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Abstract: Gene editing (GE) has become one of the mainstream bioengineering technologies over
the past two decades, mainly fueled by the rapid development of the CRISPR/Cas system since
2012. To date, plenty of articles related to the progress and applications of GE have been published
globally, but the objective, quantitative and comprehensive investigations of them are relatively few.
Here, 13,980 research articles and reviews published since 1999 were collected by using GE-related
queries in the Web of Science. We used bibliometric analysis to investigate the competitiveness and
cooperation of leading countries, influential affiliations, and prolific authors. Text clustering methods
were used to assess technical trends and research hotspots dynamically. The global application status
and regulatory framework were also summarized. This analysis illustrates the bottleneck of the GE
innovation and provides insights into the future trajectory of development and application of the
technology in various fields, which will be helpful for the popularization of gene editing technology.

Keywords: gene editing technology; bibliometrics analysis; text clustering; CRISPR; regulation

1. Introduction

At present, a new round of global scientific and technological revolution is blooming
and reconstructing the global innovation landscape. The rapid development of biotechnol-
ogy and integration with information technology has become a pillar of driving power. As
one of the subversive achievements in the field of life science, gene editing technology is
not only a biological research tool but also an important means to improve agricultural pro-
duction and the healthcare industry. It will play indispensable roles in crop improvement,
livestock and poultry breeding, gene-targeted therapy, virus vaccine production and many
related fields.

Gene editing technology refers to a rising biological technology that can “Edit” the
target genes and achieve the knockout and addition of specific DNA fragments in the
genome. It can perform targeted and effective gene modifications in eukaryotes, especially
mammals [1]. Gene editing technology is mainly represented by meganuclease, zinc
finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the
clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas)
system. Because of its comparative advantages of higher editing efficiency, easier operation
and lower cost [2], the CRISPR/Cas system has been shortlisted as one of the top ten
technological breakthroughs by Science three times. As an adaptive immune system of
bacteria and archaea, the CRISPR/Cas system is widely used in gene editing research
due to the programmable characteristics of its guide RNA and the obvious activity of the
Cas nuclease in a variety of cells and tissues [3]. French biochemist Charpentier, E. and
American biologist Doudna, J.A. won the Nobel Prize in Chemistry in 2020 because of their
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outstanding contributions to the CRISPR/Cas9 gene editing technology, indicating the
irreplaceable revolutionary significance of this system.

With the deepening of global biotechnology research and the vigorous development of
the biological industry, the scientific achievements related to gene editing have continued
to increase in recent years. Literature reviews on the technological advances and their
applications in various fields have been conducted. In 2014, the working mechanism of
the RNA-guided system in genome editing technology was first clearly summarized in
eukaryotic cells [4]. Meanwhile, researchers summarized the genetic editing function of
the CRISPR/Cas9 technology in mammalian cells and its application in cancer and other
disease treatments [5]. When the engineered T cells have become mature, researchers
introduced the CRISPR/Cas9 technology into the therapy of recurrent and refractory
hematologic malignancies [6]. In addition, the CRISPR/Cas9 technology has also been
widely used in crop breeding [7], including the development of fine-tuning gene regulation,
traits improvement, virus resistance enhancement, etc. [8]. Recently, CRISPR has stepped
forward rapidly fueled by the emergence of new tools such as base editors, transposases,
and prime editors. Moreover, the box of Cas nucleases is expanding including Cpf1 and
so on, and widely adopted in transcriptional regulation, epigenetic modifications, RNA
editing, nucleic acid detection, etc. [9,10].

Most of the related reviews have summarized the gene editing characteristics, appli-
cation scenarios, recent development trends of different tools, and optimization of gene
editing tools. However, relatively few are about the objective, quantitative and comprehen-
sive investigation of the literature related to gene editing [11,12]. Here, we use an integrated
bibliometric approach [13,14] and visualization software such as Citespace and Scimago
Graphica to better understand the research status, evolution disciplinarian, competition and
cooperation situation, and development trend. The latest research frontiers and hotspots
for the past two decades are also tracked on the basis of text clustering analysis. For this
purpose, 13,980 articles and reviews published since 1999 are retrospectively collected from
the Web of Science, and the trend of publications, authorship patterns, topics and biases in
the field of gene editing are analyzed comprehensively.

2. Materials and Method

The bibliometrics analysis is an important tool for comprehensive data mining and
has been widely used due to its objectivity and quantitative characteristics. Peer-reviewed
articles are obtained by text queries mining the Science Citation Index Expanded (SCIE)
database in Web of Science, which is a natural scientific quotation index database of global
authority, and currently includes more than 8800 international high-level journals in the
field of natural sciences. Records were retrieved and cross-indexed by using entries that
provide information with regard to manuscript authors, affiliated institutions, publication
journals, years, titles and abstracts, spanning manuscripts published between 1999 and
2022 (up to 19 January 2022). The search strategy was based on the gene-editing-related
queries (Supplementary Table S1).

