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OBJECTIVE—The aim of our study was to explore the immu-
nomodulatory activity of soluble immunoglobulin (Ig)-like tran-
script (ILT) 3-Fc in pancreatic islet transplantation and to
determine its mechanism of action.

RESEARCH DESIGN AND METHODS—NOD/SCID mice in
which diabetes was induced by streptozotocin injection were
transplanted with human pancreatic islet cells. Mice in which the
transplant restored euglycemia were humanized with allogeneic
peripheral blood mononuclear cells and treated with ILT3-Fc or
control human IgG or left untreated. The blood glucose level was
monitored twice a week, and rejection was diagnosed after two
consecutive readings �350 mg/dl. Tolerated and rejected grafts
were studied histologically and by immunostaining for human
T-cells and insulin production. CD4 and CD8 T-cells from the
spleen were studied for suppressor activity, expression of cyto-
kines, and CD40L.

RESULTS—Although human T-cell engraftment was similar in
all groups, ILT3-Fc–treated mice tolerated the islets for the entire
period of observation (91 days), whereas control mice rejected
the graft within 7 weeks (P � 0.0001). ILT3-Fc treatment sup-
pressed the expression of cytokines and CD40L and induced the
differentiation of human CD8� T suppressor cells that inhibited
Th alloreactivity against graft HLA antigens. T-cells allostimu-
lated in vitro in the presence of ILT3-Fc inhibited CD40L-induced
upregulation of CD40 in human pancreatic islet cells. Histochem-
ical studies showed dramatic differences between human pan-
creatic islets from tolerant, ILT3-Fc–treated mice and control
recipients rejecting the grafts.

CONCLUSIONS—The data indicated that ILT3-Fc is a potent
immunoregulatory agent that suppressed islet allograft rejection
in humanized NOD/SCID mice. Diabetes 57:1878–1886, 2008

T
ransplantation of isolated pancreatic islets is a
promising approach to curative therapy of type 1
diabetes. However, many immunosuppressive
drugs, including corticosteroids, cyclosporin,

and tacrolimus, are either diabetagenic or toxic to the islet

cells (1–3). The development of nondiabetagenic regimens
that induce immunological tolerance without the hardship
of chronic immunosuppressive therapy remains a major
goal in islet transplantation. Experimental data suggest
that prolonged islet allograft survival can be achieved
using biological modifiers, such as monoclonal antibodies
and soluble receptor ligands, which block T-cell activation
and/or costimulation (4–13). Such attempts include the
blockade of the CD40-CD40L costimulatory pathway
deemed to be crucial to the activation and differentiation
of T effector cells. Because CD40 is expressed by pancre-
atic islet cells (8), blockade of this pathway may be
particularly relevant (6–12).

In previous studies, we have shown that alloantigen-
specific human CD8� T suppressor (Ts) cells can be
generated both in vitro and in vivo by chronic antigenic
stimulation. We generated CD8� Ts cells by multiple in
vitro stimulations of human CD3� T-cells with allogeneic,
xenogenic, or allopeptide-pulsed autologous antigen-
presenting cells (APCs). CD8�CD28� Ts cells from such
cultures interacted with priming APCs in an antigen-
specific, major histocompatibility complex class I–re-
stricted and contact-dependent manner, inducing the
upregulation of the Ig-like transcript (ILT) 3 and ILT4 and
inhibiting nuclear factor-�B activation and CD40 signaling
in APCs (14–18).

ILT3 and ILT4 have extracellular Ig-like domains respon-
sible for ligand binding at the cell surface and a long
cytoplasmic tail containing immunoreceptor tyrosine-
based inhibitory motif, which recruits inhibitory phospha-
tases and transduces a negative signal into the cell (19–
21). The crucial role of ILT3 in the induction of T-cell
unresponsiveness was documented in experiments show-
ing that ILT3-overexpressing dendritic cells induce anergy
in CD4� T helper cells and suppress the differentiation of
interferon-� (IFN-�)–producing CD8� cytotoxic T-lympho-
cyte (CTL) (22). Furthermore, membrane-bound and sol-
uble ILT3 (rILT3-Fc fusion protein) elicited the
differentiation of CD8� Ts cells in primary 7-day mixed
lymphocyte culture (MLC) and in vivo in humanized
C.B-17 SCID mice, inducing tolerance to allogeneic human
tumor transplants (23). Also, in a rat model of heart
transplantation, we demonstrated that tolerance can be
induced, maintained, and transferred by CD8� Ts cells
(24).

