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Abstract

The increasing amount of transcriptomic data has brought to light vast numbers of potential novel RNA transcripts. Accurately
distinguishing novel long non-coding RNAs (lncRNAs) from protein-coding messenger RNAs (mRNAs) has challenged bioinformatic
tool developers. Most recently, tools implementing deep learning architectures have been developed for this task, with the potential of
discovering sequence features and their interactions still not surfaced in current knowledge. We compared the performance of deep
learning tools with other predictive tools that are currently used in lncRNA coding potential prediction. A total of 15 tools representing
the variety of available methods were investigated. In addition to known annotated transcripts, we also evaluated the use of the tools
in actual studies with real-life data. The robustness and scalability of the tools’ performance was tested with varying sized test sets
and test sets with different proportions of lncRNAs and mRNAs. In addition, the ease-of-use for each tested tool was scored. Deep
learning tools were top performers in most metrics and labelled transcripts similarly with each other in the real-life dataset. However,
the proportion of lncRNAs and mRNAs in the test sets affected the performance of all tools. Computational resources were utilized
differently between the top-ranking tools, thus the nature of the study may affect the decision of choosing one well-performing tool
over another. Nonetheless, the results suggest favouring the novel deep learning tools over other tools currently in broad use.

Keywords: lncRNA, benchmark, machine learning

Introduction

Accurately defining protein-coding transcripts from non-
coding transcripts is of increasing importance, as large
numbers of non-coding RNA transcripts have been dis-
covered in the human genome [1, 2]. Early findings of
key long non-coding RNAs (lncRNA), advances in tech-
nology and the completion of the human genome have
prompted the investigation of all transcribed regions of
the genome, leading to the discovery of many lncRNA
molecules with significance in healthy and diseased cell
functioning [3]. However, many factors, from novel splice-
site detection to transcript assembly, create difficulties
in obtaining a robust set of candidate non-coding tran-
scripts from sequence data (reviewed in for example
[4]). Therefore, a myriad of bioinformatics tools has been
developed solely to address the question of coding poten-
tial and division between protein-coding and long non-
coding transcripts.

Majority of the lncRNA detection tools use a length
cutoff of 200 nucleotides (nt) and sequence intrinsic

features and/or statistics to discriminate between coding
and non-coding transcripts. The most commonly used
sequence features include, for example, open reading
frame (ORF) length, Fickett’s score, based on sequence
statistics such as position of nucleotides [5] and K-mer
composition. A cutoff of 300 nt has been considered as
a minimum for ORF length of protein-coding transcripts
and a set of di- and trimers has been observed to be more
frequent in long non-coding than protein-coding tran-
scripts [6, 7]. However, there are non-coding transcripts
with longer ORFs, and vice versa, some mRNAs coding
for short peptides have ORFs shorter than this cutoff [8].

Additionally, some tools search for sequence homolo-
gies between known protein-coding genes and novel
transcripts to aid in categorizing the transcribed RNA
sequences as coding or non-coding. However, this is
often time consuming, and for many known lncRNAs,
no sequence homologies can be found with other
non-coding RNAs. Moreover, some lncRNAs have been
hypothesized to be derived from protein-coding genes,
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and share homologies with them (reviewed in [9]). Thus,
instead of sequence homology, conserved secondary
structures have been proposed to be more frequent [10].

In order to achieve better classification of coding and
non-coding RNAs, many different features and their
interactions have been added to the list of features
differentiating between protein-coding and long non-
coding transcripts. However, this inevitably leads to
very high-dimensional data. Traditional models, such
as logistic regression, can be restricted in the number
of features and their interactions that can be included
for a well-fitting and well-generalizing model. Machine
learning methods such as support vector machines
(SVM), are better at handling such data, and thus, they
are commonly implemented to train the models based
on labelled training data. Nevertheless, these models
can still suffer from the increasing computational
complexity [11].

In both traditional statistical models and machine
learning models, human selected features are introduced
as an input and thus the models are often restricted
by the current human knowledge. Efforts to circumvent
the fallibility of human decision-making have been taken
by implementing multi-layered deep learning methods.
These methods can handle the given data and/or fea-
tures without predetermined feature extraction and have
the potential to learn hidden structures and dependen-
cies from the data [12]. Thus, using previously unknown
information learned from the data, deep learning tools
may improve the discrimination between lncRNAs and
mRNAs.

In short, deep learning methods combine artifi-
cial neural networks with multiple hidden layers for
decision-making (reviewed in e.g. [13–15]), allowing linear
and non-linear functions to connect the hidden layers.
Several different categories of deep learning methods
exist based on their preferred architecture, including
deep neural networks (DNN), deep belief networks (DBN),
convolutional neural networks (CNN) and recurrent
neural networks (RNN) [13, 16]. The weight parameters
of all hidden layers are optimized and updated with
a stochastic gradient decent method [16, 17]. CNNs
are built with convolution layers and pooling layers,
allowing discovery of new structures by aggregating a
complex feature from many small and perhaps similar
individual features [13, 16]. RNNs are designed for
sequential data, and their cyclic connections enable
updating of predicted values. The benefits of using deep
learning methods over other machine learning methods
in coding potential prediction may arise from handling of
multidimensional data and combining known and new
features in complex ways for better discrimination. In
practice, these possible benefits may manifest as higher
sensitivity and specificity when identifying lncRNAs
from mRNAs [11].