Data cleaning was conducted within the retrieved literature to limit the literature
types to articles and reviews written in English, and finally narrowed down the results to
13,980 valid data (Supplementary Table S2). Literature was downloaded after the screening
in the format of “summary, full record (including references),” saved as plain text files
used for analyzing data samples, and finally imported to Citespace (Drexel University,
Philadelphia, US), Scimago Graphica (SCImago Lab, Granada, Spain), and other visual
software. By combining the documentary metrology analysis, visualization analysis, and
social network analysis from three dimensions of the total amounts, citations and themes,
we constructed the basic profiles and development dynamics of gene editing research.
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3. Results
3.1. Origin and Eras of Gene Editing Technology

In 1953, the DNA double helix structure proposed by Watson and Crick realized
the leap from general genetics to modern molecular biology and opened the prelude to
gene editing technology [15]. The homologous recombination in yeast for the first time
welcomed the era of transgene, which was promoted by the emergence of electroporation,
PCR and other technologies. The first literature that explicitly proposed the concept of gene
editing appeared in 1990, which is mainly about the RNA editing model of kinetoplastid.
The partial hybrid formed between the gRNA and the pre-edited mRNA is a substrate
that is relegated after multiple cycles of cleavage, addition, or deletion of uridylic acid,
and finally produces a complete hybrid between the gRNA and the edited mRNA [16].
The successive discovery of meganuclease, ZFNs and TALENs in 1986 [17], 1996 [18],
and 2010 [19], respectively, and their application in agriculture, medicine, and industry
promoted the rapid transition from the era of transgene to the era of gene editing. These
milestone events are listed in Figure 1.
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Figure 1. The development history of general genetics, modern molecular biology, GMO and GE.

In particular, the CRISPR/Cas system has brought about a new round of revolution in
gene editing technology [20] and led to a surge in gene editing-related research since 2014.
The number of publications on CRISPR/Cas is several times more than that of the other
three gene editing technologies with a relative wide application (Figure 2 and Table 1). The
base editor and prime editor appeared in 2016 and 2019, respectively, and can be used to
perform more precise gene editing with a single base, which is believed to open a new
era of the CRISPR technology, along with the breakthrough and adoption of new CRISPR
enzymes (Figures 1 and 2).
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Table 1. The research status and application fields of GE technologies (mainly CRISPR/Cas9).

GE
Technologies

Research Status Typical Application Cases

Creators Institutions
and Countries Years Refs Application

Fields Research Objects Target Genes Refs

Meganuclease Colleaux. L

CNRS
Laboratoire

and Université
Pierre et Marie
Curie (France)

1986 [17]

Medicine
and Health

Human xeroderma
pigmentosum XPC [21]

Agriculture Cotton insect
resistant hppd and epsps [22]

Industry

Phaeodactylum
tricornutum’s

productivity of
triglycerides

UDP-glucose py-
rophosphorylase

gene
[23]

ZFNs
Srinivasan

Chan-
drasegaran

Johns Hopkins
University
(JHU, USA)

1996 [18]

Medicine
and Health

K562, CD4+ T cells
(X-linked severe

combined immune
deficiency (SCID))

IL2RG [24]

Agriculture Maize herbicide
tolerance Ipk1 and Zp15 [25]

TALENs Daniel F.
Voytas

University of
Minnesota

(USA)
2010 [19]

Medicine
and Health

Rat
immunoglobulinM

(rat model)
IgM [26]

Agriculture Rice disease-resistant
(Xanthomonas oryzae) Os11N3 [27]

Industry Saccharomyces
cerevisiae

URA3, LYS2 and
ADE2 [28]

CRISPR/Cas9

Jennifer A.
Doudna and
Emmanuelle
Charpentier

Howard
Hughes
Medical
Institute

(HHMI, USA)
and The

Laboratory for
Molecular
Infection
Medicine
Sweden
(MIMS,
Sweden)

2012 20

Medicine
and Health

Human 293FT and
mouse cells (first

mammalian model)

SpCas9, SpRNase
III, EMX1,

PVALB and Th
[29]

Cynomolgus monkey
(mammalian model)

Nr0b1, Ppar-γ
and Rag1 [30]

Duchenne muscular
dystro-

phy(mouse model)
DMD [31–33]

Human hereditary
tyrosinemia

(mouse model)
Fah [34]

Human hemophilia
(mouse model) Serpinc1 [35]
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Table 1. Cont.