Here, we report that treatment with ILT3-Fc prevented
rejection of human pancreatic islets transplanted in NOD/
SCID mice, which were reconstituted with human periph-
eral blood mononuclear cells (PBMCs) (hu-NOD/SCID
mice).
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RESEARCH DESIGN AND METHODS

NOD/SCID female mice purchased from Charles River Laboratories were used
at 6–10 weeks of age. All protocols involving animal care procedures were
approved by the Columbia University Institutional Animal Care and Use
Committee. The animals were kept in microisolator cages and were fed
autoclaved food and water. Diabetes was induced by intravenous injection of
streptozotocin (STZ) (Sigma-Aldrich) at the dose of 180 mg/kg. Blood glucose
level was measured twice a week using Ascensia Elite XL Blood Glucose
Meter system (Bayer AG). Diabetes was diagnosed after two consecutive
glucose measurements �350 mg/dl.
Generation, transplantation, and treatment of humanized NOD/SCID

mice. Aliquots of 1,500 islet equivalents human pancreatic islets with �70%
purity and �90% viability were transplanted under the kidney capsule of
NOD/SCID mice rendered diabetic by STZ injection (25). The viability of islets
was determined by fluorescein diacetate and propidium iodine staining. Purity
was determined by the percentage of dithizone-positive particles (26,27). Mice
that did not restore to euglycemia after transplantation were eliminated from
the study on the assumption that the grafted islets were not functional. Seven
to 10 days posttransplantation, mice that were restored to euglycemia
(glucose level �100 mg/dl) were “humanized” by intraperitoneal injection of
50 � 106 PBMCs, isolated from fresh buffy coats purchased from the New York
Blood Center. Concomitant with the humanizing treatment, mice received the
first of a series of 10 consecutive intraperitoneal injections of ILT3-Fc or
human IgG from Sigma (250 �g/day) and were assigned to the ILT3-Fc
treatment or IgG control group, respectively, as described previously (23). An
additional control group of NOD/SCID mice was humanized and transplanted
as above but received no treatment. Ten days after humanization, circulating
human T-cells were evaluated by flow cytometry using heparinized retro-
orbital venous samples. Animals failing to reconstitute (�5% human CD45�

PBMCs in the circulation) or developing graft-versus-host disease (hunched
back, lethargy, weight loss, and tachypnea) were excluded from analysis by
design. To avoid variability between samples, both islets and human PMBCs
were administered to mice from the ILT3-Fc and human IgG group in a
pairwise fashion. To study human T-cell engraftment and suppressor function,
a second cohort of mice administered STZ was humanized, transplanted, and
treated with IgG or ILT3-Fc as described above. These mice were killed at the
onset or completion of allograft rejection in the control IgG-treated group.
ILT3-Fc protein. ILT3-Fc protein expressed and purified as previously
described (22) was analyzed by gel electrophoresis and mass spectrometry
(MS). Matrix-assisted laser desorption ionization and liquid chromatography–
MS/MS analysis of tryptic digests showed no contaminants.
HLA typing. HLA genotypes of human PBMCs and pancreatic islets were
determined by PCR with sequence-specific primers using commercially avail-
able kits from One Lambda (Los Angeles, CA).
Histology and immunochemistry. Twenty serial paraffin sections of kidney
were cut at 4-�m thickness. Levels 1, 10, and 20 were stained for light
microscopic evaluation (hematoxylin-eosin). The remaining sections were
used for immunostains including insulin, CD4 (Biogenics, San Ramon, CA),
CD3 and CD8 (Dako, Carpinteria, CA), and CD40 (Abcam, Cambridge, MA).
Islet quantity and islet inflammatory infiltration (insulitis) were graded semi-
quantitatively in blinded fashion by a renal pathologist on a scale of 0 to 3�.
The degree of islet inflammation by CD8� T-cells was graded according to the
number of CD8 per �40 high-power field: 0 (none), 1� (1–10), 2� (11–25), and
3� (�25). The results were averaged over at least five high-power fields per
slide.
Ts cell assays. Human CD4 and CD8 T-cells were isolated from spleens of
humanized NOD/SCID mice using the CD4 or CD8 isolation kits (StemCell
Technologies). Sorted CD4 or CD8 T-cells were added at increasing numbers
(1–8 � 104/well) to a fixed number (104/well) of unprimed autologous
CD3�CD25� T-cells and stimulated for 6 days in MLC with irradiated,
allogeneic PBMCs sharing HLA-A, -B, and -DR antigens with the islet trans-
plant. [3H]thymidine incorporation was measured (23).
Tissue culture for CD40L induction of CD40 upregulation in islet cells.

