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Abstract: Visual impairment and blindness are common and seriously affect people’s work and
quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority.
Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation
and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy,
age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic
accessibility of zebrafish in combination with a behavioral assessment of visual function has made
it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug
discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and
the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of
eye disorders to study disease mechanism and investigate novel drug treatments.

Keywords: zebrafish; eye; disease model; mechanism; drug candidate

1. Introduction

Until 2020, an estimated 295 million people suffer from the moderate and severe visual
impairment worldwide, and among them, about 43.3 million people are even blind [1].
The leading global causes of blindness are cataract, followed by glaucoma, age-related
macular degeneration (AMD), and diabetic retinopathy (DR) [2]. Visual impairment is
a major concern of public health worldwide. The understanding of the pathological
mechanisms involved in eye diseases is quite vital for the development of new therapeutics.
Similarly, the available animal models characterized by closely mimicking eye pathology
and allowing medium-throughput drug screening are desirable. Hence, model organisms
with similar physiology to humans are essential to understand the developmental processes,
identify potentially causative genes and factors for human eye disorders and develop the
novel drug treatments [3].

Zebrafish (Danio rerio) is a kind of common aquarium fish originating from India
and has become a prominent vertebrate model for studying diseases [4,5]. Zebrafish is
more phylogenetically distant from humans than rodent, but it has 82% orthologues of
human disease-associated genes [5]. In addition, zebrafish has a short generation time of
2–4 months, is productive with a single mating pair producing around 200 offspring at
weekly intervals, and is easy to maintain at a low cost [6]. Importantly, the transparent
zebrafish embryo develops ex utero, making the visualization of early organogenesis
possible. The zebrafish eyes are relatively large compared to its overall small-size body,
which enables eye bud manipulation during the early embryogenesis. Therefore, the
easy accessibility of genes and embryos in zebrafish, as well as the similarity of eye with
humans, has made zebrafish a predominant model of different eye diseases to elucidate
their mechanism and investigate new treatments.

In this review, we highlighted the use of zebrafish in modeling eye diseases by (i)
introducing the characteristic anatomy and development of zebrafish eye, (ii) summarizing
zebrafish models of eye diseases, such as cornea dystrophy, cataract, glaucoma, ocular
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vascular diseases, and photoreceptor degeneration, and (iii) presenting contributions of
these models in the investigation of new drug candidates for eye diseases.

2. Anatomy and Development of Zebrafish Eye

Although zebrafish eyes are very small compared with those of humans, they contain
almost all the basic structures of human eyes. Firstly, we focused on the anatomy and
development of the zebrafish eye to explain why zebrafish is a promising model for human
eye diseases.

2.1. Anatomy of Zebrafish Eye
2.1.1. Cornea

Both of the zebrafish and human cornea contain five major layers: the epithelium,
Bowman’s layer, stroma, Descemet’s membrane, and endothelium. In its mature state,
the zebrafish corneal epithelium is 12.5 µm thick with four to six cell layers. The stroma
is approximately 6 µm thick with 34 to 40 layers [7]. The endothelium, Bowman’s layer,
and Descemet’s membrane are well developed. Several polypeptides highly enriched
in the epithelium or the stroma of zebrafish cornea are the excellent markers of corneal
differentiation [7]. Despite the similarities, the zebrafish ocular surface is dramatically
different from the human, such as the absence of corneal nerve fibers, the thinner stroma,
and the presence of rodlet cells [8].

2.1.2. Iridocorneal Angle

Iridocorneal angle, the region where the cornea meets the iris, hosts cells specialized in
maintaining intraocular pressure (IOP) [9]. IOP is balanced by the production and drainage
of aqueous humor. Although the zebrafish ciliary epithelium lacks folds and processes, it
still produces aqueous humor [9]. The servo-null electrophysiology is used to measure IOP
in the anesthetized adult zebrafish as follows: when a pulled-glass microelectrode pene-
trates the cornea into the anterior chamber, the pressure transduction can be recorded [10].
Although the trabecular meshwork and aqueous humor dynamics of zebrafish are quite dif-
ferent from those of humans, the overall similarities in the average IOP and outflow tissue
structure of aqueous humor make zebrafish a great model to investigate the complicated
genetics of human glaucoma.

2.1.3. Lens

Almost all the morphological features of human lens can be observed in the zebrafish
eye [9]. The fish lens is more spherical than the human lens, and it is made up of an
outer epithelial layer covering the elongated fiber cells [11]. Most lens epithelial cells
are quiescent, except for a band of cells encircling the marginal equator, which finally
proliferate and differentiate into fiber cells. Lens fiber cell differentiation happens in the
transition zone, where elongating fiber cells lose their internal organelles and aid in the
transparency [12]. In both the human and zebrafish, three kinds of lens crystallins are
found: α, β, and γ. The similarities with human lenses make zebrafish an excellent model
for studying crystallins in a living animal using the live embryo imaging.

