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Abstract: The implementation of radiomics-based, quantitative imaging parameters is hampered by
a lack of stability and standardization. Photon-counting computed tomography (PCCT), compared
to energy-integrating computed tomography (EICT), does rely on a novel detector technology,
promising better spatial resolution and contrast-to-noise ratio. However, its effect on radiomics
feature properties is unknown. This work investigates this topic in myocardial imaging. In this
retrospective, single-center IRB-approved study, the left ventricular myocardium was segmented
on CT, and the radiomics features were extracted using pyradiomics. To compare features between
scanners, a t-test for non-paired samples and F-test was performed, with a threshold of 0.05 set
as a benchmark for significance. Feature correlations were calculated by the Pearson correlation
coefficient, and visualization was performed with heatmaps. A total of 50 patients (56% male,
mean age 56) were enrolled in this study, with equal proportions of PCCT and EICT. First-order
features were, nearly, comparable between both groups. However, higher-order features showed
a partially significant difference between PCCT and EICT. While first-order radiomics features of
left ventricular myocardium show comparability between PCCT and EICT, detected differences of
higher-order features may indicate a possible impact of improved spatial resolution, better detection
of lower-energy photons, and a better signal-to-noise ratio on texture analysis on PCCT.

Keywords: photon-counting computed tomography; feature stability; cardiac imaging; radiomics

1. Introduction

Rising interest in the field of quantitative medical image analysis has developed
over the past decade, driven by the promise of extracting additional information from
pixel-based information from imaging data, often referred to as radiomics [1]. Radiomics
describes a technique that enables the radiologist not only to count on the visual interpre-
tation of the images but also to incorporate quantitative data into the diagnostic decision
process. Radiomics features can be divided into several subtypes, starting with the group of
first-order statistics, which describe the distribution of voxel intensities, without consider-
ing the spatial relationship. Higher-order statistics summarize texture features, shape-based
parameters, and transform-based parameters. Texture features define the spatial distribu-
tion of voxels and, hence, visualize the heterogeneity of the area of interest [2]. Through
radiomics analysis, many image characteristics not visible to the human eye can be ex-
tracted [1,3], using dedicated software packages [4]. These techniques have resonated, in
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particular, in the field of oncologic imaging and tumor analysis, with promising results in
terms of tumor classification [5–7] and outcome prediction [8,9].

Recently, texture analysis has been, increasingly, applied in cardiac imaging, focusing
mainly on cardiac MRI [10–12], however, first analyses have also been performed on cardiac
CT [13,14]. Although there has been a decrease in mortality from cardiovascular disease
(CVD) in recent years, this entity remains the number one cause of death worldwide, prov-
ing the importance of further diagnostic tools in this field [15]. The need for better cardiac
diagnostic tools has been recognized by medical societies, resulting in the readjustment
of guidelines and corresponding recommendations of cardiac CT in these patients [16].
Recently, this was further emphasized by a study showing a lower frequency of major
procedure-related complications in patients with stable chest pain and intermediate pretest
probability of coronary artery disease, who underwent initial CT instead of initial invasive
coronary angiography [17].

In this context, quantitative radiomics features have shown a notable potential for
better risk stratification, by quantification of coronary plaques [18] and perivascular fat [19].
Furthermore, first analyses did investigate the potential application of radiomics to my-
ocardial fibrosis [20], in order to overcome the inferiority of cardiac CT, when compared
to cardiac MRI. While this application is very promising, from a clinical point of view, the
utilization of radiomics in everyday clinical care is severely hampered by a lack of feature
stability: various parameters can influence the results from texture analysis, including
different contrast media phases, slice thickness, and spatial resolution [21,22]. Especially,
optimal spatial resolution and signal-to-noise ratio are known to be the two most important
image quality factors, for accurate texture analysis [23–25]. This may be, partly, due to
the current widespread use of conventional energy-integrating detectors (EID), which,
indirectly, convert X-ray photons to electrical signals, with an additional intermediate
scintillator-based step, resulting in potentially suboptimal data acquisition and image noise
compared to photon-counting computed tomography (PCCT).

The implementation of PCCT has the potential to address this obstacle. In compar-
ison to conventional EID, PCCT converts the X-ray photons directly into electric pulses,
without the intermediate step of converting them to visible light. This revolutionary tech-
nology achieves a better spatial resolution, as well as a higher contrast-to-noise ratio and
lower beam-hardening artifacts [26,27]. However, the applicability and comparability of
quantitative radiomics analysis are yet to be investigated.