Responding T-cells were allostimulated with irradiated PBMCs matching the
HLA classes I and II of selected islet cultures in the presence of 50 �g/ml
ILT3-Fc. After 7 days, CD8� T-cells were isolated and tested. Nonprimed CD8�

T-cells from the same responder served as controls. Pancreatic islets selected
as targets were co-incubated overnight with 1) CD40L� D1.1 cells (18), 2) D1.1
cells plus allospecific CD8� Ts cells, or 3) D1.1 cells plus unprimed CD8�

T-cells. Islets cultured alone were used to measure the constitutive level of
CD40 expression, and islets cultured in tumor necrosis factor-	 (106 units/l),
IFN-� (106 units/l), and interleukin (IL)-1
 (5 � 104 units/l) were used as a
positive control for CD40 induction (8). After 18 h, cells were washed, and the
T-cells were depleted by incubation with anti-CD3 and anti-CD8 antibodies
(Becton Dickinson, San Jose, CA) followed by anti-mouse magnetic beads

(Invitrogen, Carlsbad, CA). Remaining cells were used for PCR and flow-
cytometry studies.
Real-time PCR. Total RNA was isolated with the RNAqueous-4PCR kit
(Stratagene, La Jolla, CA). Complementary cDNA was synthesized using the
1st Strand cDNA Synthesis Kit for RT-PCR (Roche Diagnostics, Basel,
Switzerland). Real-time PCR was performed using proprietary Taqman gene
expression primer probes (Applied Biosystems, Foster City, CA). Data were
collected and analyzed with the 7300 SDS 1.3.1 software (Applied Biosys-
tems). The relative amount of gene expression was calculated by the formula:
2��Ct, where �Ct � [Ct(gene) � Ct(glyceraldehyde-3-phosphate dehydroge-
nase)] and Ct is the “crossing threshold” value returned by the PCR instrument
for every gene amplification.
Fluorescence-activated cell sorting analysis. Flow-cytometry studies
were performed on a FACSCalibur instrument using six-parameter acquisition
(BD Biosciences) as previously described (23).
Statistical analysis. Graft survival curves were computed using the Kaplan-
Meir method. Differences between groups were compared by the log-rank test.
Student’s t test was used to analyze differences in cytokine and cell surface
marker expression. The BMDP statistical software package was used for all
analyses.

RESULTS

Immunomodulatory effect of ILT3-Fc. NOD/SCID mice
with STZ-induced diabetes were transplanted with human
islets under the kidney capsule. When they became eugly-
cemic, they were injected intraperitoneally with freshly
isolated PBMCs from healthy blood donors and assigned
to control groups (receiving human IgG or no treatment)
or to the treatment group, which received a daily intra-
peritoneal injection of ILT3-Fc over a period of 10 days
starting the day of PBMC injection, as previously de-
scribed (23).

Mice from the group not treated (n � 6) or treated with
IgG (n � 8) rejected the graft within 3 to 7 weeks as
demonstrated by soaring glucose levels and by histology
studies. In contrast, none of the ILT3-Fc–treated hu-NOD/
SCID mice (n � 8) became diabetic over 91 days of
observation (Fig. 1), indicating that ILT3-Fc inhibited
rejection of islet allografts in hu-NOD/SCID recipients
(P � 0.0001).
Human T-cell engraftment in Hu-NOD/SCID mice.
Human CD45� PBMC engraftment in NOD/SCID mice
recipients of allogeneic islet transplants was analyzed by
flow cytometry. Ten days after PBMC injection, the fre-
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FIG. 1. ILT3-Fc treatment prevents islet allograft rejection in hu-NOD/
SCID mice. Diabetic NOD/SCID mice were transplanted under the
kidney capsule with human islets. Mice in which euglycemia was
restored were injected intraperitoneally with 50 � 106 allogeneic
human PBMCs and treated for 10 days with 250 �g/day of ILT3-Fc
(treatment group n � 8, E), human IgG (control group n � 8, f), or left
untreated (control group n � 6, F). Glycemia levels >350 mg/dl were
considered indicative of rejection-induced diabetes.
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quency of human CD3� T-cells in the peripheral blood of
hu-NOD/SCID islet allograft recipients was 11  3% in
ILT3-Fc–treated mice (n � 8), 10  2% in untreated mice
(n � 6), and 10  4% in mice treated with human IgG (n �
8).

