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Abstract

Abiotic and biotic factors can affect host resistance to parasites. Host diet and host gut

microbiomes are two increasingly recognized factors influencing disease resistance. In par-

ticular, recent studies demonstrate that (1) particular diets can reduce parasitism; (2) diets

can alter the gut microbiome; and (3) the gut microbiome can decrease parasitism. These

three separate relationships suggest the existence of indirect links through which diets

reduce parasitism through an alteration of the gut microbiome. However, such links are

rarely considered and even more rarely experimentally validated. This is surprising because

there is increasing discussion of the therapeutic potential of diets and gut microbiomes to

control infectious disease. To elucidate these potential indirect links, we review and examine

studies on a wide range of animal systems commonly used in diet, microbiome, and disease

research. We also examine the relative benefits and disadvantages of particular systems for

the study of these indirect links and conclude that mice and insects are currently the best

animal systems to test for the effect of diet-altered protective gut microbiomes on infectious

disease. Focusing on these systems, we provide experimental guidelines and highlight chal-

lenges that must be overcome. Although previous studies have recommended these sys-

tems for microbiome research, here we specifically recommend these systems because of

their proven relationships between diet and parasitism, between diet and the microbiome,

and between the microbiome and parasite resistance. Thus, they provide a sound founda-

tion to explore the three-way interaction between diet, the microbiome, and infectious

disease.

Introduction

Parasites can severely reduce host fitness, and host defenses against parasites are under strong

selection. Hosts and parasites are often studied as pair-wise interactions [1] without consider-

ing the environment in which they interact [2]. This is problematic because biotic and abiotic

factors can have strong effects on host resistance to parasitic infection [3,4]. One increasingly

recognized environmental factor that influences disease is host diet (Fig 1). Host diet also

importantly shapes the gut microbiome in a wide range of hosts (Fig 2).
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The gut microbiome, in turn, can be a crucial driver of infectious disease. The complex

community of microorganisms inhabiting an animal’s digestive tract constitutes the gut

microbiota, and their collective genetic content constitutes the gut microbiome. Changes in

gut-associated microbial community composition and diversity have been associated with

Clostridium difficile infection in humans [5] and malaria infection in mosquitoes [6].

Current understanding thus shows three important relationships: (1) diet can alter disease

resistance; (2) diet can affect the gut microbiome; and (3) the gut microbiome can reduce or

Fig 1. Direct and indirect relationships between host diet, host gut microbiome, and parasites. In bees, studies have independently shown that diets

modulate resistance to parasites [9,21], diets alter gut microbiomes [75], and gut microbiomes modulate parasitism [90,107]. However, it is not known

whether there is an indirect link between the three based on these direct relationships. Alternatively, the host immune system can indirectly alter this

potential three-way interaction by modulating antimicrobial peptides or pattern recognition receptors via diet or the gut microbiome to fight parasites

[11,110].

https://doi.org/10.1371/journal.ppat.1007891.g001
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Fig 2. Animal systems showing three separate, direct relationships between diet, parasites, and the gut microbiome. Mice and insects are ideal

systems to study the potential indirect, three-way link due to the systems’ controlled host diets, tractable and relatively simple microbiota, and

tractability of parasites.

https://doi.org/10.1371/journal.ppat.1007891.g002
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increase disease resistance. The potential link between these relationships remains understud-

ied and poorly understood. Specifically, although these relationships suggest that diets could

increase or reduce disease resistance by altering the host gut microbiome, there are no existing

studies to support this. Instead, most studies have independently investigated the relationships

between diet and disease resistance, diet and the gut microbiome, and the gut microbiome and

disease resistance (Fig 1). For example, studies have shown separately that diet affects the gut

microbiome and that the gut microbiome affects parasitic resistance in both mice and mosqui-

toes infected with Plasmodium spp. [7,8]. Whether this increased resistance is a result of the

diet-altered microbiome is unknown. Similarly, honeybees fed aged mixed-pollen diets have

an increased relative abundance of Frischella perrara, and these diets also increase resistance to

bacterial and microsporidian parasites; whether this increased resistance is the result of a diet-

altered microbiome is also unknown [9]. It is also important to note that host immunity could

play a key role in directly or indirectly modulating diet–microbiome–disease interactions [10].

