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Article

This article concerns the practical use of change scores 
(e.g., posttest score minus pretest score) obtained from 
psychological tests or questionnaires for drawing infer-
ences about change at the level of the individual. For exam-
ple, if a patient is in treatment, the clinician may want to 
evaluate how this patient responds to the treatment in terms 
of change of mental health, distress, quality of life, or gen-
eral functioning. Important questions include the follow-
ing: Has the patient improved at all? Is the patient’s 
improvement on track? Is the observed change practically 
important? The answers to these questions may be used to 
tailor future treatment of the patient.

Change scores often are based on counts of correct 
answers or sums of scores on rating scales observed at two 
measurement occasions. Without a frame of reference, 
scores are not directly usable for practical measurement 
(Angoff, 1984). For example, knowing that John had 18 
out of 28 arithmetic items correct or that Mary scored 37 
scale points out of 60 on an introversion scale means little 
if anything as long as their test scores cannot be related to 
a distribution of test scores or a performance standard with 
a well-established meaning. The same goes for change 
scores. Without an interpretative context, it is hard to say 
whether observed change of an individual is small or large, 
consistent with natural recovery, or lagging behind com-
pared with the change of other patients undergoing the 
same treatment.

To provide a frame of reference, one needs transformed 
scores, known as norms (Allen & Yen, 2002). A well-
known type of transformed scores is norm-referenced 

norms (Allen & Yen, 2002), locating an individual amid a 
norm group. Another type of transformed scores, crite-
rion-referenced norms (Allen & Yen, 2002), refers to diag-
nostic cutoffs that patients have to pass to be admitted to a 
course or a therapy, or to qualify levels of severity (e.g., 
mild vs. strong depression). In change assessment, crite-
rion-referenced norms include the minimal clinical impor-
tant difference, which is the minimum change a patient 
must show to qualify change as having practical impact. In 
this article, we focus on norm-referenced norms and study 
two often-used regression-based norming methods for 
change scores. Study of criterion-referenced norms 
deserves full attention in a separate article.

The construction of norms is known as norming. 
Norming methods for change scores have received sur-
prisingly little attention so far. In this study, we consider 
the simplest change score possible, which is the difference 
between the test score obtained after a treatment and the 
test score obtained prior to the treatment, known as post-
test and pretest scores, respectively. Norming change 
scores can be challenging for at least two reasons. The first 
challenge is that, pretest scores, posttest scores, and con-
sequently change scores contain measurement errors and 
therefore may be unreliable (Bereiter, 1963; Cronbach & 
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Furby, 1970; Linn & Slinde, 1977; O’Connor, 1972). In 
practice, interindividual change typically has small vari-
ance (Gu et al., 2018), which may also cause low change-
score reliability. The second challenge, in particular in the 
context of mental health care, is the heterogeneity of a 
group of patients. Often one cannot simply compare the 
change of one patient to the change of all other patients. 
To monitor a patient’s change, ideally the patient should 
be compared to patients of the same age, the same gender, 
the same comorbidity, or other relevant background vari-
ables. This means that researchers may need to take such 
information into account when constructing norms. 
Ideally, data are collected within all relevant subpopula-
tions based on the relevant background variables, but 
because this approach may require a huge sample, it may 
be practically infeasible. A solution to the problem is con-
tinuous norming (Gorsuch, 1983), which results in norms 
for subgroups using statistical control, based on a rela-
tively small sample.

The goals of this study were to gain more insight in the 
precision of norms for change scores and to derive sample 
size requirements for deriving reliable norms for change 
scores. The structure of this article is the following. First, 
we present a general, regression-based framework for 
norming change scores, which includes two popular norm-
ing methods for change scores as special cases. The two 
methods are the regression-based change approach (Van der 
Elst et al., 2008) and the T Scores for Change method 
(McSweeny et al., 1993). Second, using a simulation, we 
study the precision of norms developed by means of the 
regression-based change approach and the T Scores for 
Change method. Finally, we discuss the results and provide 
recommendations for minimum sample size needed to pro-
duce sufficiently precise norms.

Norming Methods for Change Scores

First, to provide an overview of the field and also as a precur-
sor for the two methods we study in this research, we briefly 
discuss two approaches to quantifying individual change in the 
pretest–posttest design, which are the classical change-score 
approach (i.e., using the classical change score to quantify 
individual change) and the residual change-score approach 
(i.e., using the residual change score resulting from a regres-
sion model). Second, we present a general framework of norm-
ing change scores, which includes the regression-based change 
approach and the T Scores for Change method as special cases.