Therefore, the aim of this study is to investigate the properties of radiomics features
extracted from the myocardium on a PCCT, compared to conventional energy-integrating
computed tomography (EICT).

2. Materials and Methods

For this retrospective single-center study, patients gated with clinically indicated
electrocardiography (ECG) contrast-enhanced cardiac PCCT and matched cardiac EICT
patients were enrolled between September 2021 and February 2022. In total, 50 patients
(28 males, 22 females, mean age 56 years, range: 26–79 years) were selected, and 25 patients
(10 males, 15 females, mean age 57 years, range: 41–79 years) were scanned on a dual-
source EID CT scanner, whereas the other 25 patients (18 males, 7 females, mean age
56 years, range: 26–78 years) were examined using a first-generation whole-body dual-
source photon-counting detector (PCD) CT system. Patients were excluded in case of
stenosis degree ≥ 50% in any coronary artery as well as in case of coronary artery stent
implantation. Additionally, patients were excluded in case of visible myocardial damage,
to ensure a homogeneous myocardium as a basis for this study. Based on these criteria,
27 PCCT and 41 EICT patients were excluded. This retrospective study was approved by
the institutional review board and local ethics committee (ID 2021-659). All investigations
were conducted according to the Declaration of Helsinki.
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2.1. Chest CT Imaging

Twenty-five patients were scanned using a 2 × 192 slice 3rd generation dual-source
CT scanner (SOMATOM Force, Siemens Healthcare GmbH, Forchheim, Germany), using
tube voltages of 100 kV and automatic dose modulation, whereas the other 25 patients were
scanned using the first-generation whole-body dual-source PCD CT system (NAEOTOM
Alpha, Siemens Healthcare GmbH, Forchheim, Germany), using a prospective ECG gated
sequential mode with a tube voltage of 120 kV and automatic dose modulation with a CARE
keV IQ setting of 64. The primary, performed, and unenhanced scan was not included in
the analysis of this study. In both CT scanner protocols, an optional application of ß-blocker
(5–10 mg, Metoprolol, Recordati Pharma GmbH, Ulm, Germany), to lower the heart rate
for reaching a target heart rate below 65 beats per minute, was followed by the application
of sublingual nitroglycerin (0.8 mL). Via an antecubital vein, an iodinated contrast medium
(70–80 mL Imeron 400, Bracco Imaging Deutschland GmbH, Konstanz, Germany), followed
by a 20 mL saline chaser (NaCl 0.9%), was injected, applying a weight-based flow rate
(5–6 mL/s). Bolus tracking was used to trigger the start of coronary CTA, by placing a
region of interest (ROI) in the descending thoracic aorta (threshold 140 HU at 90 kV).

2.2. Chest CT Imaging Analysis

Axial images of contrast-enhanced CCTA were reconstructed with a slice thickness of
0.6 mm (increment 0.4 mm PCCT, increment 0.3 mm EICT), using a soft vascular kernel
(Bv40). For PCCT, this analysis is based on the non-spectral T3D image series. From this
axial image dataset, short-axis view images were reformatted using a 5 mm slice thickness,
according to published suggestions in the literature (11). All data were anonymized, ex-
ported, and stored in digital imaging and communications in a medicine (DICOM) file
format, for further processing. The DICOM file format was converted to a NIFTI file format,
for usability with the applied segmentation tool (3D Slicer, Version 4.11) [28]. The whole left
ventricular myocardium, excluding the trabecular structure and papillary muscle, was man-
ually segmented by a radiologist with nine years of experience in cardiovascular imaging.

2.3. Radiomics Feature Extraction

Left ventricular myocardial segmentations were further analyzed by a dedicated
radiomics analysis framework (pyradiomics, version 3.0.1) [4]. Settings for the analysis can
be found in the supplemental material. The following feature types were extracted for each
patient enrolled in the study: first-order, neighboring gray tone difference (NGTDM), gray
level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size
zone (GLSZM), and gray level dependence matrix (GLDM).