Coding potential tools have been tested and bench-
marked in many setups and datasets [16–19]. How-
ever, comparisons have mainly focused on comparing

individual tools on a specific test set. To our knowl-
edge, no other independent study has compared the
most recent deep learning tools with tools utilizing
other modelling methods. In addition, the feasibility
of the tools in real-life studies is often bypassed in
tool comparisons. Thus, the aim of this study was to
test the performance of published tools for lncRNA
identification, with the particular goal of comparing tools
based on deep learning with other tools. Following the
proposed good practice for tool testing [20], we further
aimed to test the performance of the tools in a real-
life lncRNA-study setup. Furthermore, we evaluated the
usability of the tools by scoring the installation and
running steps and tested the tools for scalability and
robustness with different sized datasets and datasets
with biased transcript classes.

Methods
Coding potential prediction tools
A subset of 15 tools representing the variety of available
methods for coding potential prediction was selected
(Table 1). All the tested tools were run with default
parameters, species-specific parameters or author
recommended parameters unless otherwise stated. The
tools were evaluated by their suitability for finding
novel lncRNAs, compatibility with the latest reference
genome (hg38) and their ease-of-use. The ease-of-use
was scored using three-level scoring based on the level
of difficulty in the installation and in the running of the
tool.

Tools and related packages and software, if applicable,
were downloaded following the given instructions by
the developers. We did not train any of the models, in
order not to give advantage to those tools that could
be trained, over those that cannot be trained. Of those
tools that provided both lncRNA prediction and lncRNA
function prediction, we only used the lncRNA prediction.
The full commands for each tested tool can be found in
Supplementary File 1.

The rating of the tools for ease-of-use (usability
score) was calculated by summing the installation
(0–3) and running (0–4) scores together, giving higher
weight for good running performance, since most of the
user experience is related to running the tools. Tools
with an overall score of 6 or 7 were included in the
more detailed performance evaluation. Additionally,
the tool longdist was included, although it scored 5
due to erroneous formatting of the feature list, since
the solution to the problem was provided on the tool’s
homepage and was easily fixed. The eight tools selected
represented most model types and included the follow-
ing tools: three deep learning tools (LncADeep, mRNN
and RNAsamba), one self-organized neural network
(IRSOM), three SVMs (CPC2, LncFinder and longdist) and
one logistic regression model (CPAT). Here we present
the tested tools briefly under the corresponding model
types.

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
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Table 1. Long non-coding RNA (lncRNA) identification tools and their features. The usability score was based on ease-of-use in
installation and running of the tool. Tools with score of 6 or 7 were selected for performance comparison. Additionally, longdist was
included in the comparison, because the problem in running was effortlessly fixed

Tool Model group
(type)

Input format Trained on/
Retraining (yes/no)

Installation Running Usability
score

Reference

COME RandomForest gtf Hg19 / no 3 2 = only hg19 5 [24]
CPAT logReg bed, fasta RefSeq, GENCODE /

Yes
3 4 7 [21]

CPC2 SVM fasta Hg19 / yes 3 4 7 [22]
DeepLNC DeepLearning

(NN)
fasta RefSeq, Lncipedia /

yes
NA/3 0 3 [39]

FEElnc RandomForest gtf Hg38, GENCODE 25 /
yes

2 = BioPerl
installation
required;requires
much space.

2 = Only
‘.fasta’
accepted for
genome file
name

4 [40]

IRSOM NN (SOM) fasta Ensemble 92,
GENCODE / yes

2 = Featurer
needs
specific
version of
compiler

4 6 [25]

iSeeRNA SVM gtf, bed Hg19 / yes (not
recommended)

1 = dependent
software,
preparation
of config files

2 = only hg19 3 [41]

lncADeep DeepLearning
(DBN)

fasta RefSeq 75, GENCODE
24 / yes

3 4 7 [26]

LncFinder SVM fasta GENCODE / yes 3 4 7 [23]
LncRNAnet DeepLearning

(CNN)
fasta GENCODE 25,

Ensembl 87 / yes
3 2 = Does not

accept ‘N’ as
a nt

5 [42]

lncRScan-
SVM

SVM gtf, fasta Hg19, GENCODE 19 /
yes (not
recommended)

3 2 = Many
preparation
steps, hg19

5 [43]

lncScore logReg bed, fasta GENCODE 23 / yes 3 0 = Error:
‘linear model
not
converging’

3 [44]

longdist SVM fasta Hg19, GENCODE 19 /
yes (not
recommended)

3 2 = Error in
attribute list
format
needed to be
fixed

5 [7]

mRNN DeepLearning
(RNN)

fasta GENCODE 25 / yes 3 4 7 [11]

RNAsamba DeepLearning
(RNN)

fasta CPC2, FEElnc, mRNN /
yes

3 4 7 [27]

Logistic regression
CPAT [21] is a much-cited alignment-free tool for coding
potential prediction that is based on a logistic regression
model of four variables: maximum ORF length, rela-
tive ORF length, Fickett Score of nucleotide composition
and codon usage bias, and hexamer score for hexamer
usage bias between lncRNAs and mRNAs [21]. The logis-
tic regression model, using these features as explana-
tory variables, was built and fitted to training data of
selected protein-coding sequences and random lncRNA
sequences. A binary decision-making algorithm was then
constructed based on the calculated features. The CPAT
version 2.0 comes as a python 3 installation through
pip and it can be re-trained. In this study, we used the
Human_logitModel and human_hex.tab provided with

the tool from the pre-trained model as the input in the
tool testing (Supplementary File 1).