2.1.4. Visual System

Zebrafish is visually responsive at 72 h post fertilization (hpf), when the retina mirrors
adult human retinal morphology and function [7]. Zebrafish retina is made up of an
outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner
plexiform layer (IPL), and ganglion cell layer (GCL). It also possesses the same broad
classes of retinal neurons in humans, such as retinal ganglion cells (RGC), bipolar cells,
horizontal cells, and amacrine cells, and the same glial elements including Müller cells,
astrocytes, and microglia (Figure 1) [6,13]. Furthermore, the zebrafish retina is cone-rich
and analogous to the human macula, which results in good color vision and high-acuity
vision [13]. In addition, zebrafish has four types of cones: blue (sws2), ultraviolet (sws1),
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green (rh2), and red (lws), among which the green and red cones exist as a physically
fused double cones [13,14]. Visual signals arising from the photoreceptors are transmitted
through the whole retina to the ganglion cells and subsequently transferred to the brain [3].
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Figure 1. Cross-sectional view of the human and zebrafish retina indicating the similar structural
features of the retinal layers [6].

Zebrafish visual acuity is typically measured using the behavioral tests, including
optokinetic response and optomotor response. The optokinetic response is a robust behav-
ior in which moving objects evoke the tracking eye movements [15]. It is one of the most
widely studied behaviors, due to its reliability and performance even in the immobilized
larvae. Additionally, the optomotor response is a robust visual response in larval zebrafish,
which is mediated by the red/green cone pathway [16]. When presented with a whole field
moving stimulus, fish will turn and swim in the direction of perceived motion. Larvae can
perform this behavior when swimming freely or when restrained by embedding their head
in agar.

2.1.5. Vasculature System

The basic vascular biology of the developing zebrafish embryo is analogous to that of
other vertebrates, and angiogenesis also plays a vital role in the zebrafish hyaloid vessel,
which is similar to the development of retinal vasculature in mammalian embryos [17,18].
The primary zebrafish retinal vasculature branches from the central retinal artery by angio-
genesis between 24 and 29 hpf. The optic artery goes into eye in a ventral direction through
the optic fissure and forms a hyaloid loop, which exits the choroid fissure as the hyaloid
vessel [6]. After passing through the choroid fissure, this artery system forms a network
on the lens before 5 days post fertilization (dpf) [17,19]. The hyaloid vessels branch and
adhere to the inner limiting membrane of the juvenile retina by 30 dpf, unlike the regres-
sion observed in humans [19–21]. Knockdown of some genes encoding crucial proteins
involved in angiogenesis, such as cldnh, can interrupt the lumenization of the hyaloid
vessels (Figure 2) [22]. Recently, new imaging techniques such as in situ hybridization
for vascular-specific genes, dye injection-based vessel visualization, and the functional
manipulation of vasculature in zebrafish embryos make zebrafish an exciting model for
investigating human ocular vascular diseases [18]. In addition, more and more transgenic
lines expressing fluorescent reporter proteins in the vascular system have emerged to help
to study vascular diseases, such as the Tg (fli1: EGFP) line, which expresses EGFP under
the control of fli1 regulatory sequences [22–24].
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Figure 2. Lumen formation analyses of the hyaloid vessels in the 5 dpf zebrafish. More severe filling
defects (more non-perfusion areas) of hyaloid vessels were observed in the cldnh MOs-injected
zebrafish as compared to the mispair MO-injected or the cldnh mRNA-rescued zebrafish, indicating
lumenization defects of the hyaloid vessels in the cldnh knockdown group. Scale bar: 50 µm [22].

2.2. Development of Zebrafish Eye

The development of zebrafish eye is strongly similar with that of humans and other
vertebrates [25,26]. They all develop from three distinct embryological layers: surface
ectoderm forming the lens and subsequently the corneal epithelia; neuroectoderm forming
the neural retina, retinal pigment epithelium (RPE), optic stalk, and ciliary body; and
neural crest cell-originated mesenchyme forming the corneal endothelium and stroma,
iris stroma, vasculature, and sclera. Here, we drafted a schematic diagram indicating the
development of zebrafish eye according to some studies in the literature (Figure 3) [6,9].
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Figure 3. Schematic diagram indicating the development of zebrafish eye. The optic vesicle and lens
placode are formed as the central eye field splits at 16 hpf (A). The distal portion of the optic vesicle
invaginates so that a double-walled cup structure composed of an inner and outer neural ectoderm
can be seen by 20 hpf (B). The optic cup grows circumferentially. The lens placode gives rise to a
solid lens mass due to progressive delamination of the surface ectoderm cells by 22 hpf (C). The inner
layer of the optic cup gives rise to the neural retina, while the outer layer differentiates into the RPE
by 28 hpf (D). Finally, cells of the central lens placode move to the posterior lens mass and give rise
to primary lens fiber cells (purple); cells of the peripheral lens placode migrate to the anterior lens
mass to form the anterior epithelium (orange); the cornea (yellow) develops when the lens placode
closes after the lens mass, taking apart from the surface ectoderm.

