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A B S T R A C T   

Background: Lipids are involved in the interaction between viral infection and the host metabolic and immu-
nological responses. Several studies comparing the lipidome of COVID-19-positive hospitalized patients vs. 
healthy subjects have already been reported. It is largely unknown, however, whether these differences are 
specific to this disease. The present study compared the lipidomic signature of hospitalized COVID-19-positive 
patients with that of healthy subjects, as well as with COVID-19-negative patients hospitalized for other infec-
tious/inflammatory diseases. 
Methods: We analyzed the lipidomic signature of 126 COVID-19-positive patients, 45 COVID-19-negative patients 
hospitalized with other infectious/inflammatory diseases and 50 healthy volunteers. A semi-targeted lipidomics 
analysis was performed using liquid chromatography coupled to mass spectrometry. Two-hundred and eighty- 
three lipid species were identified and quantified. Results were interpreted by machine learning tools. 
Results: We identified acylcarnitines, lysophosphatidylethanolamines, arachidonic acid and oxylipins as the most 
altered species in COVID-19-positive patients compared to healthy volunteers. However, we found similar al-
terations in COVID-19-negative patients who had other causes of inflammation. Conversely, lysophosphati-
dylcholine 22:6-sn2, phosphatidylcholine 36:1 and secondary bile acids were the parameters that had the 
greatest capacity to discriminate between COVID-19-positive and COVID-19-negative patients. 
Conclusion: This study shows that COVID-19 infection shares many lipid alterations with other infectious/in-
flammatory diseases, and which differentiate them from the healthy population. The most notable alterations 
were observed in oxylipins, while alterations in bile acids and glycerophospholipis best distinguished between 
COVID-19-positive and COVID-19-negative patients. Our results highlight the value of integrating lipidomics 
with machine learning algorithms to explore the pathophysiology of COVID-19 and, consequently, improve 
clinical decision making.   

1. Introduction 

To date, the coronavirus disease 2019 (COVID-19) pandemic has, 
according to data from the WHO [1], affected 349 million people 
worldwide, causing 5.5 million deaths. Knowledge of the risk factors and 
symptoms would help curb infection and transmission rates. Developing 

screening tests and effective therapies have been the urgent issues that 
most studies have addressed i.e. most studies have been directed toward 
describing the clinical and epidemiological characteristics of COVID-19 
[2–6] or have investigated the “cytokine storm” associated with the 
infection, with the urgent objective of combating the pandemic in the 
short term [7,8] while bearing in mind that COVID-19 will not be 
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eradicated easily, and that populations would need to accommodate for 
the infection in the future. Indeed, although vaccination campaigns are 
progressing effectively in financially well-established countries, infec-
tion continues to increase rapidly in many countries that have poor 
health infrastructures. With extensive infection and re-infection, there is 
potential for new variants of SARS-CoV-2 which would keep world-wide 
infection rates high. Hence, medium and long-term research efforts 
aimed at developing strategies for identifying and treating COVID-19 
also remain correspondingly high. SARS-CoV-2 infection produces dra-
matic changes in the metabolism of the host cell, including the con-
centration and composition of different lipid species [9,10]. Lipids 
combine with thousands of metabolites and hundreds of specific path-
ways in support of the life-cycle of an organism [11]. As such, it is not 
surprising that these compounds are involved in the interplay between 
viral infection and the host's response [10]. Viruses are internalized into 
cells through protein-lipid interactions [12,13] and are externalized via 
lipid vesicles [14]. Interactions between viruses and the organism alter 
mitochondrial metabolism and the microbiota [15–17]. Further, lipids 
are bioactive molecules in the organism's immune system and small 
differences in their chemical structures can have a strong impact on the 
immune response [18,19]. For example, eicosanoids have signaling 
functions that depend on the location or orientation of a hydroxyl group 
in the fatty acid chain, small alterations in which result in anti- or pro- 
inflammatory stimuli [20]. Oxidative stress triggered by infection pro-
foundly alters the lipid composition of the host cells and circulation. 
Oxidized lipids are produced via specific biosynthetic pathways and 
involve the direct action of free radical species on polyunsaturated fatty 
acids. The resultant interference with the functions of various enzymes 
has significant biological consequences [21] which are difficult to 
quantify metabolically. Fortunately, the advent of powerful tools of 
metabolomics techniques in combination with bioinformatics and arti-
ficial intelligence are of considerable help in understanding the in-
teractions between infectious processes and the metabolic responses of 
the host [19–23]. Studies comparing the lipidome of COVID-19-positive 
patients vs. healthy subjects have been reported, and distinctive lipid 
species have been identified [10]. However, there is a paucity of infor-
mation regarding the specificity of these measurements, i.e. whether 
variations in circulating levels of the species identified are characteristic 
of the COVID-19 infection, or whether they can be observed in other 
infectious or inflammatory diseases, as well. Our study was aimed at 
identifying alterations in the serum lipidome of patients with COVID-19 
infection, the aim being to evaluate the relationships between the al-
terations and the disease and. as such, to identify potential biomarkers 
that would help in clinical decisions in diagnosis and treatment. 