For example, F. perrara, the same gut microbe that is correlated with aged mixed-pollen diets,

also activates the honeybee immune system [11], making it difficult to determine the sequence

of events between host diet metabolism, host immunity activation, and parasitic infection inhi-

bition. In this review, we focus on the interaction between host diet, the gut microbiome, and

parasites without specific consideration of the role of host immunity in most cases. Ultimately,

it would be of interest to investigate the effects of diet and the microbiome on immunity where

feasible.

The potential for diet to alter infectious disease resistance by altering the gut microbiome is

relevant to a wide variety of animal systems, including humans. In particular, given increasing

calls to create personalized diets to augment human gut microbiomes [12], it is crucial to

determine how such changes in diet will make hosts more or less susceptible to infectious dis-

ease agents. Because our focus is on infectious diseases, we define parasites as microorganisms

that can cause infectious disease (bacteria, fungi, protozoa, and viruses). The goal of this review

is to provide guidelines to study how diets indirectly change infectious disease resistance by

altering the gut microbiome and to suggest suitable model systems to address this question.

Using key references that have relevance across taxa, we begin by reviewing the aforemen-

tioned two-way relationships. We then discuss the challenges that need to be overcome to

specifically integrate these separate relationships into a cohesive framework. Finally, we syn-

thesize methods by which we can empirically test this potential three-way interaction. Our

review and recommendations are not meant to be exhaustive but rather to provide a step

towards advancing our understanding of how a host’s diet and gut microbiome interact to

drive infectious disease resistance.

Diets modulate resistance to parasites

Certain diets have been shown to confer protection against infectious diseases in multiple ani-

mal systems. Specifically, many animals can obtain antiparasitic diets by eating plants with

toxic defensive chemicals. Nematode-infected chimpanzees, for example, eat bitter plants with

nematocidal compounds [13,14], and woolly bear caterpillars infected with parasitoid flies

increase their consumption of diet alkaloids, reducing infection [15]. Similarly, monarch

butterfly larvae suffer less protozoan infection when feeding on milkweed plants with high

concentrations of cardiac glycosides [16–19], anicia checkerspot butterflies are more immuno-

competent when fed plants with higher concentrations of iridoid glycosides [20], and bumble-

bees that consume alkaloid-rich nectar experience reduced infection with trypanosome gut

parasites [21,22]. Thus, many herbivores exploit plant defensive chemistry to reduce parasite

infection and growth.
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Animals can also increase parasitic resistance by increasing the quality and types of foods

that they eat. For example, honeybees with a diverse pollen diet are more immunocompetent

than individuals fed on a monofloral diet [23]. Similarly, lab-reared honeybee larvae gain resis-

tance to fungal pathogens when nutrient-poor diets are supplemented with polyfloral pollens

[24]. Fruit flies fed low-sugar diets have lower bacterial pathogen load and reduced mortality

than when fed on high-sugar diets [25]. Mice infected with protozoan parasites that cause Cha-

gas disease have reduced parasitemia when fed high-fat diets [26]. As with other animals, the

diet of humans is a strong driver of parasite infection. Human malnutrition is a global concern

that is associated with micronutrient deficiencies and is linked to immunodeficiency. For

example, malnourished children in Papua New Guinea are at higher risk of malaria infection.

Supplementing their diets with vitamin A reduces both Plasmodium falciparum density and

disease symptoms, including fever [27].

Diets can have a complex effect on a host’s ability to fight infection. The addition of a die-

tary component may not always positively correlate with parasitic resistance; the effect of diet

on parasites can be negatively correlated, with an increase in dietary components being corre-

lated with a decrease in parasitic resistance. For example, mice infected with protozoan para-

sites that cause murine malaria and fed folate-supplemented diets have decreased survival

and decreased resistance compared with mice fed the standard dose of recommended folate

[28]. Similarly, greater wax moths infected with a fungal parasite and fed high-nutrition diets

were more susceptible and experienced a higher mortality rate than infected individuals raised

on low-nutrition diet [29].

Thus, diets can confer protection against infectious diseases by direct interference through

chemical inhibition of parasites or modulation of available resources to fight pathogens. Alter-

natively, diets may confer protection through alteration of microbial competition, which until

recently has been largely overlooked and which we will address next.

Diets alter gut microbiomes

As with other ecological communities, gut microbial communities are groups of interacting

species that occur together at the same time in a defined place. Recent technological advances

have increased the feasibility of studying gut community composition and function [30,31].