The development of zebrafish eye is fairly rapid. Neurogenesis begins at 28 hpf, and
zebrafish embryos possess visual function as early as 72 hpf [27,28]. The optic vesicle,
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which finally gives rise to the neural retina and the RPE, evaginates from the forebrain at
around 12 hpf and remains attached to the forebrain through a transient structure called the
optic stalk [3]. After a series of morphogenetic events, the optic vesicle gives rise to the optic
cup at 16 to 20 hpf, forms ventrally the optic fissure by 24 hpf, and later closes by 48 hpf [29].
The lens placode delaminates from the surface ectoderm cells overlying the optic cups at
16 hpf [6,30], forms a solid lens mass at approximately 24 hpf, and fully detaches from
the surface ectoderm by the apoptosis of the intervening cells by 28 hpf [11,31,32]. At
30 hpf, the surface ectoderm that does not form the lens begins to possess corneal epithelial
identity, and it forms migratory periocular mesenchymal cells migrating into the cornea
from the peripheral regions of the optic cup between 30 and 36 hpf [7,33].

3. Zebrafish as a Model for Studying Mechanisms of Eye Disorders

With genetic accessibility, similar characteristics of human ocular development and
easy controllability of living environment zebrafish has been used as a popular model
to study eye disorders. Over the past decades, many human ocular diseases, such as
cataract, glaucoma, DR, and AMD, have already been modeled in zebrafish. Here, we
briefly introduced some important zebrafish models of eye diseases from anterior segments
to posterior segments.

3.1. Corneal Dystrophy

Corneal dystrophies have a variable age of onset, variable inheritance, and progressive
effects on corneal transparency and vision [34]. Due to the thinner stroma and presence
of rodlet cells in the zebrafish cornea, zebrafish is seldom utilized to study the normal or
pathological human corneas. Meanwhile, zebrafish has been used to study the function
of genes whose mutation cause corneal dystrophy due to its genetic accessibility. Some
genes responsible for human corneal dystrophy, such as pip5k3, col17a1, and keratocan, also
express in the zebrafish cornea. pip5k3 and col17a1 are quite conservative without ocular
alteration, while keratocane is significant for corneal transparency and structure [35–37].
Likewise, the loss of lama1, a gene encoding an important basal membrane protein, leads
to focal corneal dysplasia in zebrafish [38]. Overall, probably due to some structural
difference from humans, only four of the genes mentioned above have been reported to
study corneal dystrophy in zebrafish models, which is quite few compared with mouse
models [8]. Therefore, the use of zebrafish to study human corneal diseases should be
undertaken with some particular caution.

3.2. Cataract

Cataract, which is characterized by cloudy vision due to lens opacity, mainly includes
congenital cataract and age-related cataract (ARC). Genetic studies have identified over
30 causative mutation genes for congenital or other early-onset forms of cataract and only
few ARC-associated gene variants [39]. Nevertheless, the causative genes for many cases
of cataract remain unidentified. When causative genes of human cataract are knocked
down in zebrafish embryos, cataract or other lens abnormalities are often present (Table 1).
Therefore, zebrafish is a promising animal model to reveal the specific mechanism involved
in cataract formation.

The use of zebrafish cataract model mainly focuses on the congenital cataract. Among
the known gene mutations caused cataracts, mutations in lens crystallins account for the
majority, followed by mutations in various growth or transcription factors, connexins, mem-
brane proteins, and lipid metabolism [40]. Hence, the mechanism of crystalline in cataract
formation has been deeply investigated. Recently, scientists have identified the function of
a cataract-causing gene using the zebrafish model. Mutation of the CRYAB gene, a member
of α-crystalline, results in congenital cataract by activating glucocorticoid receptor signal-
ing [41]. Similarly, the cloche mutant in zebrafish displays cataract related to the insolubility
of γ-crystalline and the faulty differentiation of lens fiber cells [42]. Meanwhile, the cataract
phenotype can be rescued by the overexpression of αA-crystalline in the cloche mutant.
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Therefore, the cloche mutation can be used to investigate the aggregation of lens crystallin
and prevent cataract. In addition, the overexpression of Pax6, which is a paired box and
homeobox domain protein expressing in the developing nervous system and eye, causes
defects in lens fiber cells and human congenital cataract. The Pax6 mutant in zebrafish
shows the alterations in the eye size and the abnormalities in lens differentiation [39,43,44].
The mutation of Pitx3 and Foxe3 genes can cause the mesenchymal dysgenesis of anterior
segment and cataracts in humans, and the knockdown of Pitx3 and Foxe3 in zebrafish
via antisense morpholino results in the lens dysmorphogenesis [45–49]. Interestingly, the
mutations in Hsf4, a member of the heat-shock transcription factor family, lead to isolated
cataracts in humans and an early onset cataract with multiple developmental defects in
zebrafish lens by interrupting the terminal differentiation of a lens fiber cell [40,50].