2. Materials and methods 

2.1. Study design and participants 

We performed a retrospective post-hoc cohort study in 126 patients 
hospitalized for COVID-19 infection between March and October 2020 
in the Department of Internal Medicine, or in the Intensive Care Unit 
(ICU) of our Institution. Inclusion criteria into the present study were: 
≥18 years of age and a positive PCR result for COVID-19 obtained within 
24 h before the blood sample was drawn for the study. Exclusion criteria 
were: having a life expectancy ≤24 h, impaired liver function, or 
pregnancy. We also analyzed samples from 45 COVID-19-negative pa-
tients hospitalized with diseases having an infectious/inflammatory 
component. These samples, collected in 2019, belonged to a previous 
prospective study in patients with urinary catheter-related infection. A 
detailed description of these patients has been published [24]. For the 
purposes of the present study, we selected a subgroup with a distribution 
of age and sex to match, as closely as possible, the COVID-19-positive 
patients. As a control group, we analyzed samples from 50 healthy 
volunteers who had participated in an epidemiological study, the details 
of which have already been reported [25]. The subjects had no clinical 

or biochemical evidence of diabetes, cancer, kidney failure, liver dis-
ease, or neurological disorders. Serum samples from all participants 
were stored in our Biobank at − 80 ◦C until the time of batched analyses. 
We recorded clinical and demographic data and calculated the McCabe 
score as an index of clinical prognosis [26] and the Charlson index as a 
way of categorizing patient comorbidities [27]. This study was approved 
by the Comitè d'Ètica i Investigació en Medicaments (Institutional Review 
Committee) of the Institut d'Investigació Sanitària Pere Virgili (Resolution 
CEIM 040/2018, modified on April 16, 2020). 

2.2. Lipidomics analyses 

A total of 283 lipid species were analyzed by semi-targeted lip-
idomics. This approach differs from targeted lipidomics in that it does 
not use a specific standard for each of the 283 lipid species analyzed but, 
instead, selects a small sample set of standards from each of the different 
lipid classes. The calibration curves so obtained were used for the 
quantification of their corresponding lipid species. The rest of the 
compounds were quantified using a standard that belongs to the same 
lipid class and has a similar chemical structure. In addition, labeled 
internal standards were used to correct the response of each detected 
lipid species. The standards used were the following: For acylcarnitine 
determination, L-carnitine, O-acetyl-L-carnitine, O-propionyl-L-carni-
tine, O-butyryl-L-carnitine, O-isovaleryl-L-carnitine, O-octanoyl-L-carni-
tine, O-myristoyl-L-carnitine, O-palmitoyl-L-carnitine, O-glutaryl-L- 
carnitine, O-3-hydroxyisovaleryl-L-carnitine, O-dodecanoyl-L-carnitine, 
O-octadecanoyl-L-carnitine, and O-3-DL-hydroxypalmitoyl-L-carnitine. 
Internal standards were trimethyl-D9, N-methyl-D3, N,N,N,-methyl-D9, 
and N-methyl-D9 (Cambridge Isotope Laboratories, Andover, MA, USA). 
For polar lipids determination, lipid standards were lysophosphatidy-
lethanolamine (LPE) 16:0, lysophosphatidylcholine (LPC) 18:0, dehy-
droepiandrosterone 3-sulfate, cortisol, cholic acid, taurocholic acid, 
deoxycholic acid, arachidonic acid, and 15-hydroxyeicosatetraenoic 
acid (15-HETE), and the set of labeled lipid as internal standards were 
LPC 18:1-d7, cholic acid-d4, taurocholic acid-d5, arachidonic acid-d8, 
and myristic acid-d27 (Avanti Polar Lipids, Alabaster, AL, USA). Lastly, 
standards for the determination of non-polar lipids were LPC 18:0, 
phosphatidylcholine (PC) 32:0, sphingomyelin (SM) 36:1, diglyceride 
(DG) 36:0, triglyceride (TG) 52:3, and cholesteryl ester (CE) 16:0, and 
the set of labeled lipid internal standards was the SPLASH mixture from 
Avanti Polar Lipids. Analytical methods have been previously reported 
by our research group [28,29]. Briefly, acylcarnitines and polar lipids 
were extracted with methanol and non-polar lipids were extracted with 
a mixture of tert-buthyl ether and methanol (1:2 v/v) with 0.5% acetic 
acid. The extracts were injected into a 1290 Infinity ultra-high-pressure 
liquid chromatograph (UHPLC) coupled to a 6550 quadrupole-time-of- 
flight mass spectrometer (QTOF) using a dual jet stream electrospray 
ionization (ESI) source (Agilent Technologies, Santa Clara, CA, USA). 
The system was equipped with a binary pump (G4220A) and an auto-
sampler (G4226A) thermostat-controlled at 4 ◦C. Acylcarnitines were 
separated in a Kinetex 2.6 μm Polar C18, 100 Å, 150 × 2.1 mm column, 
(Phenomenex, Torrance, CA, USA). The mobile phase consisted of A: 
99.9% water +0.1% formic acid; B: 99.9% methanol with 0.1% formic 
acid, at a flow rate of 0.4 mL/min. The gradient used was as follows: 0 
min, 0% B; 11 min, 100% B, 13 min, 0%B, 16.5 min, 0%B. Polar lipids 
were separated in an Acquity BEH C18 column 1.7 μm, 2.1 mm × 100 
mm (Waters Corp., Milford, MA, USA). The mobile phase consisted of A: 
water +0.05% formic acid; B: acetonitrile +0.05 formic acid. The flow 
rate was 0.3 mL/min. The gradient used was as follows: 0 min, 2% B; 2 
min, 50% B; 10 min, 98% B; from 10 to 13 min, gradient was maintained 
at 98% B for column cleaning; 14 min, 2% B followed by a post-run of 4 
min under the same conditions for column re-conditioning. Non-polar 
lipids were separated in a Kinetex EVO C18 column 2.6 μm, 2.1 mm ×
100 mm (Phenomenex). The mobile phase consisted of A: water, B: 
methanol and C: 2-propanol containing 10 mM ammonium formate 
+0.1% formic acid, at a flow rate of 0.6 mL/min. The gradient used was 
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as follows: 0 min, 10% B, 40% C; 0.5 min, 10% B, 50% C; 1.5 min, 9.5% 
B, 52.5% C; 1.6 min, 7.5% B, 63.5% C; 5 min, 7% B, 66.5% C; 5.1 min, 
4% B, 82.5% C; 7.5 min, 3.5% B, 85% C; 9 min, 3.5% B, 85% C; 9.5 min, 
0% B, 100% C; 11.5 min, 0% B, 100% C; 11.6 min, 10% B, 40% C. A post 
run of 2 min in initial conditions was used for column conditioning. 