Support vector machine

CPC2 [22] is a popular trained SVM on four features. Sim-
ilarly, as CPAT, CPC2 uses Fickett Score and ORF length
as classifying features. In addition, the CPC2 features
include ORF integrity, for checking if the ORF is complete
with start and stop codons, and the theoretical isoelectric
point of the forming peptide. As an upgrade to the older
version of CPC, CPC2 is not dependent on alignment-
based methods. CPC2 version 0.9 was used, and the com-
mand line version is implemented through bash and perl
commands.

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
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LncFinder is an SVM model predicting lncRNAs and
mRNAs using nine feature extraction functions packaged
in R [23]. LncFinder uses sequence-based features, sec-
ondary structures and physicochemical properties. The
sequence-based features include length and coverage
of the longest ORF, and the logarithm-distance of hex-
amer on ORF. The structural features measure the min-
imum free energy of the secondary structure, indicat-
ing the structure’s stability, and depict three secondary
structure features: frequency of paired and unpaired
sequences and logarithm-distances of acguD and acgu–
ACGU-sequence. In addition, LncFinder uses three fea-
tures calculated from the electron-ion interaction poten-
tial to capture the energy of each nucleotide and the
signal of the sequence. LncFinder version 1.1.3 was used
in this study and it requires R version 2.10 or higher.
LncFinder was run without secondary structure informa-
tion, setting SS.features = FALSE in the lnc_finder func-
tion, as was recommended for feasible running times if
secondary structure was not readily available. Frequen-
cies file for human was provided with the tool.

Longdist is an SVM model trained using nucleotide
composition and ORF-features [7]. The model has been
built using principal component analysis (PCA) to select
50 nucleotide di- and trimers best capturing the dif-
ferences in pattern frequencies between lncRNAs and
mRNAs. In addition, the length of the first ORF of a
transcript was found to capture the differences well and
was thus included as a feature in the model. Longdist
version 1.0.3 was used in this study, which was trained
on both hg19 and hg38. The tool runs through a python
3 implementation and can be easily installed using pip.
However, at the time of the testing, before running the
tool, an error in the configuration file must be man-
ually fixed with the solution from ‘https://github.com/
hugowschneider/longdist.py’. After the code fix, the tool
was run with the provided GRCh38_firstOrf-model.

Self-organized neural network

IRSOM applies a three-layer neural network to lncRNA
coding potential prediction, including input layer, self-
organizing map (SOM) and output layer [25]. Transcript
feature vectors, composed of sequence and ORF-based
features, are compared to neuron unit clusters in the
SOM. The network is then updated by a function con-
sisting of the learning rate, network neighborhood func-
tion, and the Manhattan distance between the current
neuron unit and other clusters. The sequence features
include k-mer motif frequencies, codon position bias,
nucleotide frequencies and GC content. The ORF-based
features include the coverage of the longest ORF, ORF
coverage distribution, start and end codon distribution,
ORF frequency, ORF length and frame bias. Unlike many
other tools, IRSOM provides the opportunity to reject
unreliable predictions if the labelling is uncertain. IRSOM
implementation was run on python 3.

Deep learning

LncADeep is a deep learning-based tool designed to both
predict the coding potential and the function of novel
transcripts [26]. Here we tested the coding potential capa-
bilities of the tool. LncADeep integrates sequence intrin-
sic features and homology features into a DBN, with
three restricted Bolzmann machines stacked between
the input and output layers. By default, LncADeep can
identify both full- and partial-length transcripts, miss-
ing either 3′ or 5′ end untranslated regions (UTRs), or
even uncomplete coding sequences. The sequence-based
features included in LncADeep are ORF length and cov-
erage, entropy density profiles (EDP) based on amino
acid frequency, k-mer composition (16 dimers), mean
hexamer score, UTR coverage, GC content and Fickett
score of nucleotide composition. The homology-based
features consist of sequence conservation scores from
HMMER search against Pfam (Release 29.0), including
alignment score, and the ratio of the aligned region to
the query sequence. Majority voting is used to decide the
final labelling of a transcript [26]. LncADeep version 1.0
was used, implemented through python 2.7, R v3.3.2 and
HMMER (3.1b2). In this study, LncADeep was run with
-MODE lncrna for lncRNA identification. Parameter—
model was kept default for the model for partial-length
transcripts.

mRNN applies a Recursive Neural Network (RNN)
directly on input RNA sequence data using one-hot
encoding for the sequencing [11]. Gated recurrent unit
architecture was used to manage memory and improve
learning of long-range dependencies in the hidden layers.
The post training experiments revealed that mRNN
learned to distinguish mRNAs from other transcripts by
trimer patterns, lack of in-frame stop codons in an ORF,
and a set of 11 enriched codons, significantly represented
in protein-coding transcripts. In addition, important
connections between distant codons were revealed by a
point mutation analysis. Implementation of mRNN uses
python 2.7 with Theano library and a specified version
of Passage (https://github.com/IndicoDataSolutions/
Passage). For the tool testing, we used the pre-calculated
weights from the model file w16u5-plk.