Two Approaches to Quantifying Individual 
Change

The classical change-score approach and the residual 
change-score approach (Willett, 1988) are widely adopted 
methods. Caruso (2004) discussed other methods for 

quantifying change that were used less frequently. For the 
classical change-score approach, we use the observable 
classical change score D, which is defined as the difference 
between the observable posttest score X post  and the observ-
able pretest score X pre; that is, D X X= −post pre. Notice that 
D, X pre, and X post  are random variables, whose realiza-
tions are denoted by d , xpre, and xpost , respectively. In clas-
sical test theory (Lord & Novick, 1968), an observable test 
score X  is assumed to be the sum of a true score T  and a 
random measurement error E  (i.e., X T E= + ). A person’s 
true score is defined as the expectation across hypothetical 
independent administrations of the test, so that T X= ( ) 
and  E( ) = 0 . Let ∆ denote the person’s true change score, 
defined as ∆ = −T Tpost pre. Then, we can write

D X X

T E T E

T T E

= −

= +( ) − +( )
= −( ) + −

post pre

post post pre pre

post pre post EE

E E

pre

post pre

( )
= + −( )∆ .

Because ∆ = ( ) D , the classical change score D is an unbi-
ased estimate of the true change ∆ (Rogosa et al., 1982), but 
this has not withheld several researchers from questioning 
D  as a useful measure of individual change (e.g., Bereiter, 
1963; Cronbach & Furby, 1970; Linn & Slinde, 1977; 
O’Connor, 1972). Others have supported the use of D (e.g., 
Overall & Woodward, 1975; Rogosa et al., 1982; Williams 
& Zimmerman, 1977, 1996, Zimmerman & Williams, 
1982a, 1982b). Gu et al. (2018) suggested that many nega-
tive beliefs about D, such as its alleged low reliability, are 
based on, for example, inappropriate assumptions, thus 
mitigating the criticism of classical change scores.

The residual change-score approach, also known as resid-
ual gains or base-free measurement of change, intends to 
correct for the correlation between pretest score and change 
score (Cronbach & Furby, 1970; Manning & Dubois, 1962; 
Willett, 1988) by means of the residualized posttest score. 
Let X post be the predicted posttest score obtained by regress-
ing X post on X pre. Then, the residualized posttest score, 
denoted by RD, is defined as R X XD = −post post

 . The residu-
alized posttest score for a person shows how much more or 
less he or she has changed compared with the predicted 
average change of others with the same observed pretest 
score. For example, a positive residualized posttest score 
means that the person’s individual change is larger than the 
expected change of patients with the same observed pretest 
scores. A residualized posttest score of zero means that the 
person’s change equals the average change given the same 
observed pretest scores, but it does not mean that the person 
has not changed at all. Residualized posttest scores have 
been used in studies that search for predictors of interindi-
vidual differences in change (e.g., Castro-Schilo & Grimm, 
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2018). These predictors may be of theoretical interest, for 
example, to know whether recovery after brain injury can be 
explained by age. Variables that have been shown to predict 
interindividual change may also help the interpretation of 
individual scores. However, for individual assessment one 
should take into account that residualized scores have a very 
specific interpretation, which, as we will argue, coincides 
with a normative interpretation of change scores.

Regression-Based Norming for Change Scores: A 
General Framework

Regression-based norming for test scores (Van Breukelen & 
Vlaeyen, 2005; Zachary & Gorsuch, 1985) generates the ref-
erence distribution of test scores by means of regression anal-
ysis. Let the random vector W = …[ ]W W WK1 2, , ,  contain K  
relevant covariates, whose realization is denoted by 
w = …[ ]w w wK1 2, , , . Let k index covariates. Regression-
based norming assumes that the average test score can be 
predicted by relevant covariates, so that

 X w wK K|W w=( ) = + +…+β β β0 1 1 ,  (1)

where β0  is the intercept and β β1, ,… K  are regression coeffi-
cients for covariates. It may be noted that Equation (1) may 
also include quadratic terms such as wk

2 and include interac-
tions between covariates. An observable test score, denoted 
by X , deviates from  X |W w=( ) by residual 
ε = − =( )X XE |W w . Computing  for the persons belong-
ing to the subpopulation satisfying W w= , we obtain a distri-
bution of s, reflecting the relative position of persons within 
the same subpopulation (i.e., W w= ) on X . When deriving 
norm statistics in practice, one first estimates β β β0 1, , ,… K in 
Equation (1), estimates denoted by b b bK0 1, ,..., , and then com-
putes the residuals for all persons in the sample. Let xi denote 
the test score for person i i N( , , )= …1 , let w wi iK1, ,...  denote 
person i’s scores on the K  covariates, and let ei denote the 
residual for person person i. Then,

e x b b w b wi i i K iK= − + +…+( )0 1 1 .

