
expected that the clusters tend towards lower ngerprint-based
diversity than the original data, given that they are being put
together by this very criterion.

2.5. Activity landscape modeling

Activity landscape analysis was done for the data set with all
the 121 compounds and for each of the clusters (4 in total)
identied during the analysis of the chemical space (Section
2.3). The activity landscape analysis was performed using
Structure–Activity Similarity (SAS) map which is one of the rst
approaches in order to perform activity landscape modeling
and identify activity cliffs.30 A schematic representation of
a SAS map is presented in Fig. 1. Briey, a SAS map is a two-
dimensional graph where pairwise structure and activity
similarity of usually all pairwise comparisons of a data set are
plotted. The structure similarity is represented on the X-axis
and the activity difference (or activity similarity) is plotted on
the Y-axis. In this work, the structure similarity was computed
using ECFP4 ngerprints and the Tanimoto coefficient. The
activity difference was computed as the absolute value of the
activity difference initially expressed in relative binding
affinity units (RBA), obtained by means of dividing the deter-
mined potency (IC50) by the IC50 of 17b-estradiol.14 Informa-
tion from the activity landscape was contrasted with the
diversity analysis, to nd whether some areas of the chemical
space are more susceptible to form activity cliffs. As presented
in Fig. 1A, activity cliffs are identied in the top-right quadrant
of the SAS map that identies pairs of molecules with high
structure similarity but large activity difference.

2.6. Activity cliffs and generators

As mentioned in the Introduction, activity cliff generators are
molecules frequently identied in the activity cliff region of
the activity landscape.23 In other words, activity cliff generators
are molecules that are commonly found in activity cliff pairs.
In this work, compounds involved in at least ve activity cliffs
were selected as activity cliff generators and subject to further
analysis. Direct analysis and interpretation of these activity
cliffs generators is expected to yield insights into the relevant
This journal is © The Royal Society of Chemistry 2018



Fig. 1 General form of a Structure–Activity Similarity (SAS) map. (A) Each data point represents a pair-wise comparison. Hypothetical distribution
five pairs of compounds. The two example chemical structures illustrate an activity cliff: compounds with similar chemical structures but large
activity difference e.g., larger than two potency units. (B) Four major regions that can be roughly identified in a SAS map. Each quadrant is labeled
with the overall type of landscape.
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features providing estrogenic activity. All analyses were done
using KNIME version 3.5.3 and its corresponding RDkit and
CDK nodes.

3. Results and discussion

Results are presented and discussed in two major parts. In the
rst part an analysis of the chemical space diversity and content
of the data set of the 121 compounds is described (Subsections
3.1 and 3.2). The second part (Subsection 3.3) addresses the
activity landscape analysis that was developed based on the
analysis of the chemical space.

3.1. Chemical space and clustering

Fig. 2 shows a visual representation of the chemical space of the
121 compounds using PCA based on six drug-like properties of
Fig. 2 Visual representation of the chemical space of the data set with
121 compounds. The visual representation was generated with prin-
cipal component analysis of six drug-like physicochemical properties.
The first two principal components account for 43.7% of the variance.
Data points are color-coded by the cluster each compound belongs
based on pairwise structure similarity computed with ECFP4/Tani-
moto. Clustering was performed with k-means on the first 7 principal
components (72.7% of the variance).

This journal is © The Royal Society of Chemistry 2018
pharmaceutical relevance. The rst three principal components
captured 55.7% of the variance. As described on the Methods
section, the 121 compounds where further clustered into four
groups based on the pairwise structure similarity computed
with ECFP4 ngerprints and the Tanimoto coefficient. In Fig. 2
compounds (data points) are color-coded by the cluster number
of each compound. Table 1 summarizes the number of
compounds in each cluster. Overall, Fig. 2 shows a reasonable
good qualitative relationship between the PCP and ngerprint-
based similarity. In other words, compounds with similar PCP
also have similar chemical structures as captured by the ECFP4/
Tanimoto combination.