To determine whether the outcome of the pancreatic
islet transplant was influenced by the number of engrafted
human T-cells, we analyzed their frequency in spleens of
mice killed at the time of rejection or at the termination of
the study (day 91). In untreated or IgG-treated animals, the

frequency ranged from 24 to 59% (mean 41  16) and from
25 to 62% (mean 45  16), respectively. In euglycemic
animals killed on day 91 (n � 8), the frequency ranged
from 28 to 71% (mean 50  22). The difference between the
groups was not significant. Less than 1% human T-cells
was found in the bone marrow of ILT3-Fc–treated or
control animals. No engraftment of CD19� B-cells, CD56�

natural killer cells, or CD14� monocytes were found in the
spleens and bone marrow of these animals. These data
indicate that the outcome of the graft was determined not
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FIG. 2. Ts cell assays in ILT3-Fc–treated (‚) and human IgG–treated (f) hu-NOD/SCID mice recipients of allogeneic islet cells. Mice were killed
on days 23, 47, and 91. Human CD4 and CD8 T-cells were isolated from the spleen of recipient mice and added to MLC containing naı̈ve, autologous
CD3� T-cells and irradiated allogeneic PBMC HLA matched to the islet donor. Tritiated thymidine[3H], incorporation was measured after 6 days.
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by the number but, rather, by the functional state of
chimeric T-cells in animals treated versus those not
treated with ILT3-Fc.
Generation of regulatory T-cells in ILT3-Fc–treated
animals. In previous studies, we demonstrated that hu-
SCID mice that have been rendered tolerant to allogeneic
tumors by treatment with ILT3-Fc develop CD8� Ts cells
(23). To determine whether regulatory human T-cells also
differentiate in hu-NOD/SCID mice, we tested in parallel
the suppressive activity of CD8 and CD4 T-cells magneti-
cally sorted from the spleens of mice that received the
pancreatic islets and PBMCs from the same allogeneic
donors.

For these studies, we used two hu-NOD/SCID mice
treated with ILT3-Fc and two IgG-treated controls, which
were not included in the computation of actuarial graft
and host survival because they were killed by design.
These mice were transplanted with pancreatic islets from

a donor expressing HLA-A1, -B8, -DR3/A2, -B44, and -DR7.
One pair was killed on day 23 after human PBMC injection,
when the glycemia was 240 mg/dl in the IgG-treated
mouse, suggesting the onset of rejection, and 72 mg/dl in
the ILT3-Fc–treated mouse. The second pair was killed
on day 47 with a glycemia of 380 mg/dl in the IgG-treated
mouse and 80 mg/dl in the ILT3-Fc–treated mouse.

Human CD8� and CD4� T-cells magnetically sorted
from the recipients’ spleens were added in increasing
numbers to MLC containing unprimed autologous T-cells,
used as responders, and irradiated allogeneic (stimulating)
PBMCs from an individual who was HLA matched to the
islet cell donor.

CD8� T-cells obtained from the ILT3-Fc–treated mice
killed on days 23 and 47 suppressed T-cell reactivity in
primary MLC by 67 and 78%, respectively, at an 8:1 ratio of
regulatory to responding T-cells. At this ratio, CD4� T-cells
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FIG. 3. A: Real-time PCR studies of cytokine transcription by human CD4� and CD8� T-cells from the spleens of ILT3-Fc–treated (f) and human
IgG–treated (�) hu-NOD/SCID recipients of islet allografts killed during weeks 4 (n � 3) and 7 (n � 3) posttransplantation. For clarity, the data
generated from each pair of mice were normalized to unity in the control group; mean and SE are shown. B: Flow-cytometry analysis of CD28 and
CD40L expression on human CD8 T-cells colonizing the spleens of ILT3-Fc– and IgG-treated pairs of animals killed during weeks 4 and 7
posttransplantation. One pair representative of three is shown for each time point.
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from these animals inhibited the MLC response by only 20
and 21%, respectively (Fig. 2).