Metabolites were quantified using Mass Hunter Quantitative Anal-
ysis B.07.00 (Agilent Technologies). Lipid characterization was done by 
matching their accurate mass and isotopic distributions to the Metlin- 
PCDL database (Scripps Research Institute, La Jolla, CA, USA) allow-
ing a mass error of 10 ppm and a score higher than 80 for isotopic 
distribution. 

2.3. Statistical analyses 

Statistical assessments were performed with the R program (RStudio 
version 4.0.5). The MetaboAnalystR package was used to generate 
scores and loading plots and included False Discovery Rates (FDR), 
Volcano plots, Principal Component Analysis (PCA), Partial Least Square 
Discriminant Analysis (PLS-DA), and hierarchically clustered heatmaps 
[30]. To evaluate the diagnostic accuracy of different combinations of 
lipids, we constructed a Monte Carlo cross validation model that com-
bined from 5 to 100 random variables, and subsequently calculated the 
area under the curve of the Receiver Operating Characteristics (ROC) 
curves, and confusion matrices [31]. The TableOne package was used to 
generate mean and standard deviation of all lipid concentrations [32]. 
The R-commands employed are shown as Supplementary Methods 
(Supplementary_Materials.docx file). 

3. Results 

3.1. Clinical characteristics of the studied groups 

The clinical characteristics of all participants are shown in Table 1. 
COVID-19-negative patients were significantly older and consumed less 
alcohol than the control group. COVID-19-positive patients had a lower 

frequency of smoking habit, alcohol intake, type 2 diabetes mellitus, 
chronic kidney disease and cancer than COVID-19-negative patients. 
The McCabe score and the Charlson index indicated that COVID-19- 
positive patients were, in general, less severe than COVID-19-negative 
patients. 

3.2. Acylcarnitines, arachidonic acid and oxylipins: the common lipid 
signature of COVID-19-positive and COVID-19-negative patients 

Numerical results are shown in Supplementary 
Tables (Supplementary_Tables.xls file). Volcano plots identified changes 
in the concentrations of 107 species comparing the COVID-19-positive 
patients vs. the healthy volunteers and 108 species comparing the 
COVID-19-negative patients vs. the healthy volunteers. The species with 
the greatest changes were O-octanoyl-R-carnitine (CAR 8:0) and LPE, 
which were increased, and the oxylipins 9/13-hydroxyoctadecadienoic 
acid (9-HODE/13-HODE) and 15-HETE which were decreased 
(Fig. 1A). The heatmap clustering algorithm grouped the lipids into four 
blocks: The first three blocks were constituted mainly by oxylipins and 
the fourth by bile acids (Fig. 1B). PCA and PLS-DA completely segre-
gated the populations of healthy volunteers from COVID-19 patients 
(either positive or negative), and the Variable Importance in Projection 
(VIP) score identified 9-HODE/13-HODE and 15-HETE as the most 
effective lipids in distinguishing the groups of patients from the healthy 
volunteers (Fig. 1C and D). We did not observe any significant differ-
ences between the position of the fatty acid chain of the lysophospho-
lipids (LPC and LPE) in the different study groups (Supplementary 
Fig. 1). 

The enrichment analysis showed an alteration of the pathways of 
fatty acid synthesis, the metabolism of arachidonic, linoleic and lino-
lenic acids (precursors of oxylipins), and the β-oxidation of fatty acids in 
COVID-19-positive or COVID-19-negative patients compared to control 
subjects (Fig. 2A and B). 

Monte Carlo models were generated to help identify those species 
that could be useful as biomarkers of infectious/inflammatory processes 

Table 1 
Demographic and clinical characteristics of the patients and the healthy subjects.   

Healthy subjects n = 50 COVID-19 negative patients n = 45 COVID-19 positive patients n = 126 P value * P value †

Demographic variables 
Age, years 75 (66–84) 84 (75–89) 71 (58–83) <0.001 <0.001 
Sex, male 38 (76.0) 30 (66.7) 68 (54.8) 0.218 0.112 
Smoking, n (%) 19 (38.0) 16 (35.6) 6 (4.8) 0.834 0.076 
Alcohol intake, n (%) 28 (56.0) 7 (15.5) 6 (4.8) <0.001 0.063  

Comorbidities 
Cardiovascular disease, n (%) 0 18 (40) 68 (54) NA 0.075 
Type 2 diabetes mellitus, n (%) 0 22 (48.9) 30 (23.8) NA <0.001 
Chronic neurological disease n (%), 0 0 29 (23.0) NA NA 
Chronic kidney disease, n (%) 0 19 (42.2) 22 (17.5) NA 0.001 
Chronic lung disease, n (%) 0 0 18 (14.3) NA NA 
Cancer, n (%) 0 17 (37.8) 16 (12.7) NA <0.001 
Chronic liver disease, n (%) 0 0 1 (0.8) NA NA 
McCabe index RFD, n (%) NA 10 (22.2) 7 (5.6)   

UFD, n (%) 19 (42.2) 31 (24.6) NA <0.001 
NFD, n (%) 16 (35.6) 88 (69.8)   

Charlson index No comorbidity, n (%) NA 10 (22.2) 83 (65.9) NA <0.001 
Low comorbidity, n (%) 18 (40.0) 29 (23.0)   
High comorbidity, n (%) 17 (37.8) 14 (11.1)    

Medications 
Oral antidiabetics, n (%) NA 19 (42.2) 37 (29.4) NA 0.083 
Statins, n (%) NA 16 (35.6) 44 (34.9) NA 0.538 
ACEIs, n (%) NA 14 (31.1) 24 (27.0) NA 0.364 
ARAs, n (%) NA 12 (26.7) 21 (16.7) NA 0.109 
Insulin, n (%) NA 9 (20.0) 28 (22.2) NA 0.468 