The distribution of e s i Ni ( , , )= …1  is used to compute norm 
statistics (e.g., percentiles).

Regression-based norming for test scores can readily be 
extended to norming change scores. Replacing X  in 
Equation (1) with an observable change score D, one 
obtains the population model

 D w wK K|W w=( ) = + +…+β β β0 1 1 .  (2)

An observable change score, denoted by D , deviates from 
 D|W w=( ) by residual ε = − =( )D D |W w . The distri-
bution of εs reflects the relative position of persons among 
other persons within the same subpopulation defined by w . 

Specifically,  D|W w=( ) is the average change in the sub-
population satisfying W w= . If ε > 0, then the person’s 
change score, D, is larger than the average change (i.e., 
 D|W w=( ) ) in the corresponding subpopulation. In prac-
tice, when computing norm statistics, one first estimates the 
parameters in Equation (2), then computes the residuals for 
all the persons in the sample, and finally uses the distribu-
tion of the residuals to generate norm statistics.

One may notice that Equation (2) is a general framework 
for norming change scores, and that we have not discussed 
which covariates W should be included. In practice, covari-
ates should be selected based on substantive arguments 
based on theory and domain knowledge, and so on. In addi-
tion, Oosterhuis et al. (2016) suggested that the selection 
might also be supported by statistical procedures, such as 
stepwise regression. Interestingly, depending on whether 
the pretest score is used as a covariate, the literature has 
identified two regression-based norming methods based on 
the general framework (Equation 2) that are frequently used 
in practice. They are the regression-based change approach 
(Van der Elst et al., 2008) and the T Scores for Change 
method (McSweeny et al., 1993). In the remainder of this 
section, we present the two norming methods and discuss 
their similarities and differences.

The regression-based change approach (Van der Elst et al., 
2008) assumes that change scores can be predicted by means of a 
few relevant covariates, and that the pretest score is not included 
as one of the covariates in Equation (2). The model used is

D w wK K= + +…+ +β β β ε0 1 1 .  (3)

Because Equation (3) directly models the change score, the 
regression-based change approach follows the classical 
change-score approach to quantifying individual change. 
The T Scores for Change method (McSweeny et al., 1993) 
requires that the pretest score is included as a covariate in 
Equation (2), so that

D w w XK X= ′ + ′ +…+ ′ + ′ + ′β β β β ε0 1 1 0 pre pre .  (4)

Adding X pre to both sides of Equation (4), we obtain

X w w XK X

X

post prepre

pre

= ′ + ′ +…+ ′ + ′ +( ) + ′

′′

β β β β ε

β

0 1 1 0 1
��� ��  (5)

⇒ = ′ + ′ +…+ ′ + ′′ + ′X w w XK Xpost prepre
β β β β ε0 1 1 0 ,  (6)

which is the model McSweeny et al. (1993) proposed. 
Equation (6) shows that the T Scores for Change method 
follows the residual change-score approach to quantifying 
change, which at first glance appears to be different from 
the regression-based change approach. However, as we 
have shown from Equations (4) to (6), the T Scores for 
Change method and the regression-based change approach 
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together define a general framework for norming change 
scores (Equation 2), and the only difference between the 
two methods resides in the inclusion of X pre in Equation (6).

Here, we notice a special case of including X pre as a 
covariate when the model also includes a categorical vari-
able, such as gender. Suppose that one of the covariates in the 
model of the regression-based change approach (i.e., 
Equation 3) is a categorical variable, denoted by g, such that

D g w wg K K= + + +…+ +β β β β ε0 1 1 .  (7)

Equation (7) often is referred to as CHANGE, which is a 
method using the classical change score as the dependent 
variable to analyze the pretest–posttest control-group design 
(Van Breukelen, 2013). On the other hand, suppose that the 
T Scores for Change method (Equation 6) includes a cate-
gorical variable, so that Equation (6) becomes

X g w w Xg K Xpost prepre
= ′ + ′ + ′ +…+ ′ + ′′ + ′β β β β β ε0 1 1 0 .  (8)

Then Equation (8) becomes the analysis of covariance 
(ANCOVA) model. CHANGE and ANCOVA may cause 
contradictory results with respect to group-mean differ-
ences in nonrandomized studies when groups differ on 
average at pretest, where ANCOVA indicates a mean 
effect, whereas CHANGE does not, which is known as 
Lord’s paradox (Lord, 1967; Van der Elst et al., 2008). Van 
Breukelen (2013) formally examined this issue and 
showed that applying ANCOVA and CHANGE to the 
same data could result in completely different conclu-
sions, because ANCOVA assumes absence of such a group 
effect at pretest and CHANGE assumes presence of a 
group effect (Van Breukelen, 2013). The implication of 
Van Breukelen’s research for our study is that, when using 
the T Scores for Change method, one may find that ′βg in 
Equation (8) is significant, but when using the regression-
based change approach, one may find that βg in Equation 
(7) is not significant.

