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Editorial Comments

Silencing genes in the kidney: antisense or RNA interference?
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Introduction

Targeting genes in disease has long been a sought-after holy
grail, with the concept of gene therapy promising a magic
bullet for single gene mutation or deletion disorders. Re-
placing deficient or non-functional genes with the active
form has proven more difficult to achieve than originally
hoped. However, a subset of gene therapy termed ‘gene
silencing’ is being developed, which is altogether more
promising. By utilizing the unique nature of gene-sequence
specificity, complementary or antisense molecules can
be designed to ‘seek and destroy’ target mRNAs for specific
proteins known to be pivotal in the pathogenesis of various
disease processes. Two strategies have been employed to si-
lence genes; the first involves the use of single-stranded an-
tisense oligodeoxynucleotides (ASO) and the second uses
double-stranded short-interfering RNA molecules (siRNA)
otherwise known as RNA interference (RNAi).

Antisense oligodeoxynucleotides (ASO)

With the recent publication by Tillman et al. in the Journal
of Pharmaceutical Sciences of the first demonstration of
oral delivery of ASO in man [1] comes the possibility of
this form of gene therapy becoming part of the normal
repertoire of therapeutic options open to the physician in
the mid- to long-term future. Zamecnick and Stephenson
were the first to recognize the potential of ASO in 1978
when studying inhibition of Rous sarcoma virus replication
[2]. Since then, antisense technology has developed into a
powerful research tool and has begun to make its mark in
the world of clinical therapy.

ASO consist of a single strand of 12–22 oligodeoxynu-
cleotides which are complementary to the target mRNA se-
quence [3]. Binding of the ASO to target mRNA results in
steric inhibition of translation by the ribosomal complex but
more importantly the induction of RNase H, which cleaves
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the 3′-O-P-bond of the RNA molecule (Figure 1). This
mechanism of action theoretically provides 100% speci-
ficity for the target gene, an unachievable goal for most
conventional pharmacological agents.

Since the 1970s, ASO have been used widely as research
tools used to investigate mechanisms of disease patho-
genesis in vitro, particularly in the field of nephrology.
For example, Zhang et al. used a connective tissue growth
factor (CTGF) ASO to examine the role of this molecule
during epithelial-mesenchymal transition (EMT) in proxi-
mal tubular epithelial cells [4], whilst we have employed
ASO to discern the individual functions of the isoforms
of the Ras monomeric GTPase in human renal fibroblast
proliferation [5].

The use of ASO to target the kidney in vivo has
been both challenging and highly rewarding. Unmodified,
single-stranded oligonucleotides are rapidly broken down
in serum by endogenous nucleases greatly limiting cellu-
lar uptake. To overcome this, ASO have a modification
of the phosphate backbone whereby non-bridging oxygen
molecules are replaced by sulphur molecules, greatly en-
hancing resistance to nuclease activity. These phosphoroth-
ioate ASO have a half-life in serum in the region of 10 h
(in comparison to 30–60 min of unmodified forms) and,
following parenteral administration, have a systemic
bioavailability as high as 90% [6]. Further modifications of
the sugar–phosphate backbone of the oligonucleotides can
be made to increase their stability and RNA affinity with-
out compromising binding selectivity. Among the available
sites for modification, the furanose 2′-position has been
demonstrated to offer several advantages [7]. Unfortunately,
complete 2′-O-modification of the molecule results in the
loss of its ability to activate RNase H. This has led to the
development of chimeric oligonucleotides that are formed
by combining 2′-O-modified oligonucleotides with re-
gions of 2′-deoxy phosphorothioates. The resulting second-
generation ASO both support RNase H activity and demon-
strate enhanced nuclease resistance and RNA affinity.
Following parenteral administration, these ASO distribute
to all peripheral tissues with the highest accumulation be-
ing in the liver and kidneys, which have a concentration
ratio to plasma of 20:1 and 80:1 respectively after 2 h [8].
Within the kidney, ASO are filtered freely by the glomeru-
lus and reabsorbed by proximal tubule epithelial cells [9]
making antisense technology a very attractive tool for the
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Fig. 1. The mechanism of action of ASO versus RNA interference.