GE
Technologies

Research Status Typical Application Cases

Creators Institutions
and Countries Years Refs Application

Fields Research Objects Target Genes Refs

Human intestinal
neoplasia

(mouse model)

APC, P53 (TP53),
KRAS and

SMAD4
[36,37]

Human lung
adenocarcinoma
(mouse model)

KRAS, p53
and LKB1 [38]

Cataracts
(mouse model) Crygc [39]

Human obesity
(mouse model) FTO [30]

Resistance to
Clostridium septicum

alpha-toxin or
6-thioguanine

(mouse ES cells)

Whole genome [40]

Functional genomics
in human cells

Anthrax and
diphtheria toxin

host genes
[41]

Human autologous
CD34+ cells BCL11A [42]

Human hepatocytes TTR [43]

Human fibroblast APP [44]

Mouse acute myeloid
leukemia cell

RPA3,Brd4,
Smarca4, Eed,

Suz12 and Rnf20
[45]

204 human cancer
cell lines 18,009 genes [46]

SARS-CoV-2

SARS-CoV-2
N1/N2/N3,

pH1N1 H1 and
pH1N1/H275Y N1

[47]

Human leukemic BCR-ABL [48]

Human HeLa cells Telomerase gene [49]

Agriculture

Rice and Wheat (first
applied to plants)

OsPDS,
OsBADH2,
OsMPK2

and TaMLO
[34]

Rice herbicide
tolerance

OsALS and
OsFTIP1e [41]

Tomato fruit size,
quantity and

nutritional value

SELF-PRUNING,
OVATE,

FASCIATED,
FRUIT WEIGHT

2.2,
MULTIFLORA

and LYCOPENE
BETA CYCLASE

[50]

Tomato storability SP5G [51]

Wheat grain weight
enhancement TaGASR7 [52]

Sativa oleic acid
content FAD2 [53]

Brassica napus L.
(yellow seed traits,

and increase protein
content and fatty acid

content)

BnTT8 [54]

Oil content of
rapeseed

BnSFAR4 and
BnSFAR5 [55]

Rice grain quality Waxy [56]
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Table 1. Cont.

GE
Technologies

Research Status Typical Application Cases

Creators Institutions
and Countries Years Refs Application

Fields Research Objects Target Genes Refs

Tomato fruit
nutrition GABA-T/SSADH [57]

Rice amylose Wx [58]

Tomato high quality
seedless fruit SlAGL6 [59]

Mitochondrial
function and fruit
ripening in tomato

SlORRM4 [60]

Tomato ripening
regulation lncRNA1459 [61]

Grape resistance to
Botrytis cinerea VvWRKY52 [62]

Citrus (improvement
of citrus

canker resistance)
CsLOB1 [63]

Wheat resistance
to mildew TaEDR1 [64]

Rice resistance to
salinity tolerance OsRR22 [65]

Rice
herbicide-tolerant OsALS1 [66]

Potato resistance to
the herbicide ALS1 [67]

Rice disease
resistance

OsSWEET13 and
ten EBEPthXo2 [68]

Rice broad-spectrum
disease resistance Bsr-k1 [69]

Duncan grapefruit
(disease resistant
citrus varieties)

CsLOB1 [70]

Rice resistance to
plant hoppers and

stem borers
OsCYP71A1 [8]

Rice tolerance to
abiotic stresses OsSRFP1 [71]

Rice seed setting rate,
the total number of
grains, number of

full grains per
panicle and

1000-grain weight

OsLOGL5 [40]

Rice grain size, width
and weight

OsGS3, OsGW2
and OsGn1a [72]

Rice ear length, grain
size, cold tolerance

OsPIN5b, GS3
and OsMYB30 [73]

Rice grain number,
ear structure,
particle size

Gn1a, DEPT, GS3
and IPA1 [74]

Soybean NSPP and
leaflet shape GmJAG1 [75]

Maize grain yield
ARGOS8-v1,
ARGOS8-v2
and Zmcle7

[76,77]

Wheat grain shape
and weight TaGW7 [78]

Industry

Yeast biosynthesizing
monoterpenes LIS [79]

Actinomycetes actIORF1 and
actVB [80]
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Table 1. Cont.

GE
Technologies

Research Status Typical Application Cases

Creators Institutions
and Countries Years Refs Application

Fields Research Objects Target Genes Refs

Pichia pastoris RAD52 [81]

CRISPR
/Cas12a(Cpf1)

Feng Zhang
Broad Institute

of MIT and
Harvard (USA)

2015 [76]

Medicine
and Health

First mammalian
model (HEK

293T cell)

DNMT1, EMX1,
VEGFA

and GRIN2
[82]

SARS-CoV-2 SARS-CoV-2 N
gene, E gene [83]

Agriculture Soybean fatty acid
desaturases

FAD2-1A and
FAD2-1B [84]

Industry Corynebacterium
glutamicum genome crtYf and recT [85]

Base Editor
(BE)

David R. Liu
Harvard

University
(USA)

2016 [86]

Medicine
and Health

Albinism (mouse
model) Dmd and Tyr [87]

Agriculture Rice, Wheat and
Maize genome

OsCDC48,
OsNRT1.1B,

OsSPL14,
TaLOX2 and
ZmCENH3

[88]

Industry
Escherichia coli and
Brucella melitensis

genome
rppH and lacZ [86]

Adenine Base
Editors (ABEs) David R. Liu

Harvard
University

(USA)
2017 [89] Medicine

and Health

Duchenne muscular
dystrophy

(mouse model)
Tyr [89]