Before concluding the section, we remind the reader that 
regression-based norming requires the assumptions associ-
ated with regression analysis to hold for the application of 
interest. For detailed discussions on this topic, we refer the 
reader to Oosterhuis (2017).

Deriving Norm Statistics

The two norming methods produce norm statistics in the 
same manner. To describe the procedure, we use the regres-
sion-based change approach as an example. The steps are 
the following.

Step 1: Compute for each person i i N( , , )= …1  the pre-
dicted change score, denoted by di , by means of

d b b w b wi i K iK= + +…+0 1 1 ,  (9)

where b0 denotes the sample intercept and b bK1,...,  denote 
the sample regression coefficients.

Step 2: Compute residual ei , for person i, as

e d di i i= −  ,  (10)

where di  is the observed change score for person i .
Step 3: One may use the distribution of eis to gauge norm 

statistics, such as percentiles. Sometimes, researchers trans-
form eis into standardized scores, when, for example, using 
the T Scores for Change method:

Step 3*: Compute the standardized ei,

z
e

SDe
i

e
i
= ,  (11)

where

SD
e

N Ke
i

N

i
=

− +
=∑ 1

2

1( )
 (12)

A few remarks are in order. First, when the T Scores for 
Change method is used, in Step 1, one computes the pre-
dicted posttest score xpost instead of d  based on Equation 
(6), and then computes the residuals. Second, the T-scores 
for Change method owes its name from the fact that stan-
dardized residuals are rescaled to scores with M = 50 and 
SD = 10, which produces T scores (Allen & Yen, 2002): 
T z i Ni ei
= + × = …50 10 1( , , ). However, residuals may also 

be transformed to other well-known scales, such as 
Wechsler scores (i.e., IQ scores) by using the formula 
IQ z i Ni ei

= + × = …100 15 1( , , ). Which scale is convenient 
depends on the application envisaged. Third, in practice, 
when a new patient arrives and is measured, the practitio-
ner uses the fitted regression model and the distribution of 
residuals from the norm samples to obtain the normed 
scores for the new patient using tables or dedicated soft-
ware (e.g., De Vroege et al., 2018).

In this article, we used a simulation study to examine the 
two norming methods under various conditions and investi-
gate the precision of estimated norms and the minimum 
sample size needed to obtain norms of high precision.

Method

Data Generation

Population Model. We assumed that pretest score, X pre, was 
determined by latent variable θpre representing the attribute 
scale of interest at pretest. To identify the scale, we assumed 
that θpre followed a standard normal distribution, 
θpre ~ ( , )N 0 1 . We assumed that the change on the attribute 
scale, denoted by θD, was partly predicted by (1) θpre, (2) a 
dichotomous covariate, for example, gender, denoted by 
X gender, and (3) a continuous covariate, age, denoted by X age, 
and assumed that θpre, X gender, and X age were independent 
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of one another. We also assumed that the unexplained part 
of θD was subsumed under random residual E, so that

θ β β β β θθD X X E= + + + +0 1 2gender age prepre
.  (13)

Thus, we assumed that the variance of θD, denoted by σθD
2 , 

was partly explained by the variances of X gender, X age, and 
θpre, and partly explained by the variance of E. Including E 
in Equation (13) is important, because it is exactly the 
residuals that we intended to norm. We further assumed 
that, if X gender, X age, and θpre  exert no effect on θD (i.e., 
β β βθ1 2 0= = =

pre
), then

θD N N~ (. ,. ) (. , . ).75 14 75 1 14and  (14)

Gu et al. (2018) showed that the choice of θD N~ (. ,. )75 14  
corresponds to 75% of the group showing a minimal impor-
tant difference (MID; Norman et al., 2003; Schünemann & 
Guyatt, 2005; see supplementary Appendix A, available 
online). MID refers to the minimal change that clinicians 
consider important. Gu et al. (2018) showed that the larger 
the σθD

2 , the higher the change-score reliability. Therefore, 
manipulating the value of σθD

2  enabled us to examine how 
change-score reliability influenced the norms. In cases 
where X gender , X age , and θpre  exerted effect on θD, we also 
assumed σθD

2 14= .  and 1 14. , respectively. In the remainder 
of this section, we use σθD

2 14= .  to show how to obtain β1 , 
β2, and βθpre in situations where X gender, X age, and θpre exerted 
effect on θD. Appendix B (supplementary table available 
online) presents the parameter values used in the simulation 
study.