ARC also has a genetic component, which makes individuals with the variation more
vulnerable to environmental insults and aging [51]. Since the very old, even 2.5-year-old,
zebrafish lens is not cloudy at all, zebrafish is not a predominant organism for model-
ing ARC [52]. However, zebrafish is a wonderful tool to investigate the mechanisms
of crystalline-involved ARC. The chaperone capacity of α-crystallins is considered to be
titrated out by the binding of the damaged lens proteins as well as the truncation and insol-
ubilization of the small heat shock proteins; so zebrafish is used to establish a link between
in vitro mechanistic models of α-crystallin chaperone and their roles in lens aging [53,54].
Additionally, mutation in the CRYGC gene (γC-crystalline) causes a remarkable reduction
in the thermal stability of γC-crystalline and raises the risk of lens opacity when exposed to
heat and UV-irradiation stresses, finally resulting in cataract [55].

Table 1. Genetic mutations of zebrafish models for congenital cataract.

Function Mutant Gene Ocular Phenotype Reference

encoding
crystallins

CRYAA(αA-crystallin) crystal-like opacity sporadically spreading across the lens, or frequent
droplets covering a large fraction of the lens [54]

CRYAB(αB-crystallin) same as CRYAA [41]

CRYGC(γC-crystalline) same as CRYAA [55]

CRYGD(γD-crystallin) same as CRYAA [56]

encoding
developmental

factors

DNase1l1l retaining nuclei in lens fiber cells [57]

epha2 smaller eye, lens opacification and coloboma [58]

mab21l2 microphthalmia, colobomas, small and disorganized lenses,
cornea dysgenesis [33]

plod3 distorted and dislocated lenses from an early stage dislocated, lack of
normal lens capsule [59]

rbm24 coarse and irregular lens, small-size retina and lens [60]

encoding
membrane

proteins

aqp0a nuclear opacity and widespread cortical fiber-to-fiber membrane
stacking defects [61]

gja8 various sizes of lens opacity [62]

kpna4 rugged and cloudy center part of the lens [63]

pgrmc1 minor or mild nuclear central mass with fiber cell disorganization, and
moderate or severe nuclear density with pitting [64]

encoding
transcription

factors

celf1 lens defects and cataract [65]

foxe3 smaller eye and small, deformed or absent lenses [49]

hsf4 cataract with overproliferation of the lens epithelial cells and excessive
accumulation of fiber cells [50]

pitx3 severe lens degeneration, lack of anterior chambers and outer
segment structures [45]
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3.3. Glaucoma

Glaucoma is a kind of optic neuropathy characterized by the progressive and irre-
versible visual field loss and visual impairment secondary to RGC loss [66]. Primary open
angle glaucoma (POAG) without a certain physical cause explains 75–90% of glaucoma and
possesses RGC loss, which is the common hallmark of other glaucoma phenotypes [67].
Other forms of glaucoma have also been classified, including primary closed angle glau-
coma (POCG), developmental glaucoma, pigmentary glaucoma, steroid-induced glaucoma,
etc [10,68,69].

Zebrafish offer great chances to test specific hypotheses associated with glaucoma [9].
For instance, zebrafish have been utilized to demonstrate that SIX6 variants interrupt the
development of the neural retina and result in a decreased number of RGC and an increased
risk of glaucoma-associated visual impairment [70–72]. As another instance, zebrafish
has been used to study the function of FOXC1, which is one of the few well-established
genes related to POAG [73]. The transcription factor FOXC1 has been found as a vital
mediator that reacts to oxidative pressure and suppresses apoptosis in cells associated with
aqueous humor dynamics [74,75]. Furthermore, the Bugeye mutant, which develops high
IOP, enlarged eye globes, morphological abnormalities, and functional deficits in the retina,
is identified as the model for myopia and glaucoma [76,77]. Many zebrafish models for
glaucoma have been recently established based on human glaucoma (Table 2). However,
all the mutations mentioned above do not relate to POCG, which is possibly because POCG
is a complex heterogeneous disease that cannot be modeled by a single gene mutation.