CD8� and CD4� T-cells from IgG-treated animals killed
at the same time had no suppressive activity (Fig. 2).
Engraftment of human T-cells into recipients’ spleens was
similar in the ILT3-Fc– and human IgG–treated mice.
These results were reproduced in an additional four pairs
of mice killed 4 weeks (days 21 and 26) or 7 weeks (days
43 and 46) after transplantation. The data indicate that
ILT3-Fc induced the differentiation of CD8� Ts cells in
hu-NOD/SCID recipients of allogeneic islet transplants. To
further determine whether the presence of CD8� Ts cells
is associated with tolerance to the allogeneic islet trans-
plants, we tested CD8� and CD4� T-cells from the spleens
of ILT3-Fc–treated euglycemic mice killed on day 91. APCs
sharing HLA antigens with the graft were used for stimu-
lating T-cells autologous to the cells tested for suppressive
activity. As illustrated in Fig. 2, human CD8� T-cells from
mice with long-lasting tolerance (n � 8) displayed sup-
pressive activity, inhibiting the MLC response to donor
HLA antigens by �70% (mean 85  10). CD4� T-cells from
the same animals showed weak inhibitory activity (�20%).
The data indicate that ILT3-Fc treatment prevents islet
allograft rejection inducing CD8� regulatory T-cells.
Characterization of engrafted human T-cells. To fur-
ther characterize the phenotype and function of effector
and suppressor T-cells from mice rejecting or tolerating
human islet allografts, we performed real-time PCR stud-
ies on human CD4 and CD8 T-cells sorted from the spleens
of six pairs of mice killed during weeks 4 and 7 after
humanization. The expression of IFN-�, IL-2, IL-5, and
IL-10 by CD4� and CD8� T-cells was significantly lower in
ILT3-Fc– than in IgG-treated recipients (Fig. 3A).

By flow cytometry, the frequency of CD8�CD28� T-cells
was significantly higher on weeks 4 and 7 (P � 0.011 and
0.048), whereas CD8�CD40L� was significantly lower
(P � 0.007 and 0.022) in ILT3-Fc–treated animals com-
pared with paired controls as illustrated in Fig. 3B. This
profile of CD8� T-cells from animals treated with ILT3-Fc
that have developed Ts cells is consistent with our previ-
ous findings on the CD28-low phenotype of CD8� Ts cells
that act in a cytokine-independent manner (14–16).

Modulation of CD40L-induced upregulation of CD40

in islet cells. Because pancreatic islet cells express a
functional CD40 receptor and signaling through this recep-
tor activates nuclear factor-�B (8), we studied the possi-
bility that allospecific, ILT3-Fc–induced CD8� Ts cells are
able to modulate the expression of CD40 in islet cells. For
this purpose, T-cells from healthy blood donors were
stimulated for 7 days in MLC with irradiated allogeneic
APCs matching the HLA genotype of pancreatic islet cell
cultures from three different individuals. ILT3-Fc (50 �g/
ml) was added to the medium at the initiation of the
culture. CD8� T-cells primed in the presence of ILT3-Fc
differentiated into CD8� Ts cells, which inhibited the MLC
response of autologous CD4� T-cells and induced the
upregulation of ILT3 on priming APCs in a pattern consis-
tent with that described previously (22,23). ILT3-Fc–in-
duced CD8� Ts cells were then added to the
corresponding islet cell culture together with CD40L-
transfected D1.1 cells at a ratio of 1:1:1. Islets co-incubated
with D1.1 alone or with D1.1 cells plus unprimed CD8
T-cells and islets stimulated with the cytokine mixture or
left unstimulated were tested in parallel. Real-time PCR
analysis showed that the cytokine mixture induced maxi-
mal upregulation of CD40 expression. D1.1 cells also
induced the transcriptional upregulation of the CD40
costimulatory molecule in pancreatic islets. In three inde-
pendent experiments, allospecific Ts cells inhibited to
baseline levels D1.1–induced CD40 upregulation (Fig. 4).
Unprimed CD8� T-cells had no effect on CD40 triggering
by CD40L-expressing D1.1 cells. These results indicate
that allospecific CD8� Ts cells generated in vitro suppress
CD40L-induced upregulation of CD40 in human pancreatic
islet cells.
Histology. Comparison of islet-transplanted kidneys 23
days after human PBMC administration showed that the
quantity of islets was greater in the ILT3-Fc–treated (3�)
than in the human IgG–treated (2�) animals (Fig. 5A–D).
There was insulitis by CD8� T-cells in the human IgG– but
not ILT3-treated mouse (2� vs. 0.5�) (Fig. 5D and C).
Immunostaining for CD40 showed diffuse membrane stain-
ing in IgG-treated mice and rare focal membrane staining
in islets from the ILT3-Fc–treated pair (Fig. 5F and E).