Prime Editors
(PEs) David R. Liu

Harvard
University

(USA)
2019 [90] Agriculture Rice and

Wheat genome

OsALS,
OsCDC48,
OsDEP1,
OsEPSPS,

OsGAPDH,
OsLDMAR,

TaGW2, TaUbi10,
TaLOX2, TaMLO,

TaDME and
TaGASR7

[90]

DddA-derived
cytosine Base

Editors
(DdCBEs)

David R. Liu
Harvard

University
(USA)

2020 [91]
Medicine

and Health
Human

mitochondrial (HEK
293T cell)

ND1, ND4,
ND5.2, COX3.1

and RNR2
[91]

Target-AID Akihiko
Kondo

Kobe
University

(Japan)
2016 [92]

Agriculture Tomato hormone DELLA and ETR1 [41]

Industry Escherichia coli
genome galK and rpoB [92]

dCas9-AIDx
Yan Song
and Xing

Chang

Chinese
Academy of
Sciences and
Shanghai Jiao

Tong
University
School of
Medicine
(China)

2016 [93] Medicine
and Health

Chronic myeloid
leukemia cells GFP [93]

CRISPR
/Cas13a (C2c2)

Feng Zhang
Broad Institute

of MIT and
Harvard (USA)

2016 [77] Medicine
and Health

Dengue and
Zika virus

the P. aeruginosa
acyltransferase
gene and the

S. aureus
thermonuclease

gene

[94]

Human
monocytic cell GBA1 [95]

CRISPR
/Cas13b (C2c6) Feng Zhang

Broad Institute
of MIT and

Harvard (USA)
2017 [78] Medicine

and Health SARS-CoV-1 RNA genome [96]

CRISPR
/Cas13d Feng Zhang

Broad Institute
of MIT and

Harvard (USA)
2018 [79] Medicine

and Health SARS-CoV-2 RNA genome [97]
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Table 1. Cont.

GE
Technologies

Research Status Typical Application Cases

Creators Institutions
and Countries Years Refs Application

Fields Research Objects Target Genes Refs

Agriculture
Nicotiana benthamiana

and Arabidopsis
thaliana RNA virus

GFP [98]

Industry

Ruminococcus
flavefaciens

(frontotemporal
dementia)

ANXA4 [99]

3.2. Development of Four Types of Gene Editing Technologies

Meganuclease is the earliest gene editing tool that recognizes DNA fragments in the
range of 12–40 bp and causes double-strand break (DSB) [100]. Then, the genomic DNA is
repaired mainly depending on non-homologous end joining (NHEJ) [101] (Figure 3). As
the ORF is shown to be a site-specific DNA endonuclease that initiates homing events,
Meganuclease is firstly used in genetic engineering [17]. Meganuclease can be used to
treat human Xeroderma Pigmentosum by editing targeted gene XPC [21], to produce
insect-resistant cotton in crop breeding [22], and to enhance Phaeodactylum tricornutum’s
productivity of triglycerides by editing the UDP-glucose pyrophosphorylase gene [23]
(Table 1). The low level of publication volume and limited application of the Meganuclease-
mediated gene editing (Figure 2, Supplementary Table S3) are mainly due to two factors.
First, hundreds of meganucleases have unique recognition sequences. It is thus necessary
to find the very low likelihood of meganuclease targeting specific gene sequences [102].
Second, DSBs are mainly repaired by NHEJ, which cannot introduce foreign DNA templates
and randomly delete or insert DNA fragments at the break sites [103].

ZFNs are the first sequence-specific nucleases that allow gene editing in living cells
by inducing targeted DNA DSBs at specific genomic loci. They are composed of a zinc
finger DNA binding domain responsible for specific recognition sequences (Cys2-His2)
and a DNA cleavage domain for non-specific restriction endonuclease cleavage (FokI en-
donuclease) [104]. Two independent zinc finger modules (composed of ZFPs) are designed
to recognize the two strands of DNA, respectively, and then lead to DNA DSBs at the
target site through FokI-mediated homodimerization. After DNA damage, it is repaired by
NHEJ and homology directed repair (HDR), thereby realizing the gene editing (Figure 3).
With the improvement of the specificity of ZFNs as gene modification reagents [105], this
technology has been gradually introduced and used in the agriculture and gene therapy
areas. In 2005, Urnov, F. D. et al., performed targeted editing of the IL2RG gene in K562 and
CD4+ T cells by ZFNs, making it possible to treat X-linked severe combined immune defi-
ciency (SCID) by gene therapy [24]. In agriculture, ZFNs can be used to improve herbicide
tolerance in maize [25]. Since many core patents of ZFNs technology are blocked by the
Sangoma Company, ZFNs have not arrived at large-scale clinical application. Moreover,
the limitations of ZFNs, such as being too dependent on the upstream and downstream
sequences of the target gene, cytotoxicity, and high off-target rate [106–108], have greatly
restricted the development and application of the technology (Figure 2, Supplementary
Table S3).