* COVID-19 positive patients with respect to healthy subjects; † COVID-19 positive patients with respect to COVID-19 negative patients. Statistical analyses performed 
by the Student's t-test (quantitative) or the χ-square test (qualitative). Results are given as medians and 95% CI or as numbers and percentages. ACEIs: Angiotensin 
converting enzyme inhibitors; ARAs, Angiotensin II receptor antagonists; NFD: Non-fatal disease; RFD: Rapidly fatal disease. UFD: Ultimately fatal disease. 
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(whether COVID-19-positive or not). The models initially combined five 
randomly chosen lipid species and determined the area under the curve 
(AUC) for each from the combined ROC curve. The numbers of variables 
were progressively increased to 100 in 6 different models. In all 

instances, the analyses of the AUC-ROC curves were >0.98 (Fig. 3A). 
The 100-variable model was chosen to construct a confusion matrix, 
which correctly classified all but 1 of the patients (Fig. 3B). The algo-
rithm identified oxylipins as the most relevant variables in the 

Fig. 1. Lipid signatures differentiate COVID-19 positive and COVID-19-negative patients from healthy individuals. (A): Volcano plots representing the log fold- 
change of lipid species in COVID-19-positive (upper panel) and COVID-19-negative (lower panel) patients relative to the control group. (B): Heatmap showing 
the 15 most relevant lipid species in the control group (blue), COVID-19-negative (yellow) and COVID-19-positive (red) patients. (C): From left to right: Principal 
Component Analysis (PCA) clustering of the COVID-19-positive patients and the control group; Principal Least Square Discriminant Analysis (PLS-DA) clustering the 
COVID-19-positive patients and the control group; Variable Importance in Projection (VIP) score identifying 9/13-HODE and 15-HETE as the most relevant pa-
rameters discriminating between COVID-19-positive patients and the control group. (D): From left to right: PCA clustering the COVID-19-negative patients and the 
control group; PLS-DA clustering the COVID-19-negative patients and the control group; VIP score identifying 9/13-HODE and 15-HETE as the most relevant pa-
rameters discriminating between COVID-19-negative patients and the control group. In 3-dimensional plots of PCA and PLS-DA, each ball represents a patient, and 
positions depend on differences in lipid concentrations. Axes are formed by different combinations of variables, and the percentages represent the proportion of 
variance that can be explained. PCA is a non-supervised test and PLS-DA is a supervised analysis. 
Acronyms: CAR: Acylcarnitine; DHEA: dehydroepiandrosterone; DHOME: dihydroxyoctadecenoic acid; HDHA: hydroxydocosahaxaenoic aid; HETE: hydrox-
yeicosatetraenoic acid; HODE: hydroxyoctadecadienoic acid; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; TG: triglyceride. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Enrichment analysis showing the most severely affected biochemical pathways in COVID-19-positive patients (A) and COVID-19-negative patients (B) 
compared with the control group. 
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Fig. 3. Identification of biomarkers for infectious/inflammatory processes. (A): Receiver Operating Characteristics plot of Monte Carlo models corresponding to the 
combination of 5 to 100 variables. (B): Confusion matrix of the generated 100-variable model. (C): Relative importance of the different variables chosen by the 
model. (D) Serum arachidonic acid concentrations in the COVID-19-positive and COVID-19-negative patients and the control group. (D): Receiver Operating 
Characteristics plots of the measured arachidonic acid in discriminating between the selected groups. 
Acronyms: AUC: Area under the curve; CAR: acylcarnitine; DHEA: dehydroepiandrosterone; HDHA: hydroxydocosahaxaenoic aid; HETE: hydroxyeicosatetraenoic 
acid; HODE: hydroxyoctadecadienoic acid; LPC: lysophosphatidylcholine; THOME: trihydroxyoctadecenoic acid. 
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construction of the model. Other species identified were carnitines and 
lysophospholipids (Fig. 3C). From among these species, we chose 
arachidonic acid for further analysis because: its physiological and 
pathological importance is high; it is one of the main precursors of 
oxylipin synthesis; its internal standard is commercially available so its 
quantification is facilitated. Fig. 3D shows serum concentrations of 
arachidonic acid being significantly decreased in COVID-19-positive as 
well as COVID-19-negative patients. Moreover, the AUCs of the ROC 
curves for arachidonic acid were >0.97 in the discrimination of both 
patient groups from the control group (Fig. 3E). 

3.3. Phosphatidylcholines and secondary bile acids are specifically altered 
in COVID-19 positive patients 

Volcano plots identified changes in the concentrations of 86 species 
comparing the COVID-19-positive vs. COVID-19-negative patients (78 
increased and 8 decreased in COVID-19-positive patients). The species 
that presented greatest changes were phosphatidylcholine 36:5 (PC 
36:5), long-chain triglycerides (TG) 54:2 and 54:7 which were 
increased, and carnitine (CAR) 18:2, epoxystearic acid, and glycodeox-
ycholic acid, that were decreased in COVID-19-positive patients 
(Fig. 4A). PCA and PLS-DA showed separation but with a certain degree 
of overlap (Fig. 4B). The most relevant parameters in the discrimination 
between both groups of patients were the secondary bile acids deoxy-
cholic acid and ursodeoxycholic/hyodeoxycholic acid (Fig. 4C). The 
heatmap clustered TG and PC values into two different groups, although 
with very similar behavior: they tended to be relatively more concen-
trated in COVID-19-positive patients than in the COVID-19-negative 
patients (Fig. 4D). 