Pairwise comparison on day 47 showed that islet quan-
tity was greater in treated (mean 3�) than control (mean
1�) mice (Fig. 6A and B). Insulitis by CD8� T-cells was
markedly reduced in treated (mean 0.5�) vs. control
(mean 2.5�) mice (Fig. 6C and D). By light microscopy,
islets with insulitis from control animals exhibited scat-
tered apoptotic bodies. By immunostains in both groups,
the lymphocytes infiltrating and surrounding the islets
were CD8� human T-cells.

Pairwise comparison of insulin immunostains on day 47
showed markedly reduced expression of insulin on islet

-cells from the IgG-treated mouse, indicating impaired
function (Fig. 7B and D), compared with strong and diffuse
expression in the ILT3-Fc–treated animal (Fig. 7A and C).
At 3 months, the tolerated islets displayed strong and
diffuse staining for insulin, indicating that they were
functionally active and well tolerated (Fig. 7E). In ILT3-
Fc–treated mice killed on day 91, there was a large
quantity of islets (3�) and no insulitis (0) (Fig. 7F),
consistent with the notion that the graft was well toler-
ated. Taken together, these findings indicate that ILT3-Fc
treatment inhibits the onset and progression of islet allo-
graft rejection.
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atic islet cells. Human pancreatic islet cells were cultured alone or with
a mixture of inflammatory cytokines, CD40L-transfected D1.1 cells,
D1.1 cells plus allospecific CD8� Ts cells, or D1.1 cells plus unprimed
CD8� T-cells. After 18 h of incubation, T-cells were depleted, and the
remaining islets were analyzed by real-time PCR for expression of
CD40. The values are expressed as means � SD.
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DISCUSSION

Although many biological mechanisms are similar in ro-
dents and humans, there are several structural and func-
tional differences that render the extrapolation of
experimental results to clinical practice quite difficult.
Multiple transgenic, knockout, and reconstituted models
of autoimmune diseases have been developed over the
past 2 decades. The creation of humanized mice, defined
as immunodeficient mice engrafted with human hemato-
poietic stem cells or PBMCs, provided a powerful tool for
preclinical testing of new immunomodulatory agents and
study of human immune responses (25,28–36). This is
particularly true in the case of ILT3, which, like other
members of the Ig gene superfamily, has no ortholog in
rodents.