TALENs are transcription activator-like effector nucleases developed from effector
TALEs in Xanthomonas [109]. TALENs are modular in form and function like ZFNs, consist-
ing of a fusion of the FokI cleavage domain and TALE protein DNA-binding domain [19].
When applying TALENs for gene editing, after a pair of TALENs are co-transfected into
cells, two FokIs form a dimer and then cleave DNA strands at the target site, and cause
DSBs. Then, the cell repairs DNA through NHEJ or HDR, and indels are generated during
the repair process, resulting in frame-shift mutations (Figure 3). Compared to ZFNs, the
advantages of TALENs technology are the simpler design [110] and higher specificity [111],
which lead to a wider application. Tesson, L. et al., used TALENs to disrupt the rat IgM
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locus, successfully inactivating the IgM gene and creating heritable mutations in the gene
in a mammalian rat model [26]. Li, T. et al., developed dTALENs technology by targeting
specific sites in the URA3, LYS2, and ADE2 genes of Saccharomyces cerevisiae and found that
Saccharomyces cerevisiae was undetectable for cytotoxicity and minimal levels of undesired
mutations, which first extend the application of TALENs technology from mammalian cells
to complete eukaryotes [28]. Targeted disruption of the rice bacterial blight susceptibility
gene Os11N3 (OsSWEET14) by TALENs enabled plants resistant to bacterial blight in rice,
which has laid a preliminary research foundation for the application of TALENs in crop
breeding [27]. However, this technology still has disadvantages such as cytotoxicity and
the complex module assembly process [112]. The overall trend of publication volume of
the TALENs technology is similar to that of ZFNs, and its publication volume also began to
drastically decline after reaching its peak in 2016 (Figure 2, Supplementary Table S3).
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The ZFNs and TALENs technologies have improved the efficiency of gene knock-
out, but new proteins need to be redesigned for different sites in the genome, requir-
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ing the cumbersome operation and high technical threshold. After a burst of efforts, in
2007, Barrangou, R. et al. demonstrated the type II CRISPR/Cas system derived from
Streptococcus thermophilus had the function of the acquired immune system for the first
time [113]. The CRISPR/Cas9 technology came out in 2012, using the DNA endonucle-
ase Cas9 derived from bacteria instead of the FokI restriction enzyme used by ZFNs and
TALENs [114]. In 2012, Jinek, M. et al. first demonstrated that Cas9 could specifically
cut the target DNA sequence under the guidance of synthetic sgRNA in vitro [20]. In
2013, Zhang, F.’s team published a related paper, demonstrating that CRISPR/Cas9 could
be applied to the genome of human cells for the first time [29]. The simplified editing
system consists of a single guide RNA and a Cas9 protein, and the Cas9-RNA complex
cleave DNA through DSBs at the target site (Figure 3). Because the optimized system is
simple, accurate, and fast, which greatly reduces the technical threshold and cost [115],
CRISPR/Cas9 has become the most important tool for gene editing. Since 2014, the publi-
cation volume of CRISPR/Cas9 has rapidly increased and surpassed the other three gene
editing technologies (Figure 2, Supplementary Table S3). The application of CRISPR/Cas9
is concentrated in the medical field, including animal models, gene therapy, and targeted
drugs. Genome-wide CRISPR-based knockout screens can be used for functional genomics
studies [116]. This technique can detect the genomic loci of cellular drug resistance [117],
define how cells induce host immune responses, and how certain viruses induce cell
death [118]. The non-functional elements discovered by gene editing technology provide a
new method for studying the structure and evolution of the human genome and screening
for drug targets [119]. Niu, Y. et al. successfully achieved a double knockout of Ppar-γ
and Rag1 using the CRISPR/Cas9 system in 2014 and obtained the first Cas9-mediated
knockout cynomolgus monkey [120]. Subsequently, by constructing a mouse model, Long,
C. et al. targeted mutation of DMD, the main control gene of Duchenne muscular dys-
trophy [31] and obtained an ideal therapeutic effect [121,122]. In addition, CRISPR/Cas9
has made remarkable progress in the gene therapy of human hereditary tyrosinemia [123],
hemophilia [124], intestinal neoplasia [36,37], lung adenocarcinoma [38], cataracts [39],
obesity [30] and other diseases.