2.4. Statistical Analysis

All statistical analyses were performed in R for statistical analysis (version 4.1.2,
R Foundation for Statistical Computing) [29]. For the analysis, the packages tableone,
dplyr, ggplot2, ggcorrplot, and caret were utilized. To evaluate differences between groups,
t-test for non-paired samples was applied, to compare means of quantitative variables.
To evaluate a significant difference in variance, the F-test was performed on a variance
of the standard deviation of each feature for each scanner, and a threshold of 0.05 was,
likewise, set as a benchmark for significance. Fisher’s exact test was employed for cate-
gorical variables. A p-value of below 0.05 was assumed as statistically significant. Feature
correlations were calculated by the Pearson correlation coefficient and visualized in unclus-
tered heatmaps, for both patient groups. Then, hierarchical clustering was applied and
additional clustered heatmaps were created. The mean and standard deviation of radiomics
parameters were compared between both groups, as described above. Distributions were
visualized as boxplots.
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3. Results
3.1. Patient Collective

Based on inclusion criteria, a total of 50 CT scans of patients without significant
coronary artery stenosis, defined as stenosis above 50% of vessel lumen narrowing, and
without visual signs of myocardial damage, were enrolled in this study. In our study
population, 44% were female and had a mean age of 56. The patient’s characteristics,
as well as scan characteristics and manually measured mean HU values with SD, are
summarized in Table 1. For these patients, segmentation of the left ventricular myocardium
with the exclusion of papillary muscle and trabecular structures was performed, according
to the approach presented in the Materials and Methods. Figure 1 shows an example
segmentation of the left ventricular myocardium, in a short-axis view.

Table 1. Patient collective overview. Mean and (SD) given for continuous variables.

EICT PCCT p Value

Patient parameters
n 25 25

Age 56.88 (10.79) 56.08 (13.98) 0.822
Sex 10 male (40.0%) 18 male (72.0%) 0.046

Stent 0 0 N/A
Significant stenosis (>50%) 0 0 N/A

Agatston Score 55.38 (110.55) 38.29 (87.76) 0.548
Mean HU Value 114.52 (50.87) 125.13 (42.04) 0.123

Scanner parameters
Tube voltage 100 120 N/A

Slice thickness 5 mm 5 mm N/A
Kernel Bv40 Bv40 N/A
Tube Vectron ® Vectron ® N/A
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3.2. Cluster Analysis

An unclustered heatmap of radiomics features of the left ventricular myocardium,
for all patients, was created after feature extraction and standardization for each scanner,
respectively, showing a partly comparable distribution of feature correlations (Figure 2).
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Unsupervised hierarchical clustering of features was performed and is visualized as a
heatmap for each scanner group, in Figure 3.
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3.3. Radiomics Feature Assessment

To assess comparative feature properties between both scanner collectives, the mean
and the standard deviation for each feature were calculated. A significant difference
between the mean of PCCT and EICT was detected in only two first-order radiomics
features (firstorder_Maximum and firstorder_Skewness, Table 2), as well as in six features
of Gray Level Co-occurrence Matrix (GLCM), one feature of Gray Level Dependence
Matrix (GLDM), five features of Gray Level Size Zone Matrix (GLSZM) and two features
of Neighbouring Grey Tone Difference Matrix (NGTDM). A detailed overview of those
features is offered in Table 3.

Table 2. Comparison of first-order radiomics parameters, extracted from myocardial segmentation.
Variables mit significant differences in groups shown, for full table refer to supplemental material.

Feature Mean (SD) EICT PCCT t Test F Test

n 25 25
First order features

original_firstorder_Maximum 517.90 (120.68) 604.00
(119.59) 0.015 0.965

original_firstorder_Median 124.93 (25.88) 126.65
(17.04) 0.782 0.046

original_firstorder_Skewness −0.28 (0.97) 0.28 (0.86) 0.035 0.557

Table 3. Higher order radiomics features, with significant differences in mean and/or SD.

Feature Mean (SD) EICT PCCT t Test F Test

n 25 25
Gray Level Co-Occurrence Matrix (GLCM)

original_glcm_Contrast 2.76 (1.00) 3.43 (1.30) 0.049 0.206
original_glcm_Correlation 0.64 (0.03) 0.57 (0.07) <0.001 <0.001

original_glcm_Idmn 1.00 (0.0006) 1.00 (0.001) 0.115 <0.001
original_glcm_Idn 0.97 (0.00) 0.97 (0.01) 0.194 <0.001

original_glcm_Imc1 −0.15 (0.02) −0.13 (0.04) 0.002 0.007
original_glcm_Imc2 0.73 (0.04) 0.66 (0.08) 0.001 <0.001

original_glcm_InverseVariance 0.46 (0.01) 0.45 (0.02) 0.016 0.062
original_glcm_MCC 0.71 (0.04) 0.67 (0.07) 0.025 0.011