Neurodegeneration in the form of RGC death is well documented in glaucoma. The
chemical or oxidative stress-induced retinal damage is related to RGC injury and used in
zebrafish research [28]. For example, NMDA, an analog of L-glutamate and an excitatory
neurotransmitter in the mammalian central nervous system, can induce cellular excito-
toxicity and RGC loss, and then glaucoma and retinal neurodegeneration [78]. However,
the NMDA-induced neurotoxicity model only focuses on a sole mechanism of glutamate
excitotoxicity in glaucoma pathology. Since the pathogenesis of glaucoma in humans is
more complicated, this model may not thoroughly demonstrate the disease process, but
the NMDA injection is a feasible choice for normal-tension glaucoma [79]. Additionally,
oxidative injury plays an essential role in glaucoma onset as well as an imbalance between
pro-oxidant and antioxidant capacities [80]. Therefore, the intravitreal injection of hy-
drogen peroxide in 5 dpf zebrafish larvae is used to establish the glaucoma model [81].
Nevertheless, a major flaw of utilizing zebrafish to study glaucoma is the notable capacity
for retinal cell regeneration, including the GCL [81,82]. In summary, the zebrafish models
of glaucoma chiefly shed light on POAG associated with gene mutation, and on RGC injury.
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Table 2. Zebrafish models of glaucoma.

Method Injury
Paradigm Ocular Phenotype Model Reference

Gene-
Targeted

cpamd8 Iridocorneal angle hypoplasia POAG [83]

cyp1b1 Neural crest migration into the
anterior segment POAG [84]

foxc1 RGC loss POAG [85]

gpatch3 Anterior chamber angle hypoplasia
and a decreased number of iridophores POAG [86]

guca1c RGC apoptosis POAG [87]

ocrl Defective cilia formation in
Kupffer vesicles POAG [88]

pitx2 Abnormal development of the cornea,
iris, and iridocorneal angle POAG [89]

pmel Profound pigmentation defects and
enlarged anterior segments

Pigmentary
glaucoma [90]

six6 Smaller eyes and reduced number
of RGC POAG [70]

Tg (Bugeye) Decreased retinal cell densities and
diminished outer retinal function POAG [91]

wdr36 Thinner retinal layers and smaller eyes POAG [92]

Chemical-
Induced

N-Methyl-D-
aspartic acid

(NMDA)
RGC loss Glaucoma [78]

Oxidative
Stress-

Induced

hydrogen
peroxide RGC injury Glaucoma [81]

3.4. Vascular Disease

Pathological retinal angiogenesis makes a great contribution to irreversible causes of
visual impairment at all ages, such as retinopathy of prematurity (ROP), DR, and AMD.
Due to the significant similarities of vasculature between zebrafish and human, zebrafish
embryos have been used for the identification of genes and mechanisms involved in
pathological retinal angiogenesis.

3.4.1. Diabetic Retinopathy

The crude prevalence of blindness caused by DR shows a global increase in age-
standardized prevalence in 2020 [2]. DR is a common microvascular complication of
diabetes, with manifestations of vision loss or blindness caused by the damage to retinal
blood vessels. Animal models, such as mouse models and rat models, have been used to
investigate the pathogenesis of DR and discover novel drugs. There is a rising interest
in the DR zebrafish model due to their similar retinal vascular pathology and glucose
metabolism as humans [93].

Retinal abnormalities of hyperglycemic zebrafish are consistent with those of diabetic
patients. After being immersed alternately in glucose solution and water for 28 days,
zebrafish has a remarkably thinner IPL and INL [94]. Moreover, hyperglycemia influences
the cone photoreceptor neuron layer [95]. Further study shows that zebrafish retinal
electrophysiology is adversely affected by the prolonged hyperglycemia, with separate
actions in both distal and proximal retina [96]. Additionally, a recent study describes a
novel, short-term, in vivo screening method for compounds affecting DR by exposing
adult zebrafish to hyperglycemia conditions [97]. After treating with 130 mM glucose from
3 to 6 dpf, the zebrafish embryos show the dilation of hyaloid-retinal vessels as well as
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the increased levels of vascular endothelial growth factor (VEGF) at 6 dpf [97]. The pdx1
mutants in zebrafish provide the only known model in which hyperglycemia-induced
retinal angiogenesis can be studied [98]. Therefore, these zebrafish models have a realistic
prospect in screening new drug candidates for DR treatment [99,100].

3.4.2. Retinopathy of Prematurity

ROP is a kind of retinal vasoproliferative disease in premature infants and one of
the leading causes of childhood blindness [101]. As ROP is a developmental disease,
the zebrafish embryos can be a potential model for rapidly evaluating pharmaceutical
treatments with a huge sample size in a short time span [102]. The zebrafish ROP model
is established as follows: treating the Tg(fli1:EGFP) zebrafish with a hypoxia-inducing
agent, followed by GS4012 (a VEFG inducer) at 24 hpf; then, the number of sprouts and
vascular branches dramatically grow in the central retinal vascular trunks [102]. In addition,
exposed to 10% air-saturated water for 3–12 days, adult Tg(fli1:EGFP) zebrafish can also
develop severe retinal vascular proliferation [103].