RNAsamba implements a neural network model
using IGLOO architecture for its CNN, designed for
long sequences [27]. The input sequence is handled in
two branches, one of which uses the whole sequence,
whereas the other processes ORF information from the
longest ORF, only if a start codon is found. The only
predefined information given to RNAsamba is the start
codons in order to identify ORF. The RNAsamba model
has been trained using both complete and truncated
sequences. RNAsamba is implemented using python 3
with TensorFlow and Keras libraries and can also be
run online at https://rnasamba.lge.ibi.unicamp.br. In this
study, we tested RNAsamba using the weights from the
pre-trained partial-length model.

https://github.com/hugowschneider/longdist.py
https://github.com/hugowschneider/longdist.py
https://github.com/IndicoDataSolutions/Passage
https://github.com/IndicoDataSolutions/Passage
https://rnasamba.lge.ibi.unicamp.br
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Table 2. Reference test sets of annotated transcripts. The total number of transcripts, the number of protein-coding (mRNA) and long
non-coding (LncRNA) transcripts, and the proportion of the long non-coding transcripts are shown

Test set Total transcripts LncRNA mRNA Proportion LncRNA

S 46 563 19 069 27 494 40.95%
M 92 922 38 008 54 914 40.90%
L 139 379 56 967 82 412 40.87%
XL 185 190 75 757 109 433 40.91%
Lnc_bias 122 265 94 771 27 494 77.51%
Pc_bias 128 502 19 069 109 433 14.84%

Benchmarking with reference test set
We used protein-coding transcripts from GENCODE
(GRCh38) and long non-coding transcripts from LNCi-
pedia, version 5.2 [28] for the tool testing. Only level 2 val-
idated protein-coding transcripts, and high confidence
lncRNA transcripts were included to minimize errors in
the test data. In order to alleviate possible differences
arising from the different training sets used in the
original studies (Table 1), we selected the overlapping
protein-coding transcripts between GRCh37/hg19 and
GRCh38/hg38. Further, the long non-coding transcripts
present in both GENCODE and LNCipedia, were removed
from the lncRNA transcripts. Transcript positions were
taken from the provided LNCipedia reference files in
GTF-format, and transcript sequences were extracted
from the reference genome (GRCh38) with gffread [29].

The different coding potential prediction tools were
tested with four different sized test sets. The test sets
were generated by first randomly dividing all long non-
coding transcripts from LNCipedia and all protein-coding
transcripts from GENCODE to five subsets. Four subsets
from both types of transcripts were then used and
combined to make four test sets with the smallest test
set (named S, subset Lnc-A + subset Pc-A) containing
46 563 transcripts, the test set M (subsets Lnc-A + Lnc-
B + subsets Pc-A + Pc-B) containing 92 922 transcripts,
the test set L (subsets Lnc-A + Lnc-B + Lnc-C + subsets
Pc-A + Pc-B + Pc-C) containing 139 379 transcripts, and
the biggest test set XL (subsets Lnc-A + Lnc-B + Lnc-
C + Lnc-D + subsets Pc-A + Pc-B + Pc-C + Pc-D) contain-
ing 185 190 transcripts (Table 2). Due to differences in
transcript numbers between protein-coding and lncRNA
references, each test set contained 41% lncRNAs and
59% mRNAs. Further, in order to test the robustness of
the tools towards biased datasets, two imbalanced test
sets were considered: a test set containing 78% lncRNA
transcripts (named Lnc_bias test set, subsets Lnc-
A + Lnc-B + Lnc-C + Lnc-D + subset Pc-A) and another
test set containing 85% protein-coding transcripts
(named Pc_bias, subset Lnc-A + subsets Pc-A + Pc-B + Pc-
C + Pc-D) (Table 2).

Sequence fasta files of each test set were given to
the tools as input. Tools were run in a local computer
cluster running linux (Centos 7.7) with Intel Xeon Gold
processors. Each tool was run in a job looping over all
test sets with 55.2 GB memory on 12 processor units
(Supplementary material). As an exception, LncFinder

needed to be run by specifying 64 GB memory for a suc-
cessful use of the tool. Total running time was measured
for each tool for each test set.

Tool outputs were parsed and figures drawn with cus-
tom python scripts. A threshold of 0.5 was used as a
probability cutoff for binary labels, if a threshold was
not given by the tool or the tool did not readily label
the transcripts as coding or non-coding. All tested tools
considered coding transcripts as positive and long non-
coding transcripts as negative sets.

Tool performance on each test set was evaluated by
determining the confusion matrix (Table 3). Sensitivity,
specificity and precision were then calculated from the
numbers of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) labels (Table 3). Fur-
ther, both receiver operating characteristic (ROC) curve
and precision-recall curve (PRC) were drawn and areas
under the curves for each test set were calculated to
compare tool performances. ROC curves best capture the
performance on the balanced test sets, whereas PRCs are
suitable measures for unbalanced test sets particularly
when the optimal threshold is not always known [30, 31].
Measures were calculated and figures drawn with python
package scikit-learn (version 0.22.2.post1).