Gray Level Dependence Matrix (GLDM)
original_gldm_DependenceNonUniformityNormalized 0.07 (0.01) 0.08 (0.01) 0.074 0.042

original_gldm_LowGrayLevelEmphasis 0.00 (0.00) 0.00 (0.00) 0.074 <0.001
original_gldm_SmallDependenceLowGrayLevelEmphasis 0.00 (0.00) 0.00 (0.00) 0.032 <0.001

Gray Level Run Length Matrix (GLRLM)
original_glrlm_LongRunEmphasis 2.87 (0.60) 2.80 (0.93) 0.772 0.04

original_glrlm_LongRunLowGrayLevelEmphasis 0.01 (0.00) 0.01 (0.01) 0.202 0.016
original_glrlm_LowGrayLevelRunEmphasis 0.00 (0.00) 0.00 (0.00) 0.076 <0.001

original_glrlm_RunVariance 0.82 (0.28) 0.79 (0.44) 0.802 0.033
original_glrlm_ShortRunLowGrayLevelEmphasis 0.00 (0.00) 0.00 (0.00) 0.062 <0.001

Gray Level Size Zone Matrix (GLSZM)
original_glszm_GrayLevelNonUniformity 304.54 (69.82) 397.07 (160.54) 0.011 <0.001

original_glszm_LowGrayLevelZoneEmphasis 0.00 (0.00) 0.01 (0.00) 0.111 <0.001
original_glszm_SizeZoneNonUniformity 1215.38 (435.47) 1622.80 (651.64) 0.012 0.054

original_glszm_SizeZoneNonUniformityNormalized 0.27 (0.04) 0.29 (0.03) 0.023 0.662
original_glszm_SmallAreaEmphasis 0.53 (0.04) 0.56 (0.03) 0.028 0.488

original_glszm_SmallAreaLowGrayLevelEmphasis 0.00 (0.00) 0.00 (0.00) 0.068 <0.001
original_glszm_ZoneEntropy 6.82 (0.11) 6.66 (0.17) <0.001 0.054

Neighbouring Grey Tone Difference Matrix (NGTDM)
original_ngtdm_Busyness 6.54 (2.31) 9.96 (7.85) 0.042 <0.001

original_ngtdm_Coarseness 0.00 (0.00) 0.00 (0.00) 0.011 0.178
original_ngtdm_Contrast 0.01 (0.00) 0.01 (0.00) 0.153 0.013
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Only one first-order feature showed a significant difference of standard deviation
among the two different scanners (firstoder_Median, Table 2). Significant differences in
standard deviation were shown by six features of GLCM, three features of GLDM, five
features of GLRLM, three features of GLSZM, and two features of NGTDM, as shown
in Table 3.

The features firstorder_mean and firstorder_median show a lower variation of mea-
sured mean and median Hounsfield attenuation in PCCT (firstorder_median SD EICT 25.88,
PCCT 17.04, F-test 0.046, firstorder_mean SD EICT 26.86, PCCT 17.99, F-test 0.055). Apart
from these two features, first-order features were similar between both scanners, indicating
comparability of directly measured Hounsfield density values.

With respect to the higher-order radiomics features, notable differences between PCCT and
EICT were observed, outlined by a significantly higher mean of glszm_ZoneEntropy (EICT 6.82,
PCCT 6.66, t-test < 0.001) or a lower mean of glzsm_SizeZoneNonUniformity (EICT 1215.28,
PCCT 1622.90, t-test 0.012) and glszm_GrayLevelNonUniformity (EICT 304.54, PCCT 397.07,
t-test 0.011) (Table 3). A significantly higher mean of the feature glszm_SmallAreaEmphasis
was found in the PCCT data sample, in comparison to the EICT (EICT 0.053, PCCT 0.056,
t-test 0.028). An overview table of all investigated radiomics parameters is shown in
Supplemental Table S1.