We further assumed that posttest score, X post , was deter-
mined by latent variable θpost  representing the attribute 
scale of interest at posttest, and was computed by taking the 
sum of θpre and θD (i.e., θ θ θpost pre= + D). Alternatively, one 
may first simulate θpre and θpost, and then define 
θ θ θD = −post pre , but, unlike our approach, this approach 
does not allow directly manipulating σθD

2 .
Correlation ρθpreD is of interest in psychological and edu-

cational research (e.g., Bryk & Raudenbush, 1987; Gu 
et al., 2018; Hertzog et al., 2008; Linn & Slinde, 1977; 
Raykov, 1993; Rogosa et al., 1982; Werker & Lalonde, 
1988). We considered ρθ θpre D

= 0, .1 (small effect size, 
choice explained in Appendix C; Cohen, 1992), and −.1. 
One may notice that

ρ
θ θ

σ σ

β

σθ θ

θ θ

θ

θ
pre

pre

pre
COV pre

D

D
D

D=
×

=
( , )

,
2 2

 (15)

where σθpre
2 1= . Thus, when σθD = .14 , ρθpreD = 0, .1, and 

−.1 correspond to βθpre = 0, .037, and −.037, respectively.
Consistent with Oosterhuis et al. (2016), we assumed 

that covariate X gender followed a Bernoulli distribution with 
probability .5, and covariate X age followed a uniform 

distribution on the interval [4, 12]. We chose β1 and β2 such 
that variance of θD explained by X gender, X age, and θpre, 
denoted by R2, corresponded to small effect size (i.e., 
R2 065= . ), medium effect size (i.e., R2 13= . ), and large 
effect size (i.e., R2 26= . ; Cohen, 1992), respectively. The 
two covariates in Equation (13) explained equal proportions 
of the variance of θD. We refer to Appendix C (supplemen-
tary material available online) where we show how to obtain 
β1 and β2 in Equation (13), and why correlation ρθ θpre D

 is 
restricted to have small effect size.

Test Characteristics and Item Parameters. We considered 
tests containing 10, 20, and 40 items (Jabrayilov et al., 
2016; Kruyen et al., 2013). Polytomous items were simu-
lated using the graded response model (GRM; Samejima, 
1969), which is a common choice in simulation research, 
because the GRM enables the easy manipulation of a test 
with desirable features. Because the GRM assumes that 
latent variable θ is a nonlinear function of test score X , and 
the regression models we use for norming X  are linear 
functions of the covariates, one might object to the use of 
the GRM. However, it is well-known that for most tests θ 
and X  correlate high (Macdonald & Paunonen, 2002). For 
example, in an empirical study, Fan (1998) found that the 
correlation between θ and X  could be higher than .9.

Suppose item j has M +1 ordered scores, so that realiza-
tion x has values x M= …0, , . Consistent with Likert-type 
scales, we chose M = 4. Let α j be the slope parameter and 
let β jx x M( , , )= …1  be the threshold parameter; then, the 
GRM models the probability of obtaining a score X xj ≥  as

P X x x Mj

j jx

j jx

≥( ) =
−( )





+ −( )





= …|
exp

exp
θ

α θ β

α θ β1
1, , , .  (16)

Slope parameter α j was sampled from a uniform distribu-
tion U ( . , . )1 5 2 5 , and an average threshold β j was sampled 
from U ( , . )0 1 25  (Emons et al., 2007; Jabrayilov et al., 
2016). Individual β jks were chosen as: β βj j1 75= − . , 

β βj j2 25= − . , β βj j3 25= + . , and β βj j4 75= + . . For M =1, 
dichotomous item scores were generated. Parameter α j 
was sampled from a uniform distribution U ( . , . )1 5 2 5 , and 
parameter β j was sampled from U ( , . )0 1 25 .

Simulation Design

The completely crossed design had 3 2 15 3 3 2 1 620× × × × × = ,  
cells and included the following factors:

1. Test length: 10, 20, and 40 items.
2. Number of item scores: 2 and 5.
3. Sample size: 100, 200, 300, 400, 500, 600, 700, 800, 

900, 1000, 1100, 1200, 1300, 1400, and 1500.
4. Effect size of covariates: R2 = .065, .13, and .26.
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5. Correlation between θpre and θD: ρθ θpre D
= 0, .1, and 

−.1.
6. Variance of θ change: σθD

2 14= .  and 1.14.