Gut microbial communities have a structure that is characterized by species richness (the

number of species), species evenness (the relative abundance of each species), and species

diversity (a metric accounting for both species richness and evenness). Because different

microbial species can have diverse roles, the overall function of these communities is typi-

cally characterized by assaying total genetic content (metagenomics) and gene expression

(transcriptomics).

Different host species have different microbiomes driven by host genetics, evolutionary

history, and evolved dietary specialization [32–34]. Termites, for example, are consumers of

cellulose-based plant materials but cannot directly break down cellulose; instead, they harbor

vertically transmitted microbial gut symbionts—bacteria, protists, and archaea—that contain

cellulose-digesting genes [35]. Termites that specialize in different feeding groups (e.g., wood,

grass, humus, soil, and fungus) harbor significantly different assemblages of gut microbes [36],

a signature of evolved microbiome specialization.

The microbiome, however, is also plastic, and changes in diet can alter gut microbial com-

munity composition [37,38] and thus have the potential to importantly shape community

function. For example, in wood-feeding termites, changes in diet are accompanied by shifts in

the dominance of protist species [39]. In humans, major shifts in diet (i.e., shift from high-fat/

low-fiber to low-fat/high-fiber diet) also significantly influence gut community composition
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over short time periods [38,40]. However, the human gut microbiome is relatively stable over

time [40,41], with long-term diet strongly correlating with bacterial enterotype, the classifica-

tion of microbiome samples based on clustering in ordination analyses [37,42,43]. After a

dietary perturbation, communities tend to shift back towards their original community com-

position and stabilize. Although such plastic changes of the gut microbiome in response to

dietary shifts have been observed across the animal kingdom [44–49], it is not clear whether

diets change the microbiome through similar mechanisms across systems and whether these

changes are generally stable or transient.

Supplements added to the diet can also modulate the gut microbiota. Prebiotics are dietary

supplements that, once consumed by the host, act as food or substrates for the host microbiota.

More specifically, the “prebiotic effect” is the selective stimulation of growth and metabolic

activity of a single or limited number of taxa in the gut microbiome that confers health benefits

to the host [50,51]. A common prebiotic for humans is inulin and its chemical derivatives [52].

Inulin is a soluble fiber found in many plants naturally occurring in foods, such as chickory

root, garlic, and onions [53], and is also commercially produced. In clinical studies, healthy

humans administered inulin-containing foods over the span of weeks show a change in micro-

bial community composition, with significant increases in Bifidobacteria [54,55]. In turn, Bifi-
dobacteria and Lactobacilli are common genera used as probiotics in several hosts [7,56].

Probiotics are non-native live microorganisms orally consumed by hosts and beneficial to host

health. Probiotics naturally occur in fermented foods such as yogurt. The combined synergistic

effect of prebiotics and probiotics is synbiotics [57]. Bifidobacteria and Lactobacilli bacteria

may play a role in the treatment or prevention of several human infections, including the

infection of the human digestive tract caused by C. difficile and human vaginal bacterial infec-

tions [58,59]. However, it can be difficult to elucidate the efficacy and mechanisms of prebio-

tics and probiotics in humans. Interestingly, use of prebiotic and probiotic supplements in

more tractable model systems, such as bees, shrimp, and fish, suggests that such supplements

can confer antimicrobial activity, increase immune gene expression, and decrease the load of

bacterial pathogens and intestinal parasites in these systems [60–62].

A major issue with elucidating the effects of diet on the human gut microbiome is the

occurrence of confounding factors. For example, human children from rural Africa and

modern Western Europe fed on plant- and animal-based diets, respectively, exhibit significant

differences in bacterial communities: Prevotella, Xylanibacter, and Treponema genera are

abundant in rural Africans but absent in Western Europeans [45]. The bacteria in these genera

contain genes involved in cellulose hydrolysis and are associated with the capacity to metabo-

lize indigestible polysaccharides commonly found in plants. Despite the apparent link between

diet and microbiota composition, factors other than diet, such as host genetics, race, ethnicity,

variation in antibiotic use, and geographically varying environmental factors, could also play a

role. Human microbiome research is also hampered by logistical constraints, such as inconsis-

tent self-assessments on dietary questionnaires and budget limitations that prevent supplying

large cohorts with controlled diets for an extended period of time [44,63]. Ironically, what this

means is that, despite the fact that human health is the primary focus of diet–gut microbiome

research, humans are a suboptimal system to understand how diet shapes microbial commu-

nity dynamics. Therefore, to better understand the mechanistic links between diet and the gut

microbiome, it is beneficial to study systems in which confounding factors can be more easily

controlled [64–67].