In addition to T- and B-cell deficiency, NOD/SCID mice

have functional defects of macrophages and natural killer
cells (31–34) and high rates of human lymphocyte engraft-
ment (34), providing a tool for studying human islet
allograft rejection and the effect of immunomodulatory
agents (25,28,35,36). The rate of T-cell engraftment ob-
served in our study was similar to that described by other
authors studying the same strain of mice (34). Using
ILT3-Fc treatment, we prevented rejection of pancreatic
islet transplants in 100% of hu-NOD/SCID recipients over a
91-day observation period. To our knowledge, this is the
highest rate of successful transplantation of allogeneic
human islets in a preclinical model in which the efficacy of
a biological agent was tested alone without any pharma-
ceutical immunosuppression. Tolerance to the islets was
mediated by CD8� Ts cells as demonstrated by the capac-
ity of human CD8� T-cells, sorted from the spleen of
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FIG. 5. Immunostaining of CD8� T-cells (A–D) and CD40 (E and F) in islet-engrafted kidneys from ILT3-Fc–treated (A, C, and E) and IgG-treated
(B, D, and F) NOD/SCID mice 23 days after humanization.
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ILT3-Fc–treated hu-NOD/SCID islet recipients, to inhibit
the response of autologous T-cells to donor HLA antigens
in primary MLC. Most of these CD8� Ts cells displayed a
CD28-low phenotype reminiscent of Ts cells generated in
vitro by multiple allostimulations (14,22,23). Treatment
with ILT3-Fc inhibited the capacity of both CD4 and CD8
T-cells to produce Th1-type (IFN-� and IL-2) and Th2-type
(IL-5 and IL-10) cytokines. Inhibition of Th2-type cytokines
is important in islet transplantation because alloantibodies
against donor HLA antigens and autoantibodies against the
pancreas compromise not only graft survival but also
chances for retransplantation (37).

Because only a few CD8� T-cells were found within the
islet graft in ILT3-Fc–treated animals, the way in which
they mediate tolerance to the graft is not quite clear. It is
obvious, however, that direct interaction between human
CD8� T-cells and graft HLA class I antigens is required for
priming and takes place within the graft. We postulate that
in the absence of ILT3-Fc, CD8� T-cells differentiate into
effector CTLs, which proliferate within the graft, produce
cytokines, induce inflammation, and promote the destruc-
tion of the islets. Because they express CD40L, a positively
enhancing immunostimulant, they may provide the alarm
signal that attracts other T-cells to the site of rejection
(14,38). In contrast, primed CD8� T-cells from ILT3-Fc–
treated animals differentiate into Ts cells, which do not
proliferate within the graft, produce no inflammatory
cytokines, have low CD40L expression, and may thus be
unable to trigger danger signals from the graft. The ab-
sence of CD8� T-cell infiltrates and inflammatory changes
of the graft supports this possibility. Because mice were
humanized only after the graft was healed, trauma-related
danger signals were unlikely to occur.

There is evidence that the constitutive and selective
expression of CD40 on the surface of 
-cells contributes to
autoimmunity and islet allograft rejection by providing
costimulatory signals to infiltrating lymphocytes (6,8,10,
12,39,40).

It is, therefore, possible that in addition to suppressing
islet allograft rejection in diabetic patients, ILT3-Fc may
also prevent recurrence of diabetes by inhibiting the
CD40-CD40L interaction between pancreatic islet cells and
autoaggressive T-cells, primed to diabetagenic islet cell
peptides presented by self-APCs. This possibility is
strongly supported by our previous studies showing that
allospecific CD8� Ts cells inhibit CD40 signaling in APCs
and T-cell reactivity to immunogenic peptides (16,41).
Because in diabetic patients, selective autoimmune de-
struction of pancreatic 
-cells occurs alone or in combi-
nation with rejection of the transplanted islets, the
discovery of agents that may block both of these patho-
logical processes would be of paramount importance.
Based on our previous findings that CD8�CD28� Ts cells
are present in the circulation of successfully transplanted
heart, liver, and kidney recipients and display the capacity
to inhibit CD40L-CD40 interaction, we believe that induc-
tion of Ts cells by ILT3-Fc treatment may achieve this goal
(rev. in 14).

Taken together, our data demonstrate for the first time
that ILT3-Fc is a potent immunoregulatory agent that
inhibits human islet allograft rejection. Because sILT3 is a
natural product of human APCs, found to be elevated and
to induce Ts cells in patients with cancer (23), this
biological agent is unlikely to be toxic or have undesirable
side effects. Furthermore, because the ligand for ILT3 is
expressed only by activated and not by unprimed T-cells
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FIG. 6. Hematoxylin-eosin and CD8 immunostaining of islet-engrafted kidneys from ILT3-Fc–treated (A and C) and human IgG-treated (B and D)
NOD/SCID mouse 47 days after humanization.
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(22), this agent is not expected to cripple the immune
system by depleting or blocking naı̈ve T-cells. Further
research will be necessary to fully assess the potential
usefulness of ILT3-Fc for treatment of diabetes and sup-
pression of islet allograft rejection.
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