investigation and possibly treatment of renal disease. Cheng
et al. were amongst the first to use these tools in an animal
model of renal disease. They administered ASO to intracel-
lular adhesion molecule 1 (ICAM-1) intravenously via the
tail vein in a mouse model of unilateral ureteric obstruction
(UUO) and found a decrease in inflammatory infiltration
and extracellular matrix [10]. Similarly, Chen et al. demon-
strated ICAM-1 ASO to be very effective in inhibiting
the ICAM-1-dependent mechanism of graft infiltration and
tissue damage involved in allograft rejection, ischaemic-
reperfusion injury and cyclosporin-induced nephrotoxicity
[11]. Other renal disease-associated proteins have subse-
quently been targeted using parenteral ASO, such as con-
nective tissue growth factor (CTGF) [12,13], casein kinase
II [14] and TGF-β. Isaka et al. modified the delivery of ASO
to target interstitial fibroblasts. They developed an artifi-
cial viral envelope (AVE) containing anionic liposomes and
proteins from the haemagglutinating virus of Japan (HVJ).
The net negative charge on the ASO/AVE complex allows
for selective transfection of renal interstitial fibroblasts to
the exclusion of proximal tubular cells. Using retrograde
ureteric administration, Isaka successfully targeted intersti-
tial fibroblasts with ASO to TGF-β1, in a model of UUO.
The ASO-treated obstructed kidneys expressed less colla-
gen I and α-smooth muscle actin and had less interstitial
fibrosis [15,16].

Although some animal studies have shown that ASO in-
fusions may lead to complement cascade activation [17,18],
these effects appear to be both dose dependent and related to
the rate of administration. Subsequent clinical studies using
lower doses of ASO have reported minimal toxic effects.
Furthermore, subsequent generations of ASO have lower
toxicity profiles [19]. Therefore, there has been much inter-
est in pushing forward ASO for clinical therapy. Although
currently there is only one ASO licensed for clinical use,
Formivirsen (Vitravene

R©
) for AIDS-related CMV retini-

tis, numerous others are in Phase 2 of clinical development
such as ASO to ApoB-100 for the treatment of hypercholes-
terolaemia, ASO to ICAM-1 in ulcerative colitis and many
others (see http://www.isispharm.com).

Short-interfering RNA

In 1990, Richard Jorgensen’s plant biology group was the
first to note the effects of administration of specific RNA
molecules on gene expression [20]. Their attempt to en-
hance the purple pigmentation in petunias by overexpres-
sion of the appropriate transcript paradoxically resulted in
the flowers losing their colouring. This phenomenon was
termed ‘cosuppression’, though the mechanism of action
was not determined until 1998. In their landmark paper,
Fire and Mello showed that sequence-specific gene knock-
down was possible by microinjection of synthetic double-
stranded RNA (dsRNA) in the nematode Caenorhabditis
elegans [21]. Furthermore, they showed that the use of
dsRNA was over 10 times more potent than either sense
or antisense RNA alone, that gene silencing was possible
on administration of only a few molecules of dsRNA and
that this effect may be passed on to first-generation progeny.
The term ‘RNA interference’ was applied to their findings
and they were awarded the Nobel Prize for Medicine in
October 2006.

The mechanism employed by RNAi is thought to be a
defensive mechanism against the abnormal presence of
double-stranded viral RNA. It is different to that used
by ASO and has been conserved over time and is com-
mon to all eukaryotes [22]. The process involves initial
long dsRNA cleavage by the enzyme Dicer RNase III into
short RNA duplexes of 21–23 nucleotides, which are then
incorporated into a ribonucleoprotein–endonuclease com-
plex termed ‘RNA Induced Silencing Complex’ (RISC).
The siRNA is then unwound and the antisense strand di-
rects the complex to target the specific endogenous RNA
sequence. The target RNA transcript is then bound and de-
graded by the endonuclease activity of RISC (Figure 1).
There was an initial reluctance to transfer these findings to
mammalian cells since exposure to long strands of dsRNA
results in non-specific degradation of all mRNA and in-
hibition of all protein synthesis. However, Tuschl’s group
subsequently demonstrated that short-interfering RNA
(21-nt) against reporter genes in various mammalian cell
lines specifically reduced expression up to 25-fold [23].
Since this time, short-interfering RNA (siRNA) technology
has been used widely as a highly specific and powerful
tool for the in vitro study of gene function. Its specific
mechanism of action makes target site identification and
oligo design easier than for ASO as the secondary RNA
structure is not an obstacle. In vitro, the duration of knock-
down is similar to that of second-generation ASO but
the potency maybe significantly greater. Although both
siRNA and ASO are highly specific for their target genes,
siRNA may induce ‘off target’ effects. This can occur when
non-targeted mRNA species share significant homology
(>11 bases) with either the sense or antisense strand of
the siRNA molecule. Additionally, it has been demon-
strated that partial homology (as little as 6–7 bases) be-
tween either of the siRNA strands and the 3′ untranslated
regions can cause knockdown of many genes within a cell.
This mechanism parallels that employed by micro RNA
(miRNA) molecules, which are naturally occurring, en-
dogenous gene-regulatory molecules [24,25] and its effects
can be difficult to predict.
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The major challenge for the use of siRNA, however, is
transferring the technology to the in vivo setting. Though
these molecules have a biodistribution profile similar to
ASO with preferential accumulation in the liver and kid-
ney, they do not readily cross the cell membrane due to their
large molecular mass (twice that of single-stranded ASO)
and a high negative charge. Unmodified, they have a half-
life in serum of a few seconds to a few minutes and are thus
rapidly degraded before reaching their target tissues [26]
and hence any potency advantage over ASO that they have
in vitro is lost. In addition, they can stimulate systemic
inflammatory responses by inducing interferon-mediated
pathways (though this may be related to the concurrent use
of vectors [27]) or by containing newly identified ‘danger
motifs’ that bind to certain Toll-like receptors [28]. Local
tissue delivery to organs such as the eye and lungs, avoiding
a systemic phase, has proven successful in some circum-
stances and phase 1 trials are taking place into the use of
VEGF siRNA in macular degeneration [29,30]. Systemic
delivery however remains problematic. In order to increase
siRNA delivery to less accessible tissues, researchers have
used a variety of different techniques. Hamar et al. used
hydrodynamic (large volume and high pressure) injection
to deliver siRNA to target the pro-apoptotic protein, Fas
in a murine model of acute renal ischaemia-reperfusion
injury and were able to demonstrate reduced Fas expres-
sion and reduced tubular apoptosis, atrophy and hyaline
damage [31]. Alternatively, Hwang et al. injected a short
hairpin-RNA-expressing plasmid vector targeting TGF-β1
in a single dose under low pressure, through the renal artery
in a mouse model of UUO and demonstrated that colla-
gen I expression in the interstitium was significantly re-
duced, at least until Day 7 [32]. Similarly, Takabatake et al.
injected TGF-β1 siRNA via the renal artery in a rat model of
Anti-Thy-1 glomerulonephritis but required the addition
of electroporation to achieve a reduction in the expression
of TGF-β1 in glomeruli compared to the contralateral kid-
ney by Day 4 [33].