Testing tools on real-life data
As real-life datasets, we used RNA-seq data on human
cell types associated with the innate immune responses
also analysed in a published study [32]. These datasets
were chosen due to recommended read length for novel
transcriptome assembly and sufficient read depth for
discovering lncRNAs that are potentially very lowly
expressed. The datasets included paired-end RNA
sequence reads of length 100 bp from stimulated and
non-stimulated human monocyte, macrophage, epithe-
lium and chondrocyte samples. Reads were downloaded
from the following entries in Gene Expression Omnibus:
GSE101868, GSE74220 and ERA294222. Altogether there
were 27 samples with an average of 38.9 million
reads each.

The reads were aligned with STAR-2.6.1b [33] two pass
mode, guided by the UCSC reference (hg38) junctions.
Individual samples were then run through Stringtie
version 2.0.6 [34] and all samples were collected into a
master transcriptome with Stringti – merge. A minimum
length of 200 nt and fragments per kilobase million
(FPKM) of at least one were required for the included
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Table 3. Confusion matrix and the calculated metrics in evaluating tool performance. In Jaccard similarity index, tool specific labelling
for given test set is treated as sets A or B for the compared tools respectively. Set comparisons are thus based on the similarity of the
labels given to each transcript

Performance evaluation metric Formula/layout

Confusion matrix TP, true positives, hits TN, true negatives, correct rejection
FP, false positives, type I error FN, false negatives, type II error

Sensitivity, true positive rate, recall TP
TP+FN

Specificity, true negative rate TN
TN+FP

Precision TP
TP+FP

Jaccard similarity index J (A,B)
Jaccard distance = 1−J (A,B)

∣
∣
∣A∩B

∣
∣
∣

∣
∣
∣A∪B

∣
∣
∣

transcripts. Other Stringtie parameters were kept as
default. Gffcompare [29] was used to separate transcripts
matched to reference (UCSC hg38) and novel transcripts.
Similarly to the original study [32], multi-exonic novel
intergenic lncRNA (lincRNA) and antisense RNA loci
were included in the tool testing. The sequences of the
identified novel transcripts from all cell types were saved
as a combined fasta file using Gffread [29] and used as
input for the different tools. Tools were run on the real-
life datasets in the same computer cluster with the same
specification as the reference test sets.

Tool outputs were parsed and analysed with custom
python scripts. As a complete true set is unavailable
for the real-life dataset, regular measures for tool per-
formance, such as sensitivity and specificity, cannot be
calculated. Instead, the proportion of lncRNA and mRNA
labels were recorded from each tool and compared. In
addition, the similarity of the tools’ categorization was
measured by calculating Jaccard index of similarity for
the predicted labels (lncRNA/mRNA). The similarity was
calculated using set operations on transcript names that
were tagged with tool-given labels. In order to see, which
tools were more similar with each other, Jaccard distance
matrix, calculated from 1-Jaccard similarity, was clus-
tered by hierarchical clustering using average linkage.

Results
We first tested the ability of the eight tools to sepa-
rate lncRNAs from protein-coding transcripts using six
reference test tests. In all of the test sets, the perfor-
mance and the order of the different tools remained
similar when measured with the area under ROC curve
(AUROC, Figure 1a, Supplementary Figure 1). The three
deep learning tools (LncADeep, mRNN and RNAsamba)
were at the top with mean AUROC values of 0.90 (±0.0005
standard error of the mean, SE), 0.89 (±0.0003 SE) and
0.88 (±0.0007 SE), respectively. Among the other tools,
CPAT had the highest mean AUROC value of 0.86 (±0.0006
SE), while had the lowest AUROC values throughout the
datasets, with a mean of 0.59 (±0.0004 SE).

The PRC was used to capture the tool performance
especially on the unequal test sets containing a large
proportion of lncRNA or protein-coding transcripts
(Lnc_bias and Pc_bias, respectively). As expected, PRC
was affected by the proportion of lncRNA and mRNA
transcripts in the test sets (Figure 1b, Supplemen-
tary Figure 2). In general, the tool performance order
stayed the same as when measured with AUROC, with
LncADeep leading, followed by mRNN and RNAsamba.
The only exception was the biased test set towards
lncRNAs (Lnc_bias), where CPAT performed better than
and LncFinder performed more similarly to the deep
learning-based methods. All the tools performed well on
Pc_bias test set, which could be expected based on the
general trend of training sets being more mRNA biased
and potentially including the reference mRNAs used in
testing.

The ability of the tools to respond to the differ-
ent proportions of lncRNAs and mRNAs was further
visualized by comparing the predicted versus actual
proportions of these two types of transcripts (Figure 2,
Supplementary Figure 3). The proportions of transcripts
labelled as lncRNAs or mRNAs by the deep learning tools
were closest to the real proportions of these transcripts
in each reference test set (Figure 2A) and they followed
more closely the changing proportions of the classes
in the biased test sets compared to the rest of the
tools (Figure 2B and C). In particular, longdist seemed to
predict high numbers of lncRNA transcripts irrespective
of the actual proportion of these transcripts in the test
set (Figure 2).