As in the previous section (described above), we generated Monte 
Carlo models to ascertain whether there was a biological marker that 
effectively discriminated between COVID-19-positive and COVID-19- 
negative patients (Supplementary Fig. 2A and B). The approach identi-
fied a variety of compounds, the concentrations of which differed in 
positive and negative patients (Supplementary Fig. 2C), but the AUC of 
even the best ROC curve did not exceed 0.8 (Supplementary Fig. 3D and 
E). Because the discriminatory ability of the Monte Carlo approach was 
modest, we manually tested the individual discriminatory ability of each 
of the variables; an AUC of 0.95 was obtained with the combination of 
LPC22:6-sn2 and PC36:1 (Fig. 4E). 

3.4. Lipid profile in COVID-19-positive patients was related to specific 
comorbidities but not to clinical prognosis or survival 

When we analyzed the lipid profile in relation to individual comor-
bidities, we observed several important differences. For example, pa-
tients with cancer had significantly higher levels of most lipid series than 
those patients without cancer, while patients with chronic lung disease 
had, in general, lower lipid levels (Fig. 5A). However, this analysis 
should be viewed with caution since most of the patients had more than 
one comorbidity and, as such, we prefer not to speculate on the influence 
of their interactions. To evaluate whether alterations in the lipid profile 
could be used to predict disease severity or mortality we applied K- 
means clustering in order to group patients according to their similar-
ities within the circulating lipidome (Fig. 5B). All the distributions were 
dispersed and overlapped to a considerable extent, indicating that there 
was no significant relationship between lipid profile and survival, 
admission to the ICU, or the Charlson and McCabe indices. 

We did not find any significant influence of sex differences or 
potentially inflammatory cardiometabolic comorbidities (cardiovascu-
lar disease or type 2 diabetes mellitus) on the lipidomic signature neither 
in COVID-19-positive nor in COVID-19-negative patients. Both PCA and 
heatmap clustering showed a considerable overlap in groups (Supple-
mentary Figs. 3 and 4). 

4. Discussion 

When we compared the results of the COVID-19-positive patients 
with the healthy volunteers, the most relevant findings were the in-
creases in the concentrations of CAR 8:0 and LPE, and the decrease in the 
concentrations of 9/13-HODE and 15-HETE. The enrichment analysis 
identified alterations in the synthesis pathway of arachidonic acid from 
fatty acids. The measurement of the serum levels of arachidonic acid 
showed a high level of discrimination between patients and control 
subjects. Increased serum CAR 8:0 concentrations in COVID-19-positive 
patients may be a reflection of mitochondrial dysfunction. Acylcarni-
tines are markers of mitochondrial function; specifically for β-oxidation 
of fatty acids. They are synthesized via carnitine palmitoyltransferase 1 
that ferries fatty acids into the mitochondrial matrix. Incomplete fatty 
acid oxidation results in elevated acylcarnitine concentrations [33]. 
Indeed, our enrichment analysis suggested alterations in the pathways of 
mitochondrial β-oxidation of very-long-chain and medium-chain fatty 
acids. The mitochondrial long-chain fatty acids β-oxidation is impaired 
in several viral infections, including COVID-19 [34], while β-oxidation 
defects are mirrored by changes in the concentration of long-chain 
acylcarnitines. The accumulation of acylcarnitines within the lung has 
been reported to be a risk factor for acute lung injury due to their in-
hibition of pulmonary surfactants [35]. 

Fatty acids play essential roles in viral infection because they provide 
building blocks for membrane synthesis during virus proliferation, and 
also because fatty acids can be converted to many lipid mediators such 
as the eicosanoids, which play significant roles in immune and inflam-
matory responses [36]. We observed decreased serum concentrations of 
several fatty acids including arachidonic, stearic, lauric, and palmitic 
acid in COVID-19-positive patients compared with healthy individuals. 
This decrease may be related to enhanced synthesis pathways of viral 
membrane phospholipids. Among the fatty acids, the most marked 
alteration that we observed was a highly significant decrease in serum 
arachidonic acid concentration. This finding confirms an earlier study 
[37]. This may be relevant from a pathophysiological point of view in 
that arachidonic acid is a potent antiviral agent participating in the 
inactivation of enveloped viruses, including SARS-CoV-2 [10]. A 
decrease in the concentrations of this lipid would be detrimental to the 
host, and would encourage the survival of the invading virus. A further 
study reported that exogenous supplementation with arachidonic acid 
inhibited HcoV-229E virus replication in cultured cells [38]. The 
decrease in circulating levels of fatty acids was associated with a 
decrease in the concentrations of 9/13-HODE and 15-HETE; oxylipin 
products of oxidation of linoleic acid and arachidonic acid, respectively. 
We would have expected to find increased serum oxylipin levels because 
their concentrations tend to increase with oxidative stress and because 
they are mediators of the inflammatory response [39]. However, an 
early study showed that high levels of oxylipins in lung cells infected by 
COVID-19 do not correspond to any concomitant increases in their 
concentrations in the circulation [40]. Indeed, these lipids are trans-
ported in plasma associated, mainly, with high-density lipoproteins 
from which they can be degraded by the antioxidant enzyme 
paraoxonase-1 [24,41]. 

Although the alterations in the lipid signature of COVID-19-positive 
patients are fairly unambiguous when compared to healthy subjects, 
COVID-19-negative patients presented similar alterations, as well. This 
finding suggests that these alterations were not specific to SARS-CoV-2 
infection but, rather, are common to a multitude of infectious/inflam-
matory processes. For this reason, we compared the lipidomic signature 
of the COVID-19-positive patients with that of the COVID-19-negative 
patients. One alteration in particular was the significant difference in 
the circulating levels of PC and LPC. Several studies have proposed a role 
of these molecules in COVID-19 infection, but the results published are 
far from consistent. Three studies had showed a decrease in plasma PC 
and an increase in LPC levels in COVID-19-positive patients compared to 
healthy subjects [42–44] while others showed that both phospholipids 
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decreased [45,46], or even that the concentrations of PC increased [14] 
and those of LPC decreased [47]. We found a decrease in the serum 
concentration of LPC 22:6 and an increase in that of PC 36:1 and, hence, 
the ratio between the two phospholipids discriminated fairly well be-
tween positive and negative patients, and with excellent diagnostic ac-
curacy. In addition, Volcano plots identified PC 36:5 as one of the lipid 
species that was most strongly increased when comparing positive vs. 
negative patients. These results agree with those reported in Calu-3 cells, 
where an increase in PC synthesis was observed when the cells were 
infected with SARS-CoV-2 [48]. Differences between the characteristics 
of the patient groups studied can probably explain this discrepancy 
between different authors' findings. Thus, some studies have been per-
formed in severely affected patients with pneumonia [44] or critically ill 
[45], others in asymptomatic patients [47], and others in patients with 
various levels of severity [42–44]. Moreover, in all of them the lipidomic 
signatures had been compared with those of healthy volunteers. Our 
approach is unique in that we compared COVID-19 patients with in-
fectious/inflammatory diseases of origins other than COVID-19 
infection. 