Mice are the most common animal model used to translate gut microbiome research to

human health, in part because human fecal microbial communities can successfully colonize

germ-free, inbred mouse strains [44]. Major dietary shifts from low-fat/high-fiber to high-fat/
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high-sugar diets in such mice cause rapid changes in microbial community structure and func-

tion [44,68]. Thus, as with humans, diet is a major driver of microbiome composition in mice.

Insects also provide excellent systems to study the effects of diet on the gut microbiome

[64]. Similar to termites, mentioned previously, microbial communities of fruit fly species vary

with the different fruits and flowers on which these species are specialized to feed. Fly micro-

bial communities are also plastic, changing with dietary shifts [69]. For example, within a sin-

gle population of the fly Drosophila elegans, feeding on two different flowering plant genera

results in different abundances of the dominant bacterial families. Similarly, feeding Drosoph-
ila suzukii fruit-based natural and nonfruit artificial diets results in altered communities [70].

Diet also influences Drosophila melanogaster gut microbial community composition [71–73].

For example, altering fat content, particularly from high fat to no fat (i.e., starvation), of D.

melanogaster diet results in changes in the abundance of some bacteria as well as changes in

the overall number of microbes in the community [74].

Diet also strongly influences microbial communities of bees, butterflies, and moths. Bee gut

microbial communities are dominated by eight dominant bacterial phylotypes (bacterial clus-

ters based on sequence similarity) that can be modified with alternative syrup and pollen diets

[33,75]. Similarly, the dependence of gut microbial community composition on alternative lar-

val host plants is widespread in lepidopteran species [76–79]. For example, tobacco budworm

larvae fed three alternative host plants have significantly different bacterial families [76], and

there is variation in bacterial phylotypes in the gypsy moth microbiome based on alternative

plant diets [80]. Although these examples demonstrate that diet affects the gut microbiome in

many animal systems, the mechanisms by which this occurs are largely unknown (Box 1).

Gut microbiomes modulate parasitism

Microbial symbionts, microbes that form a long-term association with hosts, can play impor-

tant roles in animal health, particularly in mitigating infectious diseases. For example, aphids

harbor non-gut-associated bacterial symbionts that protect them against fungal pathogens and

parasitoid wasps [81,82]. Similarly, beewolf wasps incorporate symbiotic bacteria into their lar-

val cocoons for protection against pathogenic fungi [83,84], and salamanders have skin bacte-

rial symbionts that produce antifungal metabolites against chytrid fungus [85]. It is now clear

that gut-associated microbial symbionts can also play major roles in infectious disease dynam-

ics, with changes in microbial community structure and function being correlated with para-

site infection in several systems. These community structural changes can be caused by

dysbiosis (or disruption of the “healthy” microbiome) or parasite infection. Although both

states have the potential to shift parasite resistance, their mechanisms can be different. In the

case of dysbiosis, gut pathogens may exploit an empty niche or host physiological stress to suc-

cessfully colonize the gut. Systemic parasites may exploit organism stress to disseminate and

replicate throughout the body. A well-known example is microbial-conferred protection

against the bacterium C. difficile, which is a leading cause of chronic diarrhea following the

long-term use of antibiotics in humans. Antibiotic-induced disturbance of the gut microbial

community favors the increased growth of C. difficile and recurrent infection. Clinical micro-

biome transplants via feces (i.e., fecal transplants) from healthy donors can be used to treat the

disease in infected recipients by restoring the gut community [86–89]. Hence, C. difficile infec-

tion exploits dysbiosis by proliferating in the gut bacterial community and shows that commu-

nity composition and potentially the number of bacteria are crucially important in affecting

parasite invasion success. Similarly, sterile sugar–fed and antibiotic-treated bees suffer

increased trypanosome infection relative to bees with a complete gut microbiome, and fecal

transplants restore the bees’ gut microbiota and increase resistance [90]. Although the
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Box 1. Crucial considerations in the study of diet–microbiome–
disease interactions