Although these methods have proven successful in an-
imal models, it is difficult to see how they can be trans-
lated into a clinical setting. Some groups have followed the
lessons learnt from ASO development and have made mod-
ifications, such as the addition of a cholesterol moiety or the
incorporation of 2′-O-methyl (2′OMe) uridine or guanosine
nucleosides into one strand of the siRNA duplex to extend
half-life and reduce toxicity [34]. These modifications may
yet prove successful in advancing siRNA technology into a
therapeutic setting.

Conclusion

Targeting of specific disease-causing genes using ‘anti-
sense’ mechanisms is highly attractive, particularly for the
kidney. Although, over 30 years from the original discov-
ery, there is still only one licensed ASO in clinical use,
much of the slow progress has been due to the necessary
development of pharmacological modifications to improve
ASO efficacy and safety. These next-generation molecules
are safe, highly specific and powerful medicines with the
potential for both systemic and oral delivery and many are

moving forward to the clinical setting at an accelerating
pace. RNA interference still has some way to go before
drugs utilizing this technology reach the same level of pre-
clinical and clinical applications. Though currently they ap-
pear most promising for local, non-systemic applications,
hopefully with new advances in systemic drug delivery,
problems of administration will be overcome and they will
eventually add to the growing repertoire of gene silencing
therapeutics in the future.
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Writing about older concepts of therapy in medicine of-
ten provoke an automatic negative response based on as-
sumptions that they are dinosaurian and empirical and
consequently unlikely to impact upon modern therapeu-
tic paradigms unless supported by randomized controlled
studies. However, occasionally, new ideas resuscitate these
forgotten paradigms and allow one to make progress from
observational studies without the benefit of evidence-based
medicine [1].

Such is the case with the long abandoned use of a salt-
restricted diet in the routine management of patients with
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end-stage renal disease (ESRD). The reason for this change
of attitude is best exemplified by examining two recent
learned proclamations. The first published in 2004 and en-
titled Dialysis Outcomes Quality Initiatives Guidelines on
the problem of cardiovascular disease in ESRD patients
(K/DOQI) devoted a miniscule paragraph in the lifestyle
changes section to salt restriction, unconvincingly recom-
mended in the very early stages of chronic kidney disease
and positively contraindicated in later stages [1]. The sec-
ond document, published 2 years later by the same learned
body [2], devotes eight pages and over 60 references to
the use of a salt-restricted diet in the treatment of ESRD
patients on haemodialysis.

The reason for this significant change of policy may
be traced to a potentially plausible and acceptable scien-
tific explanation of a hitherto empirical observation that we
published over 40 years ago [3]. When we described our
initial dramatic results obtained with a 5-g-salt-restricted
diet in severely hypertensive ESRD patients maintained on
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