For each cell, we generated data using the following steps.
Step 1: Item parameters were sampled.
Step 2: A sample of person parameters at pretest were 

randomly drawn from the θpre distribution (θpre ~ ( , )N 0 1 ), 
and a sample of person-change parameters were randomly 
drawn based on Equation (13). Based on these samples, the 
sample of person parameters at posttest was obtained using 
θ θ θpost pre= + D. Item-score data sets of pretest and posttest 
were generated given θpre and θpost.

Step 3: For each design cell, we repeated Step 2 1,000 
times, and as a result, 1,000 item-score data sets of pretest 
and posttest administrations were generated.

Step 4: For each data set, we computed standardized 
residuals based on the regression-based change approach 
and the T Scores for Change method.

Dependent Variables and Data Analysis

Rank Correlation. Using Kendall’s tau (Kendall, 1938), we 
computed three different rank correlations. They are (a) 
Rank correlation (denoted by rE T, ) between E (Equation 13) 
and the standard residuals produced by the T Scores for 
Change method; (b) Rank correlation (denoted by rE D, ) 
between E (Equation 13) and the standard residuals pro-
duced by the regression-based change approach; and (c) 
Rank correlation (denoted by rD T, ) between the standard 

Figure 1. Boxplots of rE D,  (panel a) and rE T,  (panel b), when N =100 200 1500, , ..., .

residuals produced by the regression-based change approach 
and the T Scores for Change method. It may be noted that 
rE T,  almost equal to 1 means that the relative position in the 
sample norm-distribution produced by the T Scores for 
Change method preserves the relative position in the E dis-
tribution in Equation (13). Rank correlations rE D,  and rD T,  
are interpreted similarly.

Precision. We considered the precision of the 1st, 5th, 10th, 
25th, 50th, 75th, 90th, 95th, and 99th percentiles of the stan-
dardized residuals generated by the regression-based 
change approach and the T Scores for Change method. Pre-
cision expressed by the standard deviation of the sampling 
distribution is not suitable for percentile estimates that typi-
cally are not normally distributed. Alternatively, we used 
the 95% interpercentile range (IPR), which is a distribution-
free measure defined as the difference between the 97.5th 
percentile and the 2.5th percentile of the distribution of 
standardized residuals, based on 1,000 data sets in each 
design cell. The higher the IPR, the lower the precision.

Results

Rank Correlations

Figure 1 presents boxplots of rE D,  and rE T,  against sample 
size N . Because rank correlations remained approximately 
the same as sample size N increased, we singled out sam-
ple size N =1 000,  and presented in Table 1 the median 
values of rank correlations rE T, , rE D, , and rD T, , estimated 
change-score reliability (denoted by rDD′) using coefficient 
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α (Cronbach, 1951), sample variances of pretest and post-
test scores (denoted by SX pre

2  and SX post

2 ), sample correlation 
between pretest and posttest scores (denoted by rX Xpre post

), 
and sample correlation between pretest scores and change 
scores (denoted by rX Dpre

). To interpret the results, we use 
the first row in Table 1 (i.e., test length equal to 10 items) 
as an example. Recall that 1,000 item-score data sets were 
generated. First, for each cell, we computed the mean rank 
correlation rE T,  across the 1,000 item-score data sets. 
Then, the median of the rank correlation rE T,  was deter-
mined across all the mean rank correlations for the other 
four design factors, including the number of item scores, 
the effect size of covariates, the population correlation 
between θpre and θD, and the variance of θD, and was found 
to equal .35.

Based on Table 1, we made the following observations. 
First, the median of rE T,  was slightly higher than the median 
of rE D, . In general, both rE T,  and rE D,  were lower than .5, 
suggesting that, given the current simulation setup, the rela-
tive position in the sample norm-distribution produced by 
the two norming methods largely differed from the relative 
position in the E distribution in Equation (13). The low rE T,  
and rE D,  might be attributed to the measurement errors 

Table 1. The Median Values of Estimated Rank Correlations, Estimated Change-Score Reliability (rDD′) Using Coefficient α 
(Cronbach, 1951), Sample Variances of Pretest and Posttest (SXpre

2  and SXpost

2 ), Sample Correlation Between the Pretest and the Posttest 
(rX Xpre post), and Sample Correlation Between the Pretest and Change (rX Dpre ), When N =1 000, .