Several factors could influence plasma PC and LPC concentrations. 
For example, both are key components of cell membranes and lipopro-
teins. Low plasma levels of these compounds may be explained as 
resulting from liver impairment in patients with severe COVID-19, while 
their increase would suggest increased activity of phospholipase A2 
[48]. Alterations in PC and LPC levels have been related to disease 
severity because of the roles that these lipids play in the inflammatory 
response [49]. 

Another alteration we observed in the COVID-19-positive patients 
when compared with the COVID-19-negative patients was a decrease in 
the concentrations of secondary bile acids, mainly deoxycholic acid and 
ursodeoxycholic/hyodeoxycholic acid; products of metabolism in the 
human gut microbiome. Our results are in accordance with those 
reporting that the fecal microbiome diversity is decreased in COVID-19 
patients [50] and SARS-CoV-2-infected primates [17]. Moreover, 
decreased plasma deoxycholic concentrations have been reported in 
severe COVID-19 patients compared to those with milder forms of the 
disease [51]. Inflammation caused by lung infection can disrupt the gut 
barrier integrity and increase the permeability to gut microbes and 
microbial products. This microbial translocation can exacerbate 
inflammation resulting from positive feedback. Further, microbial 
translocation may also modulate the circulating levels of gut microbiota- 
associated products such as secondary bile acids. As such, the circulating 
levels of these compounds would reflect the functional status of the gut 
and the metabolic activity of its microbiota [52]. Also, they are bio-
logically active molecules that regulate several immunological func-
tions, including inflammatory responses. Indeed, ursodeoxycholic acid 
has antioxidant, anti-inflammatory, anti-apoptotic, and immunomodu-
latory properties [16]. However, a disruption in the interaction between 
the gut and the lung has been related to respiratory tract diseases with 
causes other than COVID-19 [53], which suggests that secondary bile 
acid measurements are only useful when comparing COVID-19 infected 
patients and patients with non-respiratory inflammatory/infectious 
diseases. 

We did not find any significant difference in the lipidomic signature 
of patients who survived and those who did not, nor with admission to 
the ICU, nor in the clinical prognosis. In this sense we differ from earlier 

studies, albeit the published information is scarce. For example, Sien-
delar et al. [49] found that a panel of 22 metabolites (including PC and 
LPC), predicted disease severity (as measured as a need for ICU admis-
sion). Giron et al. [51] reported that alterations in secondary bile acid 
levels, resulting from disrupted crosstalk between gut and lung, are 
associated with ICU admission. The reasons for these discrepancies are 
purely speculative. Plausible explanations could be the heterogeneity of 
the disease itself, the different levels of severity and, as well, the asso-
ciated comorbidities in the groups of patients studied by the different 
authors. 

We are unable to provide realistic explanations regarding the extent 
to which variations in the serum lipidome reflect alterations in the 
affected tissues. Lipid metabolism is complex and can be affected by 
multiple factors. In particular, it is difficult to discern from measure-
ments made in single plasma samples which tissue is affected in specific 
disease and what is the mechanism underlying the alteration [54]. 
However, some interesting hypotheses can be formulated. For example, 
the lipidome of the different types of lung cells in humans has been 
characterized [55], and significant variations have been found in 
different lipid subclasses and, in particular, in the length of the fatty acid 
chains. Thus, lung immune cells are relatively richer in long-chain TG 
that are supposed to have a regulatory role in the immune response, as 
signal molecules. Indeed, long-chain TG are a source of polyunsaturated 
fatty acids that, due to the action of oxidative stress, can give rise to 
bioactive lipid mediators that regulate inflammation and the immune 
response [56,57]. Our study found a significant, and very relevant, in-
crease in serum long-chain TG concentrations in COVID-19-positive 
compared with COVID-19-negative patients. TG are carried in the cir-
culation packed in the very-low density lipoproteins (VLDL), and studies 
agree in that the levels of triglycerides, VLDL, and polyunsaturated fatty 
acids are increased in COVID-19 and Ebola virus disease [23,58–60]. 
Therefore, this elevation in long-chain TG concentrations could be 
related to the immune response, although the mechanisms behind its 
deregulation are not well elucidated. 

In summary, lipidomics and machine learning provide cost- and 
time-effective biomarker detection for COVID-19 infection. They define 
altered biochemical pathways and possible therapeutic targets. We 
identified CAR, LPE, arachidonic acid and oxylipins as the most altered 
parameters in COVID-19 patients compared to healthy volunteers. 
However, our study is also a cautionary note in that it shows these al-
terations to be not confined to COVID-19, and appear to occur in other 
diseases with an infectious/inflammatory component. We also identified 
long-chain TG, PC36:5, LPC22:6-sn2, PC36:1 and secondary bile acids as 
the most altered parameters when comparing COVID-19-positive versus 
COVID-19-negative patients. These lipid alterations highlight the op-
tions of continuing to treat these patients post-discharge from hospital. 
Given the pro-atherogenic role of some of these lipid species, follow-up 
treatment could include lifestyle modifications and lipid-lowering 
drugs. Moreover, we found that arachidonic acid and the ratio be-
tween LPC22:6-sn2 and PC36:1 show an excellent diagnostic accuracy 
(AUC from the ROC curves >0.95) in discriminating COVID-19-positive 
from healthy subjects and COVID-19-negative patients, respectively. 