3.4.3. Age-Related Macular Degeneration

AMD, which blur the central vision, is a disorder with multifactorial pathogenesis,
including angiogenesis, dysregulation in the complement, lipid, inflammatory, and extracel-
lular matrix pathways [2,104]. Neovascular AMD, the subtype responsible for most of the
vision loss, is characterized by the choroidal neovascularization in the macular area. The
hypoxia-induced retinopathy model in mature zebrafish can be used to investigate neovas-
cular AMD [103]. Similarly, the inactivation of the von Hippel-Lindau (VHL) gene promotes
hypoxia-inducible factor signaling and consequent VEGF expression [18]. Accordingly,
severe neovascularization of the choroid and hyaloid vessels, as well as retinal detachment
and macular edema, have been noted in the VHL knockout zebrafish embryos [105]. Hence,
VHL mutant zebrafish can be a model for neovascular AMD.

Dry AMD, the subtype characterized by RPE disorder, can result in the loss of pho-
toreceptor cells. Interestingly, the zebrafish with the gnn mutant displays the AMD-related
degeneration of red cones at around 5 dpf [106]. Additionally, the overexpression of HTRA1,
a protein involved in the pathophysiology of AMD, can induce an accumulation of lipo-
fuscin and melanolipofuscin between the photoreceptor and RPE layers in zebrafish [28].
The transgenic overexpression of human HTRA1 in zebrafish displays certain morphologic
changes of the RPE, photoreceptor cell death, and lipofuscin accumulation, which are the
features of early AMD [107]. Recently, the RP1L1 mutant zebrafish using CRISPR/Cas9
genome editing is the first zebrafish model of photoreceptor degeneration with subretinal
drusen deposits, which is a hallmark of AMD [108].

3.5. Photoreceptor Degeneration

Photoreceptor degeneration diseases are exceedingly various, creating the challenges
of preventing or reversing vision loss. Due to the similarities in retinal anatomy and
function between zebrafish and humans, the zebrafish model has become a predominant
model for studying the photoreceptor development and disease. Here, we focused on
retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), which are two major
kinds of retinal degeneration diseases [109].

3.5.1. Retinitis Pigmentosa

RP is a disease characterized by decreased night vision and loss of peripheral vision
due to the progressive photoreceptor cell death and dysfunction of the photoreceptors. The
most common cause of human autosomal RP is the mutation in the rod-specific opsin gene,
rhodopsin (RHO). Recently, various RHO mutant zebrafish models associated with domi-
nant or recessive RP have been established with progressive rod degeneration [110–112].
Importantly, cone photoreceptors in zebrafish are unaffected by RHO mutants, which is
consistent with the features of human RP caused by the RHO mutation [110,111].
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X-linked RP, whose major cause is the mutation in retinitis pigmentosa 2 (RP2), is
characterized by the early onset and rapidly progressive vision loss before 40 years old in
humans [113]. Knockdown of RP2 in zebrafish results in a small eye phenotype, gradual
loss of the photoreceptors’ outer segments (OSs), and defective photoreceptor function,
mimicking human X-linked RP [114,115]. Furthermore, zebrafish mutant phenotypes
can be rescued by injecting human RP2 mRNA, revealing the vital role for RP2 in the
pathogenesis of X-linked RP [116]. Additionally, the great ability to simulate the various
phenotypes of human RP in zebrafish models (Table 3) has been proved invaluable in
identifying the causative genes for RP.

Table 3. Zebrafish models of retinitis pigmentosa-like diseases.

Gene Photoreceptor Features Reference

adipor1 Decrease in rod photoreceptors [117]

cerkl
Photoreceptor functional defects at 7 dpf. Rod OS defects at 3
months, cone OS defects at 7 months. Notable thinning of the

photoreceptor layer and cell death by 12 months
[118]

dact2 Photoreceptor disc membrane disarrangement at 5 dpf [119]

eys Progressive photoreceptor loss; cone degeneration at 6 months, rod
degeneration at 14 months [120]

her9 Decrease in rod photoreceptors at 5 dpf. Few double cones with
short OSs at 12 dpf [121]

kif3b Delayed OS development. Rapid rod degeneration by 5 dpf [122]

myo7aa Decreased photoreceptor function at 5dpf. Reduced rods at 8 dpf [123]

poc1 Decrease length of photoreceptor OSs at 4 dpf [124]

prom1 Decrease in cone photoreceptors at 7 dpf. Longer rod Oss. Delayed
development of OSs [125]

prpf31 Decreased in neuronal precursors and mature neurons at both 48
and 60 hpf [126]

rho Rod loss observed at 6 dpf. Degeneration continues into adulthood [112]

rp1l1 Rod dysfunction at 6 months. Subretinal drusenoid deposits at 11
months. Photoreceptor loss at 12 months [108]

rp2
Photoreceptor functional defects at 7 dpf. Short rod OSs at 2

months; cone OS defects at 4 months; significant rod OS loss and
decreased cone OSs by 7 months

[115]

rpgrip1
No rod OSs at 5 dpf. Cone dysfunction at 7 dpf. Severe rod
degeneration by 3 months, followed by cone degeneration.