Rank correlation

rDD′ * SXpre

2 SXpost

2 rX Xpre post rX Dpre rE T, rE D, rD T,

Test length
10 Items .35 .32 .77 .68 55.17 55.21 .63 −.41
20 Items .41 .37 .82 .80 228.32 181.05 .67 −.32
40 Items .44 .39 .80 .88 909.76 667.98 .69 −.36
Number of item scores
2 .37 .33 .78 .78 31.84 36.51 .63 −.40
5 .45 .39 .81 .84 426.62 474.97 .68 −.32
Effect size of covariates
R2 065= . .48 .46 .83 .81 125.14 146.47 .67 −.30
R2 13= . .44 .39 .78 .81 121.63 130.34 .64 −.38

R2 26= . .37 .31 .71 .83 118.73 115.34 .61 −.50

Population correlation between θpre and θD

ρθ θpre D = 0 .42 .37 .79 .82 124.95 129.43 .63 −.37
ρθ θpre D = −.1 .43 .37 .77 .82 124.95 124.90 .61 −.39
ρθ θpre D = .1 .41 .37 .82 .82 124.95 136.81 .65 −.32
Variance of θD

σθD

2 = 0.14 .34 .32 .85 .70 124.95 131.52 .79 −.25
σθD

2 = 1.14 .52 .45 .73 .89 124.95 125.77 .51 −.47

Note. *rDD′ was computed based on Lord and Novick (1968, p. 76) using coefficient α. Let rX Xpre pre′  denote the estimated reliability at pretest  

using α. Let rX Xpost post′ denote the estimated reliability at posttest using α. Then, r
S

DD
X X X

′
′ ′=

+ −r r r sX X X XX Xpre post prepre postS pre post pre post

2 2 2 ss

s s
X

X X

post

pre postS S rX X X Xpre post pre post

2 2 2+ −
.  

As an aside, the reader may notice that, for the last 5 rows, SXpre

2 s are exactly the same, which is due to the same seed used (please see the  
R script in the supplementary material, available online).

randomly generated in the data generating procedure. 
Second, the median of rD T,  in general was higher than .7. 
This suggests that the regression-based change approach 
and the T Scores for Change method generated fairly com-
parable norm statistics. Third, increasing test length and 
number of item scores caused higher rank correlations. 
Finally, larger variance of θD  and smaller effect sizes of 
covariates were positively associated with higher rank 
correlation.

Relationship Between IPR and Sample Size

For each percentile and for the T Scores for Change method, 
Figure 2 shows the box plots of IPR against sample size 
across all 1,620 cells. We chose not to plot the percentiles 
generated by the regression-based change approach because 
the results were similar to Figure 2. The figure shows that, 
as sample size grew, the norms were more precise, which 
reflects the well-known, inverse relation between sample 
size and sampling variance for all statistics based on a sam-
ple of independent observations. Specifically, estimation 
precision sharply increased as sample size increased from 
100 to 500. As sample size reached 1,500, the increase of 
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precision leveled off. The figure suggests that, when design-
ing a study for normative data, a sample size between 500 
and 1,500 may be desirable, but based on this study sugges-
tions for exact sample sizes do not seem to be realistic.

Relationship Between IPR and the Other Five 
Design Factors

Figures (3) through (7) present the relationship between 
IPR generated by means of the T Scores for Change method 

and the other five design factors, which were test length, 
number of item scores, effect size of covariates, correlation 
between θpre and θD, and variance of θ change. In general, 
the figures suggest that the five design factors did not 
noticeably influence the precision by which percentiles of 
the change-score distribution were estimated, especially for 
the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles. 
An interesting result is the absence of an effect of test length 
on the IPRs, and thus the precision by which norms were 
obtained. This may be surprising because shorter tests 

Figure 2. Relationship between sample size (N) and interpercentile range (IPR) for the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 
and 99th percentiles generated by the T Scores for Change method.
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generate less reliable test scores, and therefore one would 
expect lower precision for shorter tests. However, the IPR 
reflect variability in the estimated norms across samples 
and this variability is explained by both random sampling of 
persons and random measurement errors. Because we see 
high impact of sample-size changes on the IPRs and not for 
test length, results suggest that the cross-sample variability 
in the percentiles arising from random person sampling out-
weighs the variability from measurement errors. This result 
is consistent with a study by Sijtsma and Emons (2011) who 

found that the power of an independent samples t test only 
changed a little when test length was manipulated but 
greatly as sample size was varied.

Although the simulation was a fully crossed factorial 
design, we chose not to use analysis of variance (ANOVA) 
to analyze IPR results. The reasons are that, first, the nor-
mality assumption of ANOVA was severely violated, and 
second, although the log-transformed IPR to some extent 
reduced the problem of nonnormality, ANOVA results 
showed that almost all the design factors were significant. 

Figure 3. Relationship between test length and interpercentile range (IPR) for the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 
99th percentiles generated by the T Scores for Change method.
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The reasons for significance were considerable sample size, 
hence large power, and outliers, of which there were quite a 
few; see Figures (3) through (7).