In order to further interpret the type of compounds present
in each cluster, the main chemical scaffolds (computed as
described in the Methods section) present in each cluster were
identied. Fig. 3 shows representative Bemis and Murcko
scaffolds. Cluster 1 with 20 (17%) compounds is characterized
by the presence of steroidal scaffolds. Cluster 2 with 70 (58%)
compounds is the largest group: it contains 20 molecules that
share the ubiquitous benzene scaffold, compounds related to
the DES, hexestrol and tetraphenylethylene derivatives.
Cluster 3 with 16 (13%) compounds contain avones. Finally,
cluster 4 has 15 (12%) compounds containing avanones,
Table 1 Total diversity profile of compounds in each of the four
clusters (sub sets of compounds; local SAR) and for ALL compounds
(global SAR)a

Cluster No. cpds
Median MACCS
keys/Tanimoto AUC

Median
PCP

1 20 0.37 0.64 2.99
2 70 0.42 0.72 3.12
3 16 0.48 0.72 2.99
4 15 0.83 0.71 3.18
ALL 121 0.40 0.77 2.75

a AUC: area under the curve. PCP: physicochemical properties.

RSC Adv., 2018, 8, 38229–38237 | 38231



Fig. 3 Representative chemical scaffolds found in each of the four clusters. The number of compounds (n) containing each cluster is indicated.
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mycoestrogens and other scaffolds. We want to emphasize that
the clustering was performed based on molecular ngerprints
considering the entire chemical structures.
Fig. 4 Consensus Diversity Plot comparing the global diversity of the
four different clusters and the entire data set (ALL). Each cluster is
represented with a data point. The structural diversity (X-axis) is
defined as the median Tanimoto coefficient of MACCS keys finger-
prints. The scaffold diversity (Y-axis) is defined as the area under the
corresponding scaffold recovery curve. The diversity based on physi-
cochemical properties (PCP) was defined as the Euclidean distance of
six auto-scaled properties (Slog P, TPSA, AMW, RB, HBD, and HBA) and
is shown as the filling of the data points using a continuous color scale.
The relative number of compounds is represented with a different size
of the data points (larger clusters are represented with larger data
points).
3.2. Global diversity

Fig. 4 shows the Consensus Diversity Plot comparing the rela-
tive global diversity of each cluster (or subset described in
Section 3.1) as compared to the diversity of the entire data set.
In this plot, each data point represents one compound cluster.
As described in the Methods section, the ngerprint-based
diversity of each cluster is represented on the X-axis, in this
case measured as the median MACCS keys (166 bits) and
Tanimoto similarity of the cluster. Hence, data points to the le
have, in general, lower molecular similarity e.g., larger diversity.
The scaffold diversity is represented on the Y-axis as measured
by the area under the curve (AUC) of the scaffold recovery curve.
Thus, clusters at the bottom of the plot with lower AUC values
have higher scaffold diversity. Of note, as described in detail
elsewhere, in a scaffold recovery curve the minimum value of
AUC is 0.5 that means that a compound data set has the largest
scaffold diversity: each molecule would have their own scaf-
fold.31 The diversity based on PCP is represented with a contin-
uous color scale from less diverse (red) to most diverse (green).
Finally, the size of the data point is a relative measure of the
38232 | RSC Adv., 2018, 8, 38229–38237 This journal is © The Royal Society of Chemistry 2018
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number of compounds in each cluster e.g., smaller clusters have
fewer number of molecules.

Fig. 4 indicates that the entire data set (labeled as “ALL”) has
a relative large ngerprint diversity but a low scaffold diversity.
Cluster 2 (58% of compounds) is almost as diverse as the entire
data set in terms of ngerprints and scaffolds. In contrast,
cluster 4 (12% of compounds) has the relative largest combined
scaffold and ngerprint diversity while cluster 1 is the least
diverse with the overall lowest scaffold and ngerprint diversity.
This observation is consistent with the type of molecules
present in cluster 1, most of them have a steroid scaffold (a
relative large scaffold that should be related to the entire
diversity-vide supra). Also in contrast, compounds in cluster 2
have a small core scaffold and it would be expected that the
ngerprint-diversity is inuenced by the side chains. Regarding
the diversity in terms of PCP, the Consensus Diversity Plot in
Fig. 4 also highlights the opposite diversity of compounds in
clusters 2 and 3.
3.3. Activity landscape analysis

Following the concept of activity landscape sweeping described
in the Introduction and Methods, herein we analyzed the
landscape for all compounds in the data set and activity land-
scapes for each of the four clusters. Fig. 5 shows the SAS maps
for all compounds and for each of the four clusters. Thus, Fig. 5
represents the “global” and “local” activity landscapes. The SAS
maps are colored coded by the density of the data points i.e.,
density SAS maps. Overall, most of the data points, in particular
for ALL compounds and for compounds in cluster 2 are located
Fig. 5 Density Structure–Activity Similarity (SAS) maps for the entire set
four individual clusters i.e., local landscapes. More red areas contain more
in Table 2.