CRISPR/Cas9 can also be used to improve animal and plant breeding in agricultural
production. It functions well in improving plant breeding in terms of yield, resistance, and
quality [32,33]. In 2013, the Gao, C.X. team successfully applied CRISPR/Cas9 to rice and
wheat for the first time and achieved targeted mutations of OsPDS, OsBADH2, OsMPK2
and TaMLO genes [34]. Wang, C. et al. edited the OsLOGL5 gene through CRISPR/Cas9,
which makes rice achieve a significant increase in the seed setting rate, the total number of
grains, number of full grains per panicle, and 1000-grain weight [40]. For crop resistance,
Shimatani, Z. et al. enhanced the herbicide tolerance of rice by editing rice OsALS and
OsFTIP1e genes [41]. Jia, H. et al., used CRISPR/Cas9 technology to modify the citrus
susceptibility gene CsLOB1, resulting in citrus resistance to citrus canker [70]. For crop
nutrition and quality, taking tomato as an example, CRISPR/Cas9 has successfully been
used to improve fruit size and nutritional quality [50,57], the regulation of maturity [61],
the storage stability [51] and cultivation of high-quality seedless fruit [59]. However, the
application of CRISPR/Cas9 in industry is as few as the other technologies mentioned
above. Denby, C. M. et al. biosynthesized aromatic monoterpenes in yeast by targeting
mutation of the LIS gene, making the Beer have a hoppy taste [79]. Tong, Y. et al. developed
a CRISPR system for actinomycete genomes that can efficiently and reversibly control target
genes actIORF1 and actVB [80]. Cai, P. et al., edited Pichia pastoris genome and found that
fatty alcohol production can be increased to 380 mg/L [81].

Then, a series of simpler, more accurate Cas enzymes have been found, and are used
as alternatives of Cas 9, especially after the structural analysis has been completed [125].
CRISPR/Cas12a (Cpf1) [126], CRISPR/Cas13a (C2c2) [127], CRISPR/Cas13b (C2c6) [128],
and CRISPR/Cas13d [129] were developed in 2015, 2016, 2017, and 2018, respectively,
making a huge contribution to the development of GE technology. In 2018, Doudna, J.A.’s
team successfully applied Cpf1 (Cas12a) to identify viral DNA [130]. Subsequently, it was
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used for SARS-CoV-2 virus detection of COVID-19 [83]. Cpf1 can improve soybean fatty
acid content by targeting mutations in soybean fatty acid desaturases genes FAD2-1A and
FAD2-1B [84]. Corynebacterium glutamicum is an important industrial bacteria, and Cpf1
successfully edited its genome for the first time [85]. CRISPR/Cas13a, CRISPR/Cas13b
and CRISPR/Cas13d have been used for viral nucleic acid detection and genome edit-
ing of Dengue and Zika virus [94], SARS-CoV-1 [96] and SARS-CoV-2 [97], respectively.
CRISPR/Cas13d has achieved gene editing of Nicotiana benthamiana and Arabidopsis thaliana
RNA virus [98]. Another breakthrough in CRISPR is base editor (BE) [131]. Adenine base
editors (ABEs) [35], prime editors (PEs) [132], and DddA-derived cytosine base editors (Dd-
CBEs) [133] were invented by the Liu, D.R. team in 2017, 2019, and 2020, respectively, and
have become major technology systems in the field of gene editing. In addition, Target-AID
technology, dCas9-AIDx technology, and other single-base gene editing systems have been
invented successively [93,134], with a relatively narrow application, especially in the fields
of medicine and agriculture (Table 1).

Collectively, gene editing technology has a wide range of research and applications in
agriculture, medicine, and industry (Figure 2, Supplementary Tables S1 and S3). Among
the three fields, it has the most research in health and medicine, where the publication
number has been ranked first in the past two decades. The annual publication volume in
the agriculture area is relatively lower, but the growth rate is higher. Studies of gene editing
related to the industrial field are relatively few (Figure 2, Supplementary Table S3). In
summary, the development and application trends of gene editing technology are simpler,
safer, more efficient and more precise.

3.3. Competition and Cooperation of Key Actors in Gene Editing Technology
3.3.1. National Performance

In general, the productivity and impact of the articles published by a certain country
are two aspects to evaluate its competitiveness [1,2]. In the typical bibliometric analysis,
the average citation is a robust index to quantify the influence of scientific research [3].
Accordingly, the United States is in the leading position, ranking first in publication volume
and second in average citations. China ranks second in publication volume but 12th

in average citations. Comprehensively evaluating the total publication volume and the
average citation frequency, we found that Germany, South Korea and France have great
potential for development in gene editing. A special case is Sweden, which the total number
of publications is only 208. However, the average citation frequency of Sweden has reached
84.28, which is 2.6 times higher than the average. Compared with Scotland and Russia,
which have a similar number of publications, using the average citation frequency as an
analysis indicator, it can be found that the influence of relevant research in Sweden is
generally higher than that in Scotland and Russia, and Sweden is more authoritative in
gene editing (Figure 4A, Supplementary Table S4).