We further tested the performance of the tools on the
previously published real-life data on human monocytes,
macrophages, chondrocytes and epithelial cells [32]. In
total, 3219 novel loci were identified from the data across
cell types. All tools labelled over 80% of them as lncRNAs
(Figure 3). The order of the deep learning tools in the
proportion of labelled loci was the same for the real-life
data as for the Lnc_bias reference test set. Again, longdist
predicted the largest proportions of lncRNA transcripts,
labelling 96% of the transcripts as lncRNAs. Although
CPAT labelled slightly higher proportions of transcripts

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
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Figure 1. Performance of the coding potential prediction tools in the reference test sets for all tested tools. (A) An example Receiver Operator
Characteristics (ROC) curve of the test set M and the area under the ROC curve (AUROC) for all test sets (S, M, L, XL, Lnc_bias and Pc_bias; inset). (b)
Precision-recall curve (PRC) and area under PRC for all test sets (S, M, L, XL, Lnc_bias, Pc_bias; inset). The test sets (x-axis) were ordered on the basis of
the total number of transcripts in the test set. ROC and PRC figures for other test sets can be found from Supplementary Figures 1 and 2.

Figure 2. Proportions of predicted non-coding or protein-coding transcripts by the tested tools. Proportions for (A) reference test set M, (B) reference
test set with a large proportion of non-coding transcripts Lnc_bias and (C) reference test set with a large proportion of protein-coding transcripts
Pc_bias are shown for comparison. The proportion of predicted non-coding and protein-coding transcripts is marked in orange and blue, respectively.
The true proportions for each test set are indicated with horizontal dashed lines. Figures of predicted proportions for other test sets can be found in
the Supplementary Figure 3.

as lncRNAs than the deep learning tools in the ref-
erence test sets, in the real-life data the proportions
were similar. As the deep learning tools followed best
the known proportions of protein-coding and non-coding
transcripts in all the reference test sets, we may antici-
pate that the real proportion of lncRNA loci in these data
is ∼80%.

To further investigate the similarities and differences
between the tools in the real-life data, we assessed the
agreement of the predictions between the tools across
all the novel transcripts found in this study. Overall, the
tools labelled between 66% (mRNN versus longdist) to
92% (CPC2 versus LncFinder) of the transcripts concor-
dantly as lncRNA or mRNA. Hierarchical clustering of
the Jaccard distance of the tools revealed three main
clusters (Figure 4). Longdist labelled the transcripts most
distinctly compared to all the other tools, which is seen
as its own branch in the hierarchical clustering. Another
branch was formed by IRSOM, CPC2, LncFinder and CPAT,
with ∼90% agreement of the labels when compared to
each other. In the third branch, the three deep learn-
ing tools, RNAsamba, LncADeep and mRNN clustered

together labelling ∼90% of the transcripts in agreement
with each other.

In addition to performance, another important ques-
tion when choosing a tool is the run time. There were
apparent differences in the run times between the tools
(Figure 5). CPC2 and CPAT were the fastest tools, with run
times from 58 s (test set S) to 243 s (test set XL). The next
fastest tool was the deep learning tool RNAsamba with
run times ranging from 181 s to 369 s, being clearly to
fastest among the deep learning tools. The other deep
learning tools LncADeep and mRNN were the slowest of
all the tools, with run times ranging from 16 min up to 6 h,
depending on the size of the data. The run time of some
of the tools seem to have been affected by the biased test
classes, whereas others were likely only affected by the
different numbers of transcripts (Figure 5).

Discussion
The identification of lncRNAs suffers from many stages
that introduce uncertainty to the results. One of them is

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
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Figure 3. Proportions of predicted non-coding and protein-coding
transcripts in the real-life dataset. The proportion of predicted
non-coding and protein-coding transcripts for each tested tool is
marked in orange and blue, respectively.

Figure 4. Hierarchical clustering of tools, based on Jaccard distance of
tool-given labels for the real-life data. Jaccard distance calculations
were performed both ways, resulting in identical values and clustering.

the estimation of the coding potential of the novel tran-
script, often from incomplete transcripts. Deep learning
methods have been increasingly utilized in addressing
the potential sources of error. Here we compared a set of
previously introduced tools designed to assess the coding
potential of a given transcript to separate lncRNAs from
mRNAs. In particular, we concentrated on the poten-
tial differences between the tools utilizing deep learning
methods and other machine learning approaches. As
evaluation criteria, we used performance in labelling the
transcripts correctly, capability of the tools to perform on
uneven datasets, and usability of the tool as a whole.

No tool was clearly best in all performance test met-
rics and evaluation criteria. However, the three tested
deep learning tools (LncADeep, mRNN and RNAsamba)
were always among the top performing tools, followed
by the logistic regression based CPAT and the SVM based
LncFinder. In particular, the deep learning tools distin-
guished best between lncRNAs and mRNAs in the ref-
erence test sets. The deep learning methods finished
at the top also, when performance was measured in
the proportions of mRNAs and lncRNAs labelled by the
tools, compared to the actual proportions (Figure 2). The
proficiency of the deep learning tools at agreeing with the
true labels indicates that the correct proportions were
not achieved due to incorrect labels in right proportions.
CPAT and LncFinder also followed the true proportions
well, though tending to slightly overestimate the number
of lncRNA transcripts in the datasets.