1. Comparing microbial communities. A major challenge plaguing the field of

microbiome research is defining what variation to quantify and what variation

matters [30,111,112]. Although it is becoming relatively simple to characterize a

gut microbial community, it is more difficult to conclude what variation between

experimental groups is biologically significant. Differences that may impact host

phenotypes may lie in the presence and diversity of the microbial community, the

presence of particular taxa, the abundance of particular taxa, or microbial gene

expression, regardless of the genome of origin. Technological approaches vary in

the degree to which they can characterize these differences. Furthermore, in the

case of differences at the taxonomic level, studies define community composition

differently at the phylum (Wu and colleagues, 2011), genus [45], species [113], and

strain [114,115] levels. This inconsistency demonstrates that there is no workbook

for which of these to quantify, requiring a thorough investigation of each system

studied.

2. Accounting for individual microbiome variation. There is substantial individual

variation in gut microbiome composition, which may be due to genetics, abiotic

or biotic factors, or stochasticity. Furthermore, gut microbial communities change

over development, with sometimes high species turnover, adding more variation

to an animal system [116,117]. Because of the many sources of microbiome varia-

tion, studying the link between diet, the microbiome, and disease can be difficult,

as the microbiome may vary for reasons other than diet. Thus, the key is to deter-

mine the relevant variation due to changes in diet and to determine how those par-

ticular changes correlate with disease resistance.

3. Defining which dietary components influence the microbiome and disease sus-

ceptibility. Diets have many components. Therefore, it is imperative that studies

first clearly define which dietary component(s) or dietary supplement(s) are con-

sidered when assessing the influence of diet on disease resistance or on the micro-

biome. To date, several different dietary components have been implicated in

influencing the gut microbiome in animals, including fiber, protein, plant second-

ary metabolites, types of fat, foodborne bacteria, and prebiotics [12,45,118]. The

dietary component(s) of interest may be nutritious or toxic, depending on the sys-

tem [119]. If a dietary shift is observed to modulate the gut microbiome or disease

resistance, then the exact nature of what components of that diet are shifting

should be characterized. Systems in which diet can be experimentally manipulated

are ideal, as controlled diets eliminate confounding dietary variables, making it

possible to observe the direct effect of a single dietary component on gut micro-

biota composition and on disease susceptibility. Furthermore, such diets can be

standardized, providing the opportunity for comparisons across studies. However,

one drawback of such controlled diets is that they are not generalizable to natural

diets [111]. Coupling a chemically well-defined diet with a natural diet in animal

systems should provide novel insights as to diet’s role in altering the microbiome

and disease [47].
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protective effect of the gut microbiome against parasites is evident in these and other systems,

the properties of the microbiome that reduce parasitism are rarely known.

The protective effects of the gut microbiome may result from the presence and diversity of

the microbial community, the presence of particular taxa, or the presence of particular genes

within the microbial community (Fig 3). Several examples illustrate the importance of the

community. As mentioned previously, the gut microbiome of bees provides protection against

trypanosome infection [90,91]; however, consumption of a single bacterial class does not

reduce trypanosome burdens. Similarly, a diverse bee gut community is also protective against

the bacterial pathogen Paenibacillius larvae, the causative agent of American foulbrood [92–

94]; although 11 isolated, cultured bacterial phylotypes differentially inhibit the growth of par-

asite strains in vitro, only the microbial cocktail of all 11 bacterial phylotypes completely inhib-

its the growth of P. larvae in vitro and in vivo. Desert locusts also have decreased pathogen

colonization with increased numbers of gut bacterial species [95]: specifically, the presence of

2 and 3 bacterial species provides more protection against Serratia marcescens than the pres-

ence of only 1 species. The importance of the microbial community may result from the com-

plementary and synergistic antiparasitic effects of different microbes. Although the benefits of

a diverse microbial community are widely accepted, the mechanisms of protection are poorly

understood in animal models [96,97]. Potential mechanisms include high functional diversity

[98], increased functional redundancies [99], and metabolic cross-feeding [96,100].

The presence of particular taxa can also be a protective property of the gut microbiome.