Degeneration of most photoreceptors by 23 months
[116]

slc7a14 Decreased photoreceptor function at 5 dpf. Reduced rod
photoreceptors and peripheral RPE at 5 dpf [127]

SNRNP200 Photoreceptors loss at 3 dpf [128]

ush2a
Decreased photoreceptor function at 5–7 dpf and increased

photoreceptor apoptosis at 8 dpf. Notable rod OS degeneration at
12 months, cone OS degeneration at 20 months

[129]

3.5.2. Leber Congenital Amaurosis

LCA is a kind of inherited retinal dystrophy disease responsible for early-onset child-
hood blindness with immense genetic heterogeneity [130]. Presently, there are at least
15 LCA-associated genes, including CEP290, RPE65, CRB1, KCNJ13, GUCY2D, AIPL1, CRX,
IMPDH1, LCA5, LRAT, RPGRIP1, SPATA7, RD3, RDH12, and TULP1. CEP290 mutant ze-
brafish displays an intracellular transport delay and a decreased visual perception, which is
analogous to human LCA patients [131]. Similarly, the knockout of LCA5 in zebrafish using
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CRISPR/Cas9 technology causes the impaired OS protein trafficking and then cone–rod
dystrophy, which mimics the phenotype of cone–rod dystrophy in humans [132].

Mutation genes involved in ciliogenesis initiation and the transport of cilium compo-
nents can result in LCA or an LCA-like phenotype in mouse models [133]. Intraflagellar
transport proteins play vital roles in the movement of cargo in the cilium, which can be
facilitated by kinesin motors [13]. For example, ift28, ift88, and ift172 mutants of zebrafish
have the rapidly degenerated photoreceptors and without the developed photoreceptor
OS [134–136]. The kif3a (kinesin family 3a) mutant in zebrafish causes photoreceptors to
dramatically degenerate and fail to develop OSs, resulting in the extinguished ERG in
zebrafish larvae [122,137,138].

4. Zebrafish as a Model for the Drug Discovery of Eye Disorders

Since the drug candidates can be added to the water culture medium rather than
injected into the fish, zebrafish has become a promising model for the various successful
phenotype-based drug discovery [5,139]. Here, we mainly discussed the use of zebrafish in
the research of anti-angiogenic compounds, neuroprotective drugs, and oculotoxicity.

4.1. Anti-Angiogenic Compounds

The chemical testing in zebrafish can screen for new anti-angiogenic drugs for the
eye diseases, which is analogous to the in vitro/ex vivo platforms. Therefore, zebrafish
has been emerging as an exciting new model organism to discover anti-angiogenic drugs
for ocular diseases. For instance, the screening of approximately 2000 compounds reveals
that four small molecules affect retinal vessel morphology but do not produce obvious
changes in the zebrafish trunk vessels and the retinal neuronal architecture [140]. Similarly,
a bioactive chemical library of 465 drugs has been screened to identify small molecule
inhibitors for the hyaloid vasculature angiogenesis in zebrafish larvae, and the researchers
found 10 effective compounds, among which VDR agonists are the most effective ones [19].

In a small chemical screen using zebrafish, LY294002, the PI3K inhibitor, is identified
as an effective and selective inhibitor of ocular angiogenesis without systemic side effects
and diminishing visual function [141]. Additionally, zebrafish can serve as an early model
for testing anti-VEGF drugs by investigating the effect on angiogenesis and its cytotoxicity.
The inhibitor of FGFR and VEGFR, brivanib, inhibits zebrafish embryonic angiogenesis
without impairing neurodevelopment [142]. Furthermore, both sunitinib and ZM323881,
the anti-VEGF agents, can effectively block hypoxia-induced neovascularization in ze-
brafish [103]. In addition, the VEGFR2 inhibitors, such as sunitinib and 676475, block the
retinal neovascularization in vhl zebrafish [105,143]. A recent study also concludes that the
orthogonal drug pooling strategy is a cost-effective, time-saving, and unbiased approach
to discover novel inhibitors for the ocular angiogenesis in zebrafish larvae [144].

