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ABSTRACT: Phosphinooxazoline (PHOX) ligands have been
used to control the regio- and enantioselectivity in a wide variety of
metal-catalyzed reactions. Despite their widespread use, PHOX
ligands have never been studied in metal-aryne complexes. Herein
we report the first example of a PHOX-Ni aryne complex. As
demonstrated in other systems, the differentiated P versus N
donors and different steric environments of the unsymmetric ligand
are able to induce regiocontrol. A 81:19 mixture of o-methoxy
substituted aryne complexes is observed. Single-crystal X-ray
crystallographic analysis, UV/vis spectroscopy, and cyclic voltam-
metry are used to gain further insight into the molecular and
electronic structure of these complexes. Lastly, a methylation/
deuteration sequence shows retention of the PHOX ligand-induced regiocontrol in the difunctionalized products and that the
regiospecificity of these difunctionalizations is due to the trans influence of the P donor.
KEYWORDS: Nickel, PHOX ligands, regioselectivity, arynes, methylation

Phosphinooxazoline (PHOX) ligands have been used to
control regioselectivity in allylic substitution and other

reactions (Figure 1A).1−4 The differentiated sterics of the
phosphine versus oxazoline govern substrate binding when a
substrate is unsymmetrical, for example, in a monosubstituted
allyl group. Numerous structural studies have been carried out
in order to explore these unique structures. Crystal structures
reveal that the trans influence of the P versus N donor impact
the site of nucleophilic attack.5,6 This is due to the lengthening
and weakening of the M−C bond that is trans to the P donor.
These studies have led to the design of substituted PHOX and
other C1-symmetric ligands in order to improve selectivity in
reactions involving a PHOX-M substrate intermediate such as
alkene or imine hydrogenation.7−12

Metal-bound aryne complexes are an isolable counterpart to
free aryne intermediates. Unlike in metal-free aryne method-
ology, very few examples exist of unsymmetrically substituted
metal-bound arynes and nothing is understood about how
regioselectivity is governed or if it can be induced through
ligand design.13−15 For example, Hosoya and co-workers
report a rare example of a methoxy-substituted Ni-aryne
complex supported by PEt3.

16 We are unaware that any
unsymmetrical ligand systems have been reported to date in
isolated metal-aryne complexes. We hypothesized that, by
leveraging the PHOX ligand properties that have been
established in allylic substitution, regioinduction could be
observed in metal-aryne complexes (Figure 1B). Our group

recently reported the first example of monodentate ligands
controlling regioselectivity in metal-catalyzed annulations
involving metal-aryne intermediates.17 Thus, this study can
be used to design regioselective metal-catalyzed reactions using
bidentate PHOX ligands.
Metal aryne complexes using unsymmetric bidentate ligands

such as PHOX have not been previously reported. Therefore, a
synthetic route toward these complexes was developed (Figure
2). Methoxy-substituted o-borylaryl triflate 1 was treated with
Ni(COD)2 and 2.2 equiv of PPh3 at room temperature for 1.5
h. In order to stabilize the resulting σ-aryl complex 2, LiBr was
added to replace the triflate.16 Square planar complex 2 was
obtained in 76% isolated yield and structurally characterized
via XRD (SI Figure S11). The 31P{1H} NMR spectrum of 2
shows a single resonance, indicating the trans relationship
between the phosphines. Complex 2 then underwent ligand
exchange with CyPHOX to access σ-aryl complex 3. However,
this complex was unable to be observed by 31P{1H} NMR
spectroscopy or isolated. In the crystal structures for the
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reported dcpe-Ni o-borylated σ-aryls, significant steric
interactions between the dcpe and the B(pin) group can be
seen, which are likely the cause of the instability of complex 3.
Thus, 2 was taken forward to an in situ ligand exchange-
transmetalation sequence. During the ligand exchange, tBuO-
Na was added as an activator to promote transmetalation and
cleanly generate the o-methoxybenzyne complexes 4a and 4b
in a combined yield of 76% over 2 steps. Direct oxidative
addition of 1 with CyPHOX did not yield desired complex 3.
Previous attempts to synthesize σ-aryls with tertiary bidentate

ligands such as dicyclohexylphosphinoethane (dcpe) have also
been shown to be problematic, highlighting the need for a
ligand exchange step.18

As hypothesized, the CyPHOX ligand induced a regioiso-
meric ratio of products, favoring the methoxy substituent on
the same side as the oxazoline side of the ligand in a 81:19
regioisomeric ratio (rr), as determined by 31P{1H} NMR
spectroscopy. Interestingly, 2 distinct 31P NMR resonances are
present in the spectrum, 1 for each regioisomer. This matches
with the 1H NMR signals, which show 2 distinct regioisomers
with sharp signals. Because there is no coalescence at room
temperature, we hypothesized that there could potentially be
little equilibration between regioisomers. Interestingly, a 2D
31P{1H}−31P{1H} NOESY experiment was conducted, which
showed some exchange peaks between the two regioisomers on
the 2.5 s mixing time scale (Figure S9).
Crystals of complexes 4a were grown in a mixture of