The geographical distribution and cooperation of gene editing research are shown
in Figure 4B. Not surprisingly, the United States is the largest contributor to scientific
collaboration and has more frequent cooperative relationships with Japan, Germany, and
the UK. China is next only to the United States, with USA and Germany as main partners.
Russia, India, and Iran are the three countries with the least international cooperation.
Collectively, the scientific research output of gene editing is mainly concentrated in the USA
and several developed countries in Europe. Although China ranks second in publication
volume, due to the complex factors including the late start, policy restrictions, and focusing
more on agriculture, the overall scientific research contribution is still at a moderate level.
The UK, Japan, and Germany are relatively important nodes in the innovation network.
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3.3.2. Key Institutions and Scientists Engaged in Gene Editing Technology

The academic performance of the most productive research institutions and scientists
is shown in Tables 2 and 3, and Figure 5. The top five institutions with the largest publica-
tion volume are Chinese Academy of Sciences, University of Chinese Academy of Sciences,
Harvard Medical School, Stanford University, and Harvard University, all of which are
the top universities or institutes in their respective countries. In addition, Massachusetts
Institute of Technology, along with Harvard University, Massachusetts Gen Hospital, and
University of California Berkeley have relatively higher average citations, demonstrating
their high-level academic output capability in gene editing. Interestingly, the four institutes
constitute a “golden quadrangle” in the cooperative network (Figure 5). Another group of
partners are Stanford University, University of Washington, and University of California,
San Francisco. Chinese Academy of Sciences stands at the core of the cooperative relation-
ship in China and has a strong correlation with University of California, Davis, and other
institutions in the United States as well.

Table 2. The top 20 institutions in gene editing with the publication volume as the first rank.

Rank Organizations Number of Records Average
Citations

1 Chinese Academy of Sciences 599 37.53

2 University of Chinese Academy of Sciences 311 30.90

3 Harvard Medical School 291 40.30

4 Stanford University 261 46.75

5 Harvard University 251 280.71
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Table 2. Cont.

Rank Organizations Number of Records Average
Citations

6 University of California, Berkeley 220 118.13

7 Chinese Academy of Agricultural Sciences 192 22.41

8 Massachusetts Institute of Technology 173 298.36

9 University of California, San Diego 160 39.74

10 University of California, San Francisco 155 54.07

11 Seoul National University 153 70.65

12 The University of Tokyo 152 36.21

13 University of Oxford 151 22.07

14 University of Minnesota 148 46.14

15 University of Pennsylvania 147 56.56

16 Zhejiang University 146 20.82

17 University of Washington 144 40.56

18 Kyoto University 138 24.96

19 Massachusetts Gen Hospital 137 173.14

20 University of California, Davis 136 27.55

Table 3. The top 20 prolific authors in gene editing with the publication volume as the first rank. The
recent 3-years rate is the percentage of publications published in the recent three years as a proportion
of the author’s total publications.

Author Number of
Records

Total
Citations

Average
Citations Year Range Recent

3-Year Rate Organizations Top Research Fields
(Number of Records)

Takashi
Yamamoto 69 1866 27.04 2012–2021 20% Hiroshima

University

Cell Biology (24);
Multidisciplinary Sciences

(21); Developmental
Biology (13)

Tetsushi
Sakuma 62 1763 28.44 2012–2021 19% Hiroshima

University

Cell Biology (22);
Multidisciplinary Sciences

(19); Developmental
Biology (11)

Feng
Zhang 62 36,524 589.1 2012–2021 25%

Massachusetts
Institute of
Technology

Biochemistry Molecular
Biology (22); Cell Biology

(21); Multidisciplinary
Sciences (15)

Jin-Soo
Kim 61 9354 153.34 2009–2021 24% Seoul National

University

Biotechnology Applied
Microbiology (24);

Biochemistry Molecular
Biology (15);

Multidisciplinary
Sciences (14)

Jennifer A.
Doudna 52 14,594 280.65 2012–2021 44%

University of
California,
Berkeley

Multidisciplinary Sciences
(23); Biochemistry

Molecular Biology (14);
Cell Biology (7)
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Table 3. Cont.

Author Number of
Records

Total
Citations

Average
Citations Year Range Recent

3-Year Rate Organizations Top Research Fields
(Number of Records)

Caixia Gao 45 3965 88.11 2014–2021 58%
Chinese

Academy of
Sciences

Biotechnology Applied
Microbiology (15); Plant

Sciences (11);
Biochemistry Molecular

Biology (9)

J. Keith
Joung 42 16,411 390.74 2010–2021 20% Harvard

University

Biotechnology Applied
Microbiology (15);

Biochemistry Molecular
Biology (9);

Multidisciplinary
Sciences (8)

Matthew H.
Porteus 40 2762 69.05 2013–2021 44% Stanford

University

Medicine Research
Experimental (11);

Multidisciplinary Sciences
(9); Biotechnology

Applied Microbiology (8)

Toni
Cathomen 40 2033 50.83 2009–2021 28% University of

Freiburg

Medicine Research
Experimental (15);

Genetics Heredity (12);
Biotechnology Applied

Microbiology (11)

Gang Bao 39 5242 134.41 2013–2021 39% Rice University

Medicine Research
Experimental (12);

Biotechnology Applied
Microbiology (8); Genetics

Heredity (7)