The biased test sets, Lnc_bias and Pc_bias, caused all
tools to fluctuate in their ability to correctly label the
transcripts to the same direction. Since the PRCs do not
consider both classes equally, we applied them both ways
for the biased test sets (Supplementary Figure 4). This
suggested that the deep learning tools indeed rank at the
top at predicting lncRNAs.

LncADeep was the highest ranking deep learning tool
measured as AUROC and AUPRC. It uses a DBN to learn
the distinction between lncRNAs and mRNAs based on
sequence and homology features. Other tools, for exam-
ple LncFinder, implement similar and/or the same fea-
tures, with less success in correctly labelling transcripts.
Therefore, it might be that either the number of included
features is responsible for the success of LncADeep, or
that the network architecture is capable of learning new
associations between the features, thus improving the
success in labelling.

Unlike LncADeep, the deep learning architectures
implemented by mRNN and RNAsamba utilize directly
the sequence data and discern lncRNAs and mRNAs
based only on the sequence and any structures/features
that can be learned from it. These deep learning
architectures outperformed many other tools with fixed
input feature vectors. Thus, they likely learned features
or feature interactions beyond the current human
knowledge about the differences between lncRNAs and
mRNAs.

The huge potential of deep learning tools to rec-
ognize previously unknown patterns from sequence
data comes with the difficulty of interpreting these
patterns afterwards. The interpretation of the patterns
that deep learning tools have used to discern between
coding and non-coding transcripts relies on separate
interpretability analyses. Based on the analyses of
the developers of mRNN and RNAsamba, the tools
were able to utilize known sequence features in their
decision-making [11, 27]. Further, mRNN used previously
unknown sequence information named translation
indicating codons (TICs) in defining the sequence coding
potential [11].

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elab045#supplementary-data
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Figure 5. Total run times (seconds) of the tested tools under the same conditions, for all the reference test sets (S, M, L, XL, Lnc_bias, Pc_bias). The test
sets (x-axis) were ordered on the basis of the total number of transcripts. Note that the values for LncADeep are plotted on the secondary y-axis,
whereas the rest of the tools are plotted on the primary y-axis.

The tools’ performance on the real-life dataset was
quite similar to that on the reference data sets (Figure 3).
The deep learning tools and CPAT labelled similar
proportions of transcripts as lncRNAs to each other,
whereas longdist in particular tended to overestimate the
proportion lncRNAs. Hierarchical clustering with Jaccard
distance placed the three deep learning tools in the same
branch, with distances of around 12% between each
other. This indicates that the deep learning tools labelled
almost 90% of the transcripts in the same way. Known
reference test set transcripts were labelled by CPAT and
LncFinder with a small difference in AUPRC compared to
the deep learning tools. The labels by CPAT and LncFinder
for the real-life dataset were between 11% and 14%
different to those of the deep learning tools. On the other
hand, CPAT and LncFinder were more similar to each
other, with only 9.6% difference. These differences may
indicate that the top tools make slightly different choices
or mistakes in labelling novel transcripts. All the deep
learning tools have considered incomplete transcripts in
their design. Since real-life data processing of RNAseq
data often results in many incomplete transcripts, the
differences in labelling may arise from this particular
type of transcripts.

Tools with similar features and implementation did
not guarantee similar results in transcript labelling.
IRSOM (SOM), CPC2 (SVM) and LncFinder (SVM) were
most similar with each other in the real-life dataset
and the performance of IRSOM and CPC2 were alike
on the reference test sets. These tools all use similar
ORF-features but differ in the use of secondary structure
features; CPC2 and LncFinder use secondary structure,
whereas IRSOM does not. On the other hand, longdist
also uses very similar sequence features to IRSOM (k-
mers and ORF-based features) and is implemented as an

SVM, like CPC2 and LncFinder. Nevertheless, longdist was
the most dissimilar of all the tools and did not perform
as well on the reference test sets. IRSOM may have picked
up some relevant sequence characteristics better from
the SOM-network than longdist with SVM. Thus, not only
the features and the implementation but perhaps the
combination of the two affected the performance of the
tools utilizing other than deep learning methods.

Parameter choices and test sets affect tool perfor-
mance a great deal. In this study, LncADeep was run
with default parameters and performed best in terms
of correctly labelling the reference test set transcripts.
However, LncADeep did not perform well in all previously
published comparisons [16, 19 but see 33]. According
to Yang et al. [36], LncADeep may have been run with
suboptimal parameters in the previous comparison with
lncRNAnet and lncFinder [16 but see 35]. Although Xu
et al. [19] ran LncADeep with recommended parame-
ters, the python 2 code was modified to be compatible
with python 3, with unknown effects on performance. In
addition, these studies tested the performance on hg19
Havana annotated reference set [16] and a selected small
subset of NCBI Ref Seq annotated sequences [19] while
in comparison, this study used non-coding transcripts
from LNCipedia specifically excluding lncRNAs present
in GENCODE, which many tools use in training. Few of the
tested tools allow for parameter changes outside select-
ing the study organism and between pre-trained model
weights to use in the models. Lack of parameter choices
makes the tool user friendly in its straightforwardness,
however a real-life project could benefit from parameter
optimization and/or retraining the models where appli-
cable.