4. Discussion

This work presents a first in-human comparison of myocardial radiomics feature prop-
erties and distributions from both EICT and PCCT. In general, similar feature properties
between both groups were detectable, however, there were notable differences regarding
feature classes: first-order features showed comparable mean values and standard devi-
ations between both groups, indicating comparability of directly measured Hounsfield
units within the myocardium. However, higher-order features were more heterogeneous
and did, partly, show significant differences in mean and standard deviation between
both groups. These results indicate that while simple Hounsfield-based measures may be
comparable between both groups, texture features may need further evaluation in PCCT.
These differences may be, possibly, explained by the entirely different detector systems
and their influence on the image reconstruction workflow, higher resolution, and better
detection of lower-energy photons.

In 2017, Hinzpeter et al. demonstrated the feasibility of using texture analysis for
differentiation between normal and acute infarcted myocardium in CT, with a good to
excellent intra- and interreader agreement for all first and second-level features, at all
slice thicknesses. Additionally, the most accurate results were obtained at a slice thickness
of 5 mm in their study, laying the focus on the impact of slice thickness on the texture
analysis of the myocardium [14]. In contrast, Zhao et al. showed a significant difference
between 1.25 mm and 5 mm slice thickness, using a chest phantom. In their study 1.25 mm
and 2.5 mm slice thicknesses were better suitable for volume, density means, density SD
gray-level co-occurrence matrix (GLCM) energy, and homogeneity, compared to 5 mm slice
thickness. The reconstruction algorithm showed that even its influence on the radiomics
features, by the lung reconstruction algorithm (being best for density to mean), whereas
the standard reconstruction algorithm was the best for density SD [30]. However, the time
between application of the contrast agent and scan performance may influence texture
features: Kim et al. demonstrated good stability of different texture features extracted
from lung nodules, namely SD, variance, entropy, sphericity, discrete compactness, GLCM
IDM, GLCM contrast, and GLCM entropy, between a scan delay of 30 and 180 s. However,
texture features from pre-contrast CT scans differed, significantly, from those on contrast-
enhanced scans [21]. A significant influence of the CT scanner manufacturer and acquisition
parameters on a CT phantom was demonstrated by Mackin et al. in 2018. They investigated
the stability of texture analysis parameters, by comparing 16 different CT scanners by
four different manufacturers. The variability they observed between different CT scanners
implied that the repeatability and, hence, quality of radiomics studies depends strongly on
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the consistency of image acquisition and reconstruction [31]. The effect of reconstruction
algorithms on feature analysis, regarding lesion size, attenuation, and texture, was also
demonstrated by Solomon et al. The radiation dose, however, affected mainly the estimation
of lesion size, conspicuity, and intralesional pixel value distribution feature, with only a
little effect on lesion texture analysis [32].

Summarizing not only our results but also the literature, radiologists must be aware
of the fact that differences in texture analysis can have multiple reasons—an actual texture
change is only one of them. Therefore, our first-in-human feasibility study must be inter-
preted in the context of the following limitations. The study presented is retrospective, was
performed at a single-center, and does include a limited number of patients. However, this
is due to the limited number of patients scanned with PCCT as an emerging technology
and the strict patient selection criteria, in terms of myocardial disease, which did lead to
a significant number of excluded patients. Unfortunately, gender differs significantly be-
tween both groups, so further analysis in the future should focus on a more homogeneous
patient population. Moreover, the study does not include a dedicated feature stability
analysis in consecutive patients but consists of different patients in both groups—a result
of the retrospective character not allowing additional CT scans, which are not clinically
indicated. Such an analysis would, therefore, be possible in a phantom study. Additionally,
a significant limitation is the different tube voltage between PCCT and EICT, however,
until now a modulation of tube voltage in the PCCT scanner used in this study is not
possible for the chosen protocol. Apart from that, reconstruction parameters were kept
as constant as possible between both groups. The same reconstruction kernel and slice
thickness were used.

In conclusion, this study investigates radiomics feature properties in EICT and PCCT
on homogeneous human myocardium in a retrospective, group-comparison approach, to
evaluate feature stability and properties. This study is, explicitly, not focused on pathol-
ogy differentiation, but rather it is intended as a basis for future work in this direction.
While first-order features showed comparable values between both groups, higher-order
radiomics features seem to be more heterogeneous and may require a dedicated readjust-
ment for PCCT. This may be due to inherent features of the PCCT technology, including
improved spatial resolution, better detection of lower-energy photons, and better signal-
to-noise ratio. Prospectively, extraction of multi-energy properties from the now-acquired
quantum datasets may help to understand texture-feature variability better and to address
problems of heterogeneity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12051294/s1, Table S1: overview of all parameters; sup-
plemental information.
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