benzene and pentane at −35 °C. The crystal structure (Figure
2) revealed insight into the dynamic behavior of these
complexes. The aryne C−C bond was determined to be
1.316 Å as an average of the 2 molecules in the unit cell, which
is shorter than previously reported late transition metal aryne
complexes such as the (dcpe)-Ni benzyne, which has a bond
length of 1.332(6) Å.19,20 When compared to the calculated
bond length for benzyne at 1.240 Å, the triple bond of the Ni-
bound aryne is significantly elongated.21 The P−Ni−C1 and
N−Ni−C2 bond angles of 106.3° and 114.8° suggest a
pseudotrigonal planar geometry. The unit cell contained 2
molecules of the major regioisomer; however, the minor
regioisomer was also observed as rotational disorder, which
could not be modeled. Interestingly, the aryne carbons show
an internal angle difference of 5.4°, compared to the free o-
methoxybenzyne calculated angle difference of 15°.13 In this
case, the position ortho to the methoxy substituent, C2, has the
smaller internal angle, which is the opposite of what is
observed in the parent free o-methoxybenzyne and the aryne
distortion model. This position is also trans to the phosphine
donor, and its strong trans influence compared to the oxazoline
donor is evidenced by the longer Ni−C2 bond vs Ni−C1
(1.881 vs 1.862 Å, respectively).
To probe the electronic properties of complex 4, cyclic

voltammetry experiments were conducted in 0.1 M [nPr4N]-
[BArF4] electrolyte solutions (ArF = 3,5−bis(trifluoromethyl)-
phenyl) and internally referenced to the [FeCp2]+/0 redox
couple. Figure 3 displays the full window cyclic voltammogram
(CV) and the scan rate dependence studies on the observed
reduction. Complex 4 exhibits a one-electron irreversible
oxidation event at Epa = −0.38 V. Interestingly, 4 displays an
electrochemically quasi−reversible (see SI Figure S14 and
Table S5) reduction at Epc = −2.67 V, followed by an oxidation
event at Epa = −2.61 V. Additional CV experiments were
conducted on CyPHOX (see SI Figure S15) to determine if
any events were ligand−based, where two ligand oxidation
events were observed far beyond the oxidation event at Epa =
−0.38 V.
A (dcpe)Ni(COD) complex, where COD = 1,5-cyclo-

octadiene, was observed to have both Ni(0/I) and Ni(I/II)
events at −0.95 and −0.78 V (vs FeCp2)+/0, respectively, in
[nBu4N]PF6 THF solutions; however, due to the difference in
electrolyte and ligand electronic environment, direct compar-
isons are difficult to establish.22 Due to the absence of multiple
strong, electron rich donors (only one Cy2P donor) and the
expected strong metal π-backdonation into the aryne bond, the

Figure 1. (A) Insight into ligand-controlled binding of allyl groups
with phosphinooxazoline (PHOX) ligands. (B) This work: Use of
PHOX ligands to control binding of an aryne.

Figure 2. Synthesis and crystal structure of the first PHOX-Ni-aryne
complex. One molecule in the unit cell is shown; bond lengths are an
average of the bond lengths in both molecules in the unit cell.
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Ni center is significantly electron deficient compared to most
Ni−phosphine complexes. As a result, the harsher oxidation
event at Epa = −0.38 V is proposed to be a Ni-based oxidation
event. While unfortunate that little comparison can be drawn
to complex 4, this highlights the first electrochemical study on
a metal-bound aryne complex. Current investigations to
identify the reduced species are underway.
Complex 4 resembles a deep raspberry red color in both

noncoordinating and coordinating solvents. Three primary
charge transfer bands were observed in 0.3 mM THF solutions
of 4 (Figure 4). Transitions I and II at both 329 nm (ε = 1176
M−1 cm−1) and 365 nm (ε = 857 M−1 cm−1), respectively, are
consistent with ligand-based transitions (see SI Figure S17).
Transition III occurs at 503 nm (ε = 457 M−1 cm−1), which is
proposed to be a weak metal-to-ligand charge transfer
(MLCT) band. The identity and effects that the −OMe

group imposes on this charge transfer band are currently being
explored.
In order to gain preliminary insight into reactivity and

whether the regioisomeric ratio of complexes resulted in a
similar regioisomeric ratio of products, methylation followed
by deuteration was performed (Figure 5). A deuteration over a

protonation was selected due to the desirability of the products
and the ease of detection in situ. The products were detected
by 2H NMR spectroscopy in an 88:12 ratio, and the ratio and
product identity were further verified by GC-MS (see the SI).
The yield was low due to the instability of the Ni-aryl product
formed after methylation prior to deuteration and was unable
to be quantified. Despite this, the ratios in the 2H NMR
spectrum and GC-MS were insightful and provide a
preliminary understanding that the ligand is providing
regiocontrol of functionalization as compared to symmetric
ligand systems.16 Due to the absence of any Ni(I/II) redox
processes in the CV, no observed d−d transitions in the UV−
vis spectrum, observed bond metrics, and the diamagnetic
nature of the complex, complex 4 is proposed to react similarly
to a low-valent Ni complex. The reactivity of 4a and 4b with an
electrophile is consistent with the nucleophilic nature of these
complexes.
In summary, we report the first example of an aryne complex

with an unsymmetrical bidentate PHOX ligand. In order to
study the effect of the PHOX ligand, we chose an o-methoxy
aryne as a model system. As hypothesized, the impact of the
different steric and electronic effects of the phosphine versus
oxazoline donor generates a regioisomeric mixture of
complexes, favoring the methoxy in the position ortho to the
aryne C that is trans to phosphine. The first CV studies of an
aryne complex are also reported and demonstrate that there is
significant π-backdonation into the aryne bond, leaving the
metal electron deficient. Finally, preliminary reactivity studies
demonstrate that the ligand can control the regioselectivity in
the product.
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free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by

Figure 3. CVs of 4 display (a) full electrochemical window events at
100 mV/s and (b) scan rate dependence studies on the reduction
event with normalized peak currents. CVs collected in 0.1 M
[nPr4N][BArF4] electrolyte solutions in THF under Ar. *Minor
impurity.

Figure 4. UV−vis spectrum of complex 4 in THF at 298 K.

Figure 5. Preliminary reactivity of Me/D coupling partners.
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