Daniel F.
Voytas 39 4877 125.05 2011–2021 24%

University
Minnesota
Crookston

Plant Sciences (18);
Biotechnology Applied

Microbiology (10);
Multidisciplinary

Sciences (7)

Michael C.
Holmes 39 9602 246.21 2007–2021 18% Sangamo

Therapeutics

Biotechnology Applied
Microbiology (14);
Medicine Research
Experimental (13);

Genetics Heredity (9)

David R.
Liu 35 8268 236.23 2013–2021 38% Harvard

University

Multidisciplinary Sciences
(17); Biochemistry

Molecular Biology (8);
Biotechnology Applied

Microbiology (6);

Rodolphe
Barrangou 35 1996 57.03 2013–2021 49%

North Carolina
State

University

Microbiology (10);
Biochemistry Molecular

Biology (8); Biotechnology
Applied Microbiology (7)

Philip D.
Gregory 34 10,762 316.53 2007–2018 31% Sangamo

Therapeutics

Biotechnology Applied
Microbiology (9);

Multidisciplinary Sciences
(7); Biochemical Research

Methods (5)
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Table 3. Cont.

Author Number of
Records

Total
Citations

Average
Citations Year Range Recent

3-Year Rate Organizations Top Research Fields
(Number of Records)

Yong
Zhang 33 1654 50.12 2015–2021 60%

University of
Electronic

Science
Technology

of China

Plant Sciences (14);
Biochemistry Molecular

Biology (11);
Biotechnology Applied

Microbiology (8)

Bing Yang 33 2103 63.73 2011–2021 44% Iowa State
University

Plant Sciences (19);
Biotechnology Applied

Microbiology (12);
Biochemistry Molecular

Biology (10)

YiPing Qi 32 1682 52.56 2015–2021 69%
University of

Maryland,
College Park

Plant Sciences (25);
Biotechnology Applied

Microbiology (6);
Biochemistry Molecular

Biology (5)

Xingxu
Huang 28 1447 51.68 2014–2021 32% Shanghai Tech

University

Biochemistry Molecular
Biology (9); Cell Biology

(9); Multidisciplinary
Sciences (7)

Huimin
Zhao 28 1618 57.79 2012–2021 31%

University of
Illinois,
Urbana-

Champaign

Biotechnology Applied
Microbiology (14);

Biochemical Research
Methods (6); Biochemistry

Molecular Biology (3)

The top five productive authors are Yamamoto, T.; Sakuma, T.; Zhang, F.; Kim, J.;
and Doudna, J.A. Authors with the highest average citations are Zhang, F.; Joung, J. K.;
Gregory, P. D.; Doudna, J.A.; and Michael C.H. According to the Recent 3-year rate, Qi,
Y.P.; Zhang, Y.; and Gao, C.X. are quite active recently (Table 3). Specifically, Yamamoto,
T. and Sakuma, T. have published the most papers in a relative early period and are
closely collaborative scientists from Hiroshima University. Their main research direction
is focused on the development and applications in organisms and cells of TALEN and
CRISPR technologies [135,136]. Doudna, J.A. and Charpentier, E. shared the 2020 Nobel
Prize in Chemistry for their discovery of the CRISPR/Cas9 genetic scissors, but the latter
does not enter the top 20 researchers in terms of publication volume. Therefore, this shows
that the number of publications of researchers cannot be used as the only reference factor
to measure their contribution to a field. Breakthroughs in science often come from the
integration of disciplines. Therefore, when cooperating with scholars in a certain field,
their academic capabilities should be comprehensively considered, rather than only the
number of publications as unique credentials. As one of the pioneer researchers to apply
CRISPR/Cas to eukaryotic and human cells, Zhang, F. first reported and revealed the
functional mechanism of the novel CRISPR system Cpf1 in 2015 [126] and has conducted a
lot of research work to improve the efficiency of CRISPR/Cas system in recent years [137].
He is also the key researcher in the cooperative network. Kim, J. is an expert in the
development of off-target effect evaluation tools for CRISPR/Cas. Gao, C.X. is the sixth
most productive scientist, with an activity rate of 58% in the past three years, has paid more
attention to the research and application of CRISPR/Cas in agriculture, and has a high
academic output and active cooperation with other scientists, e.g., with Liu, D.R. to adapt
prime editors in plants [90]. Barrangou, R. started researching the role of CRISPR/Cas in
prokaryotic immunity in 2005. Liu, D.R. developed cytosine and adenine base editors for
editing single nucleotides and developed prime editing, which can replace target DNA
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fragments with specific base sequences, thus keeping him at an emerging location of the
global cooperative relationship. In general, China still lags behind the USA and some
European countries in the number and academic influence of high-level scholars in the
field of gene editing (Figure 5B).
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3.4. Research Hotspots and Evolution of Gene Editing Technology

The co-occurrence analysis of the keywords can reflect the key knowledge nodes,
structure, and hot topics in the field of gene editing research. The six keywords with
an occurrence frequency greater than 1000, are CRISPR/Cas9, expression