Several malaria-associated studies across animal systems find a correlation between particular

bacterial taxa and Plasmodium infection. Malian children with a lower risk of infection by the

malaria parasite P. falciparum have a higher proportion of Bifidobacterium and Streptococcus
genera compared with higher-risk individuals [101]. This example, like others, merely presents

a correlation between the presence and absence of particular gut bacteria taxa and parasites

[102,103]. Demonstrating a causative link, in Anopheles mosquitoes, the ingestion and coloni-

zation of Chromobacterium results in induction of immune genes and decreased susceptibility

Fig 3. Properties of the gut microbiome that could reduce parasitism. The protective effects of the gut microbiome may derive from colonization

resistance, the abundance and evenness of one or more species at various taxonomic levels, the presence or absence of particular species, or the presence

or abundance of certain genes. These scenarios are not exhaustive nor mutually exclusive [107].

https://doi.org/10.1371/journal.ppat.1007891.g003
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to P. falciparum infection and dengue virus [104]. Similarly, antibiotic-treated mice inoculated

with a cultured microbial cocktail containing Bifidobacterium and Lactobacillus display a

decreased malaria parasite burden compared with control mice, suggesting that these taxa

have a modulatory effect on parasitism [7].

Sometimes it is not the presence of the gut microbial community or presence of particular

taxa in that community but rather the expressed genes of the community that have a modula-

tory effect on protection. For example, laboratory mice can harbor gut bacteria that express

glycan surface proteins. These glycan surface proteins elicit glycan-specific antibodies that

attack Plasmodium spp. during transmission from Anopheles mosquitoes to mice lacking the

glycan surface protein gene [105]. Similarly, mice colonized with Bifidobacterium breve bacte-

ria expressing exopolysaccharides have significantly less colonization and persistence of a

murine bacterial pathogen compared with mice without bacteria expressing an expolysacchar-

ide gene [106]. The protective effect of B. breve is linked to a gene cluster responsible for the

expression of exopolysaccharides. These two studies demonstrate that protection can be

induced, or pathogenesis inhibited, by manipulating the gene expression of gut microbes.

Importantly, given that bacteria can horizontally transfer genes, protection against parasitic

infection conferred by expressed genes has the potential to persist in a microbial community

independent of the presence of particular taxa. However, these scenarios are not exhaustive

nor mutually exclusive. For example, in bees, high community diversity, high bacterial abun-

dance, and taxa presence all contribute to protection against a trypanosome parasite [107].

Experimental approaches to study diet–microbiome–disease

interactions

As is clear from the previous examples, diets alter both parasite resistance and gut micro-

biomes in a range of animals. Because the microbiome is an important driver of parasite resis-

tance, these relationships suggest that diets may change parasite resistance through their

effects on the gut microbiome. However, to our knowledge, the effect of the diet on infectious

disease susceptibility through their impact on the microbiome has not been unequivocally

demonstrated in any system. Nonhuman animal systems that have separately demonstrated

that diet alters resistance to parasites, diet alters the gut microbiome, and the gut microbiome

alters parasitism are ideal systems to empirically test for the potential of diet altering disease

resistance by modulating the gut microbiome. To fully explore this link, researchers must

study diet, the microbiome, and disease in tandem in a controlled, experimental setting. The

best case studies, based on current literature, appear to be experimentally tractable insect and

mouse systems (Fig 2, Box 2).

The need to study diet, the microbiome, and disease together is clear when one tries to con-

nect the three across separate studies. For example, bee studies have shown that diets rich in

alkaloids increase resistance to a variety of parasites, including trypanosomes, fungi, and

microsporidia [9,21,24]. Separate studies have shown that pollen supplemented with nectar

diet alters the gut microbial community composition of bee larvae [75], and, as highlighted

previously, other studies have shown that bee gut microbes can increase resistance to patho-

gens and parasites [90,92]. Complications arise when trying to link these studies. First, the die-

tary components considered were different across studies (Box 1). Second, the two-way

relationships were studied in different life stages: while the effect of alkaloid diets on the try-

panosome Crithidia bombi was investigated in bee adults [21], and the effect of gut microbes

on C. bombi was also studied in adults [90], the effect of protein and sugar-rich diets on bee

microbial communities was investigated in bee larvae [75]. Similarly, in mosquitoes, a particu-

lar larval aquatic diet increases resistance to Plasmodium spp. and also increases the relative
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abundance of two bacterial families [8]. Separate studies have demonstrated that mosquito gut

microbes reduce parasitism with Plasmodium [6,104]. Ideally, researchers would study all

three interactions across life stages, because diet differences across immature stages could have

lifelong effects on adult individuals. Similar to bees, the dietary components and life stages

between these mosquito studies were different—fish flakes for aquatic larvae versus sugars and

blood in adults. We are aware of only a single study using mice in which all three separate

components were considered [7]. However, even within this study, it is not clear that diet

mediated its antiparasitic effects by modulating the gut microbiome (Box 2).