This journal is © The Royal Society of Chemistry 2018
in the lower le region of the SAS map e.g., compounds with low
molecular similarity (e.g., high diversity), and low activity
difference. In general, this result is consistent with the known
observation that there are a large number of chemicals with
diverse chemical structures but with small variations in ER
binding affinity properties. Visual inspection of Fig. 5 also
suggests that the activity landscape of compounds in cluster 2
resemble the landscape of the entire data set (ALL). However,
a quantitative analysis would provide more insights.

Table 2 summarizes a quantitative characterization of the
activity landscape based on the contents of the SAS maps. A key
point in the quantitative analysis of the SAS maps is setting the
thresholds that dene the four major quadrants of the plots i.e.,
the thresholds used in this study to dene high/low/structural
similarity (along the X-axis) and high/low activity difference.
Several valid approaches have been used to dene such
thresholds in the SAS maps.32 Herein, we used a potency
difference of two log units in potency difference along the Y-
axis. This criterion has been adopted in several studies as
a reasonable large potency difference. To dene high/low
structure similarity we used the median of the distribution of
the pairwise similarity values of the 121 compounds plus two
standard deviations i.e., the threshold was set to 0.424. Again,
another criterion could have been used. Table 2 indicates the
total number of pairwise comparisons for ALL and each of the
four sets, i.e., the number of data points in the plots. Table 2
also summarize the percentage of compounds in each quadrant
(major region of the SAS map as dened in Fig. 1) aer setting
up the thresholds.
(ALL, 121 compounds) i.e., global activity landscape and for each of the
data points. A quantitative description of the SAS maps is summarized

RSC Adv., 2018, 8, 38229–38237 | 38233



Table 2 Quantitative analysis of the SAS maps and further analysis of the compounds in each cluster

Cluster Uncertaina Hopsa Cliffsa Smootha Cliffs/smoothb nc Pairsd Xsim
e n scaffsf

ALL 41% 54.5% 1% 3.5% 0.286 121 7260 0.192 39
1 21% 28% 13% 38% 0.342 20 190 0.451 5
2 34% 60% 1.2% 4.8% 0.250 70 2415 0.239 21
3 17.5% 44% 11.5% 27% 0.426 16 120 0.417 4
4 44% 37% 1.9% 17.1% 0.111 15 105 0.267 9

a Percentage of pairs of compounds in each of the four regions of the SAS map. b Ratio of the number of pairs of compounds in the activity cliff/
smooth region of the SAS map. c Number of compounds in the set (n). d Number of pairwise comparisons. e Median similarity of the compounds in
each cluster (Xsim).

f Number of different Bemis–Murcko scaffolds in each cluster.
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The quantitative analysis indicates that compounds in
clusters 1 and 3 have the largest proportion of activity cliffs
(13% and 11%, respectively). This can also be seen in the SAS
maps (Fig. 5) with a relative larger number of data points in the
top right region of the plots. In contrast, cluster 2 has the lowest
proportion of activity cliffs (1.2%), followed by cluster 4,
comparable to the proportion of activity cliffs in the entire data
set (1.0%). Interestingly compounds in cluster 1 (with steroid-
type scaffolds) and cluster 3 (with several avones) also have
the largest proportion of data points in the smooth region of the
landscape (38% and 27%, respectively). Since cluster 1 and 3
have the largest proportion of compounds in both, smooth and
activity cliff regions, clusters 1 and 3 have the relative most
rough or heterogeneous landscape. Table 2 also indicates that
the more diverse compounds (i.e., in cluster 4) have an activity
prole similar to the entire dataset (ALL).
Fig. 6 Representative activity cliff generators and selected pairs of com
methyl-estradiol, (B) diethylstilbestrol and (C) genistein. The figure inclu

38234 | RSC Adv., 2018, 8, 38229–38237
3.3.1. Activity cliff generators and interpretation of the
SAR. In this work we consider an activity generator a molecule
found in at least ve activity cliff pairs. Based on this criterion,
eight compounds were identied as activity cliff generators.
Fig. 6 shows the chemical structures of three representative cliff
generators: 16beta-ol-16alfa-methyl-3-methyl-estradiol, diethyl-
stilbestrol, and genistein. Examples of activity cliffs pairs for
each activity cliff generator are illustrated.