Our study has several limitations: Firstly, the number of cases studied 
is small, especially in the groups of healthy volunteers and COVID-19- 
negative patients. All of our patients were hospitalized and, therefore, 
we do not know the degree of alteration of the lipid signature in COVID- 

Fig. 4. Lipid signatures differentiate between COVID-19-positive and COVID-19-negative patients. (A): Volcano plot representing the log fold-change of lipid species 
in COVID-19-positive with respect to COVID-19-negative patients. (B): Principal Component Analysis (PCA) clustering the COVID-19-positive and the COVID-19- 
negative patients. (C): Principal Least Square Discriminant Analysis (PLS-DA) clustering the COVID-19-positive and the COVID-19-negative patients. The Variable 
Importance in Projection (VIP) score identified deoxycholic and ursodeoxycholic/hyodeoxycholic acids as highly relevant parameters in the discrimination between 
both groups of patients. (D): Heatmap. (E): Serum concentrations of the selected lipid species in COVID-19- positive and COVID-19-negative patients, and Receiver 
Operating Characteristics plot of the ratio between them. In 3-dimensional plots of PCA and PLS-DA, each ball represents a patient, and position depends on dif-
ferences in lipid concentrations. Axes are formed by different combination of variables, and percentages represent the proportion of variance that can be explained. 
PCA is a non-supervised test and PLS-DA is a supervised analysis. 
Acronyms: AUC: Area under the curve; CAR: acylcarnitine; LPC: lysophosphatidylcholine; PC: phosphatidylcholine; TG: triglyceride. 
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Fig. 5. Relationships between the lipidomics signature and the clinical characteristics of COVID-19-positive patients. (A): Heatmap showing the variations in serum 
lipid concentrations in relation to comorbidities. (B): K-means clustering of patient group according to their similarities in the circulating lipidome. Each individual 
patient is represented by a point with a different color depending on whether or not they had the selected characteristic. 
Acronyms: CAR: acylcarnitines; CE: cholesterol esters; DG: diglycerides; FA: fatty acids; LPC: lysophosphatidylcholines; LPE: lysophosphatidylethanolamines; PC: 
phosphatidylcholines; SM: sphingomyelins; TG: triglycerides. 
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19-positive patients who are asymptomatic or have mild symptoms. The 
COVID-19-negative patients were a heterogeneous group, with different 
types of underlying diseases, albeit they enabled us to identify specific 
alterations of COVID-19 or, at least, of severe respiratory diseases. 
Finally, our semi-targeted approach allowed us to measure accurately 
those species of analytes for which we had standards. However, the 
accuracy of measurements of the rest of the species are, inevitably, 
somewhat lower. Nevertheless, our systematic investigation showed 
that the integration of lipidomics with machine learning algorithms can 
increase the understanding of COVID-19 pathophysiology and, as such, 
facilitate more effective clinical decision making. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.metabol.2022.155197. 
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González-Viñas M, et al. Clinical performance of paraoxonase-1-related variables 
and novel markers of inflammation in coronavirus disease-19. A machine learning 
approach. Antioxidants (Basel) 2021;10:991. https://doi.org/10.3390/ 
antiox10060991. 

[42] Wu D, Shu T, Yang X, Song JX, Zhang M, Yao C, et al. Plasma metabolomic and 
lipidomic alterations associated with COVID-19. Natl Sci Rev 2020;7:1157–68. 
https://doi.org/10.1093/nsr/nwaa086. 

[43] Song JW, Lam SM, Fan X, Cao WJ, Wang SY, Tian H, et al. Omics-driven systems 
interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab 
2020;32:188–202. https://doi.org/10.1016/j.cmet.2020.06.016. e5. 

[44] Barberis E, Timo S, Amede E, Vanella VV, Puricelli C, Cappellano G, et al. Large- 
scale plasma analysis revealed new mechanisms and molecules associated with the 
host response to SARS-CoV-2. Int J Mol Sci 2020;21:E8623. https://doi.org/ 
10.3390/ijms21228623. 

[45] Fraser DD, Slessarev M, Martin CM, Daley M, Patel MA, Miller MR, et al. 
Metabolomics profiling of critically ill coronavirus disease 2019 patients: 
identification of diagnostic and prognostic biomarkers. Crit Care Explor 2020;2: 
e0272. https://doi.org/10.1097/CCE.0000000000000272. 

[46] Delafiori J, Navarro LC, Siciliano RF, de Melo GC, ENB Busanello, Nicolau JC, et al. 
Covid-19 automated diagnosis and risk assessment through metabolomics and 
machine learning. Anal Chem 2021;93:2471–9. https://doi.org/10.1021/acs. 
analchem.0c04497. Epub 2021 Jan 20. 

[47] Hao Y, Zhang Z, Feng G, Chen M, Wan Q, Lin J, et al. Distinct lipid metabolic 
dysregulation in asymptomatic COVID-19. iScience 2021;24:102974. https://doi. 
org/10.1016/j.isci.2021.102974. 

[48] Dissanayake TK, Yan B, Ng AC, Zhao H, Chan G, Yip CC, et al. Differential role of 
sphingomyelin in influenza virus, rhinovirus and SARS-CoV-2 infection of Calu-3 
cells. J Gen Virol 2021;102:001593. https://doi.org/10.1099/jgv.0.001593. 