In order to study the potential effect of diet-altered protective gut microbiomes on infec-

tious disease, we propose several recommendations. First, studies should only use animal sys-

tems in which host diet increases resistance to tractable parasites. Second, host genetics should

be carefully controlled. Ideally, host genetics can be controlled by testing individuals with iden-

tical or similar genetic backgrounds, such as monozygotic twins or full siblings. Alternatively,

unrelated individuals can be partitioned across treatments to reduce confounding factors.

Third, it is important to determine whether alternative diets are associated with alterations of

the microbial community and if so, to try and elucidate whether the same dietary components

are responsible for altering parasite resistance. Fourth, it should be demonstrated directly,

through a unified study, that gut microbial community variation caused by alternative diets

correlates with disease susceptibility. A particularly powerful approach for this test is to use

fecal transplants [7,44,90]. Beyond demonstrating that the actual altered microbiome provides

resistance to parasites, carefully manipulated fecal transplants can also be used to elucidate

Box 2. Case study: Composition of gut microbial community
modulates severity of malaria in mice

One study on mouse malaria investigated the three relationships that are the focus of

this review: (1) diet alters disease resistance; (2) diets alter gut microbiomes; and (3) gut

microbiomes modulate disease resistance [7]. This study first found that genetically

inbred mice (C57BL/6) infected with Plasmodium significantly differed in parasite bur-

den based on mouse vendor source. Mice from Jackson Laboratory (Jax) and Taconic

(Tac) had a significantly lower number of parasites and no mortality compared with

National Cancer Institute/Charles River (NCI) and Harlan (Har) mice. To test whether

diet increases resistance to malarial infection, Jax (resistant) and NCI (susceptible) mice

were fed two commercial chow diets: NIH-31 and Teklad 22/5. Although parasitemia

was not affected in susceptible NCI mice fed these diets, the Teklad 22/5 diet signifi-

cantly increased parasitemia and mortality in resistant Jax mice compared with the

NIH-31 diet. This study also demonstrated that the alternative diets affect the gut micro-

bial community composition: Jax mice fed the Teklad 22/5 diet had lower relative abun-

dance of the bacterial family Peptostreptococcaceae compared with Jax mice fed the

NIH-31 diet. The researchers then used fecal transplants, microbial supplementation,

and immune assays to demonstrate that the gut microbiome reduces parasitism. How-

ever, instead of carrying out this study with mice of similar origin fed on alternative

diets, the researchers used mice that varied in resistance due to different vendor origin

(Jax and Tac versus NCI and Har). Thus, while suggestive of an indirect link, this study

did not yet unequivocally demonstrate that diets altered disease resistance by modulat-

ing the gut microbiome.
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whether the presence of the entire gut community is needed for protection or whether the

presence and abundance of particular taxa are more important. To tease apart the protective

mechanism of species presence and interactions, cultivated microbial transplants of specific

community members have been effective in bees, mosquitoes, and mice [7,92,104]. Silencing

microbial community members’ genes is also an effective way to resolve whether the presence

and expression of certain genes are responsible for the protective mechanism of the gut micro-

biome, as shown in mice [105,106]. Finally, for animal systems with robust genetic tools,

including mosquitoes and moths, both host immune genes and microbiome toxin genes can

be silenced to determine their interplay [6,108,109].

Conclusion

Existing studies suggest that diets can alter host resistance to parasites by modulating the gut

microbiome, but conclusive studies remain lacking. Although an understanding of diet–

microbiome–disease interactions is critical for humans, we propose alternative animal model

systems to test fundamental properties of this potential interaction. These animals are relevant

to agriculture and epidemiology, and they allow for carefully controlled experiments with few

constraints on sample size. Most importantly, they are tractable systems that have strong evi-

dence of each separate interaction: diets modulate resistance to parasites, diets alter gut micro-

biomes, and gut microbiomes modulate parasitism (Fig 2). Existing experimental tools now

allow researchers to build on the separate, direct relationships to determine whether there is

an indirect link between host diet, host gut microbiome, and parasite infection. Elucidation of

the importance and ubiquity of such a link will help us better understand the therapeutic

potential of diets and gut microbiomes to control infectious disease.
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