Real-life data run with lncRNA prediction tools differ
greatly from the reference transcripts used in model
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training. Most pipelines for lncRNA identification filter
out known lncRNAs and mRNAs before aiming to identify
new lncRNAs from among the novel transcripts. Thus,
when lncRNA prediction tools are applied on real-life
data, the data may exclude many full-length transcripts
and is almost always going to be biased towards lncRNAs.
It is good practice for any machine learning method to be
trained on balanced dataset in order not to include a bias
in the model. However, as could be seen from the results
of this study, the performance of the tools on biased
datasets may be affected. The overall performance of
the deep learning tools remained high despite biased
datasets, however, future efforts could take the biased
nature of the set of transcripts from experiments more
into account [15].

Based on our ranking of the overall user experience
and the results of the reference and real-life test sets,
deep learning tools are a good choice for the task of
discerning lncRNAs from mRNAs. The ease-of-use score
and user experience overall depend on the user’s experi-
ence with command line and/or specific coding language
tools. Of the best performing tools only RNAsamba and
CPAT can be run as online versions. Thus, they can be run
without using local computational resources or much
knowhow of different interpreters and be suitable for
many kinds of projects. However, so far, the online version
of CPAT supports only the older version of the human
genomic reference (hg19) for bed-input files. RNAsamba
is the only deep learning-based tool that can be run
online and it is not dependent on the reference genome.
RNAsamba also performed slightly better on the test sets
than CPAT. Therefore, the installation free online version
of RNAsamba may be the best choice for projects with
less computational resources and expertise.

The trade-off for selecting the overall highest scoring
tool measured in AUROC and AUPRC, LncADeep, is the
computing time. Overall, the time cost increased with
the increasing number of tested transcripts for all tools
irrespective of the initial training set sizes used by each
tool developer. However, the time cost of LncADeep was
clearly higher, likely due to calculating alignment-based
features. This might weigh heavily in the tool selection
decision, especially if computing time is limited and/or
costly. If computing time is the most limiting factor to a
project, RNAsamba might be the best choice, balancing
good performance, easy installation through python pip
or online based usage and fast running time compared
to the other deep learning tools.

LncFinder was the only tested tool that was written
and run through R. R packages are easy to install,
and many bioinformatics workflows are based on R
programs. The performance of LncFinder was quite good,
although several other tools surpassed it in various
performance metrics. Further, LncFinder required sig-
nificantly more computational memory during testing
(64 Gt, Supplementary material), and may thus not be an
option for some projects.

This study compared a representative set of tools
implementing deep learning methods to a representative
selection of other methods. Thus, not all existing tools
were tested and compared against deep learning tools.
Other deep learning tools, for example lncRNA_MDeep
[38] and DeepCPP [35], are also available, covering vari-
ations of the architectures tested here (DNN/DBN, CNN
and RNN). The inhouse benchmarking by Zhang et al. [35]
included LncADeep, mRNN and RNAsamba, concluding
that LncADeep performs well on regular human test set.
In addition, the testing supports conclusions from this
study, that deep learning tools outperform tools based
on other model types.

Many of the initially tried and hence published tools
seem not to have been maintained after their publishing,
or some parts of their code have become depreciated.
This is an unfortunate trend, since many good tools have
been developed. Xu et al. [19] aimed to overcome this
problem by developing a unified python wrapper for a
selection of available tools. Furthermore, web interfaces
independent of user systems, such as for RNASamba and
CPAT help in adopting the best tools for wider systematic
use in lncRNA prediction. We chose not to re-train any
of the tested tools in order not to give advantage over
tools that cannot be re-trained. It is likely that some tools
would have performed better if trained on the current
data, especially if the training was done on a previous
version of the human genome. However, in order for a
machine learning method to be broadly used, the model
should be general and work on other datasets as well.
Thus, the results here may also reflect the generality of
each tool.

To conclude, the results of this study showed that
deep learning tools LncADeep, mRNN and RNAsamba
outperformed most of the tools using other machine
learning methods in nearly all datasets tested. The choice
of the tool in a real-life project is not straightforward, as
the computational and time resources may have to be
weighted in order to choose the best deep learning tool
for the task. In many studies, accuracy may weigh heav-
ier in the choice of the tool than computational resources
leaning the decision towards LncADeep. In other stud-
ies, mRNN or the online version of RNAsamba may be
preferred. Irrespective of the choice, with the potential
of taking into account features or feature interactions
not included in current human knowledge, deep learning
tools offer a fast and reliable choice for lncRNA identi-
fication, beyond what machine learning methods with
only predetermined features can offer at the moment.

Key Points

• The difficulty of identifying long non-coding transcripts
from sequence data has been approached by tools using
statistical and machine learning methods, and lately,
deep learning methods.
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• Deep learning tools LncADeep, mRNN and RNAsamba
ranked at the top in predicting the coding potential mea-
sured in terms of prediction performance and in ease-of-
use when compared to other methods.

• Additional benefits from using deep learning methods
may be brought upon from utilizing features not incor-
porated in the current human knowledge.

Data availability
Sequence data used in benchmarking the tools are
available through GENCODE and LNCipedia pages. Real-
life data can be accessed through Gene Expression
Omnibus with the accession numbers GSE101868,
GSE74220 and ERA294222. Each tested tool was available
on their respective home pages in May 2021. Code used
for running the tools can be found in the Supplementary
material. Any other code can be accessed through a
request to the corresponding author.
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Supplementary data are available online at http://bib.
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