Activity cliffs associated with 16beta-ol-16alfa-methyl-3-
methyl-estradiol (Fig. 6A) highlights the relevance and sensi-
tivity of the hydroxyl groups around the estradiol molecule for
binding. Of note, all activity cliff pairs in Fig. 6A are steroids
with a phenolic ring. The cliffs in the gure points to the high
relevance of both hydroxyl groups the 3- and 17beta positions of
the molecule as discussed by,14 a crystallographic structure of
the estrogen receptor with 17beta-estradiol indicate that the two
pounds formed with the generators (A) 16beta-ol-16alfa-methyl-3-
des the value of the relative binding affinity (RBA) as reported by.14

This journal is © The Royal Society of Chemistry 2018



Fig. 7 2D and 3D representation of representative activity cliff generators and selected pairs of compounds with greater difference in activity. (A)
Genistein and (B) morin. The figure includes the value of the relative binding affinity (RBA) as reported by.14
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hydroxyl groups serve as H-bond donors and acceptors at the
binding site. The hydroxyl group at the 3-position is more
crucial. Similarly, the activity cliffs formed with the generator
diethylstilbestrol e.g., which is one of the highest-affinity
synthetic estrogens (Fig. 6B), also indicates the critical role of
the two symmetrical position of the hydroxyl groups of dieth-
ylstilbestrol. The distance of these two groups and rigidity of the
molecule (due to the double bond) facilitates the formation of
hydrophobic and hydrogen bond interactions of diethylstil-
bestrol. Finally, activity cliffs formed with the isoavone gen-
istein (Fig. 6C) further highlights the key position and distance
of the two hydroxyl groups at positions 7 and 40 around the
isoavone scaffold that mimic the 4 and 40 hydroxyl groups of
diethylstilbestrol.

The large changes in activity can be rationalized from
a molecular perspective. This is illustrated in Fig. 7 for the
activity cliff generator, genistein and morin (chemical struc-
tures also in Fig. 6C). Both compounds have interactions with
the side chain of Glu353 through its hydroxyl group at the
position 40 of the isoavone scaffold. In addition, both
compounds have conserved pi–pi interactions with the side
chain of Phe404. However, genistein makes additional key
interactions between a hydroxyl group of the position 7 of the
isoavone scaffold with His524. This key interaction is not
formed by morin. Similar conclusions can be reached by two-
and three-dimensional representations of the protein–ligand
This journal is © The Royal Society of Chemistry 2018
contacts of the pairs of activity cliffs 16beta-ol-16alfa-methyl-3-
methyl-estradiol and estrone (Fig. S1 in the ESI†) and diethyl-
stilbestrol and 4-ethylphenol (Fig. S2 in the ESI†).

As discussed in detail elsewhere,16 the detection of activity
cliffs in compound data sets can be crucial to guide the devel-
opment of predictive models. Specically, it is hypothesized
that removing activity cliffs from compounds data sets would
increase the performance of predictive models that are specially
based on the similarity principle, for instance, classical QSAR
approaches. For compound data set studied in this work, it
would remain to develop and test different predictive models
with and without the activity cliffs and assess quantitatively the
predictive power.
4. Conclusions

Activity landscape analysis of a diverse set of 121 compounds
with ER binding affinities revealed an overall heterogenous SAR
with the presence of compounds with high propensity to form
activity cliffs. Distinct activity cliff generators are 16beta-ol-
16alfa-methyl-3-methyl-estradiol, diethylstilbestrol, and genis-
tein, that represent major structural classes with known ER
affinity, namely; a steroid, a DES-like chemical and a phytoes-
trogen. SAR analysis around these compounds enabled to
identify specic structural features associated with a large
difference in the ER binding affinities further highlighting the
RSC Adv., 2018, 8, 38229–38237 | 38235
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critical role of two hydroxyl groups for binding recognition to
the binding site of the ER. Reported crystallographic structures
provide a structure-based context of these cliffs. Chemical space
and diversity analysis of the entire data set helped to identify
four major groups of compounds, each with a distinct activity
landscape e.g., local SAR. Thus, compounds with the more rigid
steroid-like scaffold and molecules with a avone-type scaffold
have the most heterogeneous SAR. Global and local activity
landscape regions identied in this work with a smooth SAR
could be more amenable for developing predictive models. To
the best of our knowledge, this is the rst activity landscape
analysis of compounds with ER binding affinities.
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 Diethylstilbestrol

ECPF4
 Extended connectivity ngerprints diameter 4
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 Endocrine-disrupting chemicals
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 Molecular weight
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 Principal component analysis
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 Physicochemical properties

RB
 Number of rotatable bonds

RBA
 Relative binding affinity
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 Structure–activity relationships
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 Octanol/water partition coefficient
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 Topological polar surface area
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