[49] Sindelar M, Stancliffe E, Schwaiger-Haber M, Anbukumar DS, Adkins-Travis K, 
Goss CW, et al. Longitudinal metabolomics of human plasma reveals prognostic 
markers of COVID-19 disease severity. Cell Rep Med 2021;2:100369. https://doi. 
org/10.1016/j.xcrm.2021.100369. 

[50] Ren Z, Wang H, Cui G, Lu H, Wang L, Luo H, et al. Alterations in the human oral 
and gut microbiomes and lipidomics in COVID-19. Gut 2021;70:1253–65. https:// 
doi.org/10.1136/gutjnl-2020-323826. 

[51] Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, et al. Plasma markers 
of disrupted gut permeability in severe COVID-19 patients. Front Immunol 2021; 
12:686240. https://doi.org/10.3389/fimmu.2021.686240. Correction in: Front 
Immunol. 2021;12:779064. PMCID: PMC8219958. 

[52] Mayneris-Perxachs J, Fernandez-Real JM. Exploration of the microbiota and 
metabolites within body fluids could pinpoint novel disease mechanisms. FEBS J. 
2020;287:856–65. https://doi.org/10.1111/febs.15130. 

[53] Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung 
microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol 
2018;20:e12966. https://doi.org/10.1111/cmi.12966. 

[54] Jain M, Ngoy S, Sheth SA, Swanson RA, Phee EP, Liao R, et al. A systematic survey 
of lipids across mouse tissues. Am J Physiol Endocrinol Metab 2014;306:E854–68. 
https://doi.org/10.1152/ajpendo.00371.2013. 

[55] Kyle JE, Clair G, Bandyopadhyay G, Misra RS, Zink EM, Bloodsworth KJ, et al. Cell 
type-resolved human lung lipidome reveals cellular cooperation in lung function. 
Sci Rep 2018;8:13455. https://doi.org/10.1038/s41598-018-31640-x. 

[56] Dichlberger A, Kovanen PT, Schneider WJ. Mast cells: from lipid droplets to lipid 
mediators. Clin Sci (Lond) 2013;125:121–30. https://doi.org/10.1042/ 
CS20120602. 

[57] Dichlberger A, Schlager S, Maaninka K, Schneider WJ, Kovanen PT. Adipose 
triglyceride lipase regulates eicosanoid production in activated human mast cells. 
J Lipid Res 2014;55:2471–8. https://doi.org/10.1194/jlr.M048553. 

[58] Nguyen M, Bourredjem A, Piroth L, Bouhemad B, Jalil A, Pallot G, et al. High 
plasma concentration of non-esterified polyunsaturated fatty acids is a specific 
feature of severe COVID-19 pneumonia. Sci Rep 2021;11:10824. https://doi.org/ 
10.1038/s41598-021-90362-9. 

[59] Bizkarguenaga M, Bruzzone C, Gil-Redondo R, Martin-Ruiz I, Barriales D, , 
et alSanJuan I. Uneven metabolic and lipidomic profiles in recovered COVID-19 
patients as investigated by plasma NMR metabolomics. NMR Biomed 2022;35: 
e4637. https://doi.org/10.1002/nbm.4637. 

[60] Bruzzone C, Bizkarguenaga M, Gil-Redondo R, Diercks T, Arana E, García de 
Vicuña A, et al. SARS-CoV-2 Infection dysregulates the metabolomic and lipidomic 
profiles of serum. iScience 2020;23:101645. https://doi.org/10.1016/j. 
isci.2020.101645. Epub 2020 Oct 5. 

H. Castañé et al.                                                                                                                                                                                                                                

https://doi.org/10.3390/metabo10050186
https://doi.org/10.3390/metabo10050186
http://refhub.elsevier.com/S0026-0495(22)00075-0/rf202204011234184394
http://refhub.elsevier.com/S0026-0495(22)00075-0/rf202204011234184394
https://doi.org/10.1136/ebmental-2020-300162
https://doi.org/10.1371/journal.pone.0082459
https://doi.org/10.1038/s42255-020-0237-2
https://doi.org/10.1074/jbc.M115.655837
http://refhub.elsevier.com/S0026-0495(22)00075-0/rf202204011143292987
http://refhub.elsevier.com/S0026-0495(22)00075-0/rf202204011143292987
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.3390/v11010073
https://doi.org/10.3390/v11010073
https://doi.org/10.1371/journal.pone.0132627
https://doi.org/10.1096/fj.202100540R
https://doi.org/10.3390/antiox10060991
https://doi.org/10.3390/antiox10060991
https://doi.org/10.1093/nsr/nwaa086
https://doi.org/10.1016/j.cmet.2020.06.016
https://doi.org/10.3390/ijms21228623
https://doi.org/10.3390/ijms21228623
https://doi.org/10.1097/CCE.0000000000000272
https://doi.org/10.1021/acs.analchem.0c04497
https://doi.org/10.1021/acs.analchem.0c04497
https://doi.org/10.1016/j.isci.2021.102974
https://doi.org/10.1016/j.isci.2021.102974
https://doi.org/10.1099/jgv.0.001593
https://doi.org/10.1016/j.xcrm.2021.100369
https://doi.org/10.1016/j.xcrm.2021.100369
https://doi.org/10.1136/gutjnl-2020-323826
https://doi.org/10.1136/gutjnl-2020-323826
https://doi.org/10.3389/fimmu.2021.686240
https://doi.org/10.1111/febs.15130
https://doi.org/10.1111/cmi.12966
https://doi.org/10.1152/ajpendo.00371.2013
https://doi.org/10.1038/s41598-018-31640-x
https://doi.org/10.1042/CS20120602
https://doi.org/10.1042/CS20120602
https://doi.org/10.1194/jlr.M048553
https://doi.org/10.1038/s41598-021-90362-9
https://doi.org/10.1038/s41598-021-90362-9
https://doi.org/10.1002/nbm.4637
https://doi.org/10.1016/j.isci.2020.101645
https://doi.org/10.1016/j.isci.2020.101645