Discussion

Because of their simplicity and popularity, we limited atten-
tion to change scores obtained from pretest–posttest designs, 
but change scores are not limited to such designs. For 

example, to monitor cognitive decline in elderly people, 
norms developed for repeated administration of neuropsy-
chological tests can offer diagnostic assistance. We showed 
that the regression-based change approach and the T Scores 
for Change method originated from the same general, 
regression-based framework for norming change scores. 
We advise test constructors to make critical decisions about 
the covariates, such as the pretest score, that they decide to 
include in the model.

Figure 4. Relationship between number of item scores and interpercentile range (IPR) for the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 
95th, and 99th percentiles generated by the T Scores for Change method.
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Norming change scores is a challenging task. Our simu-
lation study showed that the relative position of persons in 
the sample norm-distribution produced by the two norming 
methods largely differed from the relative position of per-
sons in the error distribution, as witnessed by the low rank 
correlations. This suggests that decision-making (e.g., 
whether a patient’s health condition has improved com-
pared with a normative sample) solely based on norm statis-
tics may lead to biased conclusions. More studies are 

needed to understand the cause of low rank correlations to 
improve the norming methods.

Increasing sample size greatly improved the precision of 
norms, but the benefit of a larger sample size diminished 
quickly as the sample grew larger than 1,500 observations. 
Our simulation study suggested that a sample size of 500 is 
a reasonable minimum for norming change scores. 
Increasing the sample size to about 1,000 is still beneficial, 
but samples larger than 1,500 offer little improvement.

Figure 5. Relationship between effect size of covariates and interpercentile range (IPR) for the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 
95th, and 99th percentiles generated by the T Scores for Change method.
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In the simulation study, we assumed that θpre, X gender, and 
X age were independent from each other, but that θD was 
dependent on X gender and X age. It is common that change due 
to treatment is dependent on gender and age. For example, 
treatment effectiveness of substance use disorders is associ-
ated with gender (Polak et al., 2015). Older people are less 
responsive to medication and psychotherapy for anxiety dis-
orders than younger people (Wetherell et al., 2013).  θpre may 

also depend on X gender and X age. The presence of correlation 
between pretest score and covariates such as gender and age 
does not affect comparisons between individuals with the same 
covariate values, but it does complicate comparisons between 
individuals differing in gender or age. Specifically, the two 
norming methods discussed in this manuscript give different 
regression weights for the covariates if they correlate with the 
pretest score. That in turn can result in different orderings of 

Figure 6. Relationship between correlation between θpre and θD and interpercentile range (IPR) for the 1st, 5th, 10th, 25th, 50th, 
75th, 90th, 95th, and 99th percentiles generated by the T Scores for Change method.
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individuals with respect to their standardized residual, even if 
the individuals have the same pretest score and also have the 
same posttest score. However, the two methods can also give 
different orderings of individuals of the same gender and age 
if these individuals differ in pretest score. This is because the 
two methods give a different regression weight to the pretest 
score when adjusting the posttest score.

The two regression-based norming methods for change 
scores assume a linear relationship between observed 

change scores and covariates. In the simulation study, we 
used a linear model to model the relation between θD and 
covariates X gender and X age, and we generated the item-
score data by means of the GRM, which posits a nonlinear 
relation between item scores and latent variables. Several 
authors have noticed that the resulting test score correlates 
high in the nineties with the latent variable and, as a result, 
the use of the GRM in generating item-score data sets is 
common practice in psychometrics and has also been used 

Figure 7. Relationship between variance of θ change and interpercentile range (IPR) for the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 
95th, and 99th percentiles generated by the T Scores for Change method.
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in studying regression-based norming methods (Oosterhuis 
et al., 2016). However, we believe that it may be interesting 
to examine the potential influence of the nonlinearity 
caused by the GRM in simulation studies on norming 
methods.

In recent years, new methods have been applied to norm-
ing test scores. For example, the Box-Cox Power 
Exponential model, which is based on the Generalized 
Additive Model for Location, Scale, and Shape (GAMLSS; 
Rigby & Stasinopoulos, 2005), has been used to norm IQ 
scores (Voncken et al., 2017). GAMLSS-based models 
allow for the flexible specification of a raw test score distri-
bution, including the mean, variance, skewness, and kurto-
sis and therefore may be better suited in practice where the 
empirical item-score data set does not show desirable fea-
tures such as a normal distribution of residuals. Thus, for 
future research, it might be interesting to investigate how 
new methods, such as the GAMLSS-based models, can be 
used to norm change scores.
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