4.2. Neuroprotective Drugs

Zebrafish models of the photoreceptor disease provide a platform for discovering
novel neuroprotective drugs. Zebrafish can be utilized as phenotypes in screening neu-
roactive compounds for photoreceptor degeneration [145–147]. An ENZO SCREEN-WELL
REDOX library on a zebrafish autosomal dominant RP model finds that carvedilol, a
beta-blocker, can increase the rod number and improve visual function [148]. Schisan-
drin B, an active component isolated from the traditional Chinese medicine (Fructus
Schisandrae), is observed to improve light sensation in the pde6c zebrafish model of retinal
degeneration [149].

The overactivation of histone deacetylases (HDACs) has been detected in models of
photoreceptor degeneration, and HDAC6 inhibition may prevent neurodegeneration [150].
Moreover, it is important to note that HDACs inhibitors can also prevent photorecep-
tors from light injury-caused death [151]. In the atp6v0e mutant zebrafish model, a cone
photoreceptor degeneration disease, HDAC6 inhibitors successfully reduce the number
of apoptotic cells and improve the photoreceptor OS area and visual function [152–154].
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Furthermore, HDAC6 inhibitions and the regulation of peroxiredoxin activity may play a
significant role in protecting retinal cells and particular photoreceptors, indicating they are
sufficient to rescue retinal cell death and visual function [153].

4.3. Drug Oculotoxicity

It is conceivable that many drugs possess oculotoxicity. The prolonged or high-dose
exposure to a certain drug may cause eye damage and vision loss. Given that the vertebrate
eye is highly conserved, zebrafish can be a useful model for studying the ocular toxicity of
drugs [155]. Zebrafish as an efficient animal model can predict the adverse ocular effects at
the preclinical stage [156]. In this study, a group of 3-dpf-old zebrafish larvae are treated
with drugs for 2 days, and then, the visual behavior is assessed by visual motor response
and optokinetic response. Five of the six known oculotoxic drugs, including digoxin,
gentamicin, ibuprofen, minoxidil, and quinine, also show some adverse effects on the
visual responses of zebrafish. However, zebrafish retina has a different reactivity pattern
from mammalian animals against some typical retinal toxicants in terms of histopathology,
such as sodium iodate and N-methyl-N-nitrosourea [157]. Overall, when demonstrating
the utility for detecting oculotoxic chemicals, the zebrafish assays have a sensitivity and
specificity of 68–83% and 75–100%, respectively [155]. In addition, the chronic exposure to
medroxyprogesterone acetate, an action of progesterone, can result in the overgrowth of
the eyes and the defective visual functions in zebrafish [158]. These findings suggest that
zebrafish models are powerful in resembling oculotoxic characteristics of drugs in humans
and predicting oculotoxicity profiles of novel drugs.

5. Conclusions

Zebrafish provides a convenient animal model for mechanism investigation and drug
discovery in ophthalmology due to their similar eye structure with human and accessibility
to genetic manipulation. In the last few years, genome editing technologies, particularly
based on Crispr/Cas9, have made it fairly easy to generate lines of zebrafish with mutations
in targeted genes [159]. Hence, we are looking forward to the more popular zebrafish
model to fully understand the genetic basis of eye diseases in the near future. Zebrafish
has been widely used in drug discovery in ophthalmology, such as the screening of new
anti-angiogenic compounds or neuroprotective drugs, and testing oculotoxicity. Rapid
advances in high-throughput phenotyping point to the promising applications for zebrafish
in drug discovery. Zebrafish has become an increasingly attractive model for understanding
various human eye diseases and screening new drugs, whose highlights and drawbacks
were summarized in Table 4.

Zebrafish models might be more predominant, powerful, and promising tools for
investigating the mechanisms of various human eye diseases and discovering the novel
drug therapy in the future.
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Table 4. Highlights and drawbacks of zebrafish models for common ocular diseases.

Disease Model Highlights Drawbacks

Corneal
dystrophy Able to identify related specific gene mutations Not suitable for modeling

other corneal diseases

Cataract Feasible to study disease mechanisms, especially
those involved in crystallins Unavailable to model ARC

Glaucoma

Available to test specific hypotheses associated
with glaucoma

Unsuccessful at
establishing POCG models

Zebrafish bugeye mutant with high IOP Regenerative capability of
retinal neurons, especially

RGC cellsAble to induce model of RGC loss

Vascular
disease

Available to identify related genes
and mechanisms Regenerative capability of

retinal neuronsTransgenic zebrafish lines expressing fluorescent
reporter proteins in the vascular system

The pdx1 mutant zebrafish presenting
hyperglycemia-induced retinal angiogenesis

Without ideal model for
neovascular AMD

Transgenic overexpression of human HTRA1
zebrafish eye with the features of early AMD

Feasible to help screen new
anti-angiogenic drugs

Photoreceptor
Degeneration

Available to have large array of functional and
behavioral tests

Regenerative capability of
retinal neurons

Able to identify new neuroprotective drugs
using large-scale discovery

Feasible to identify related mutations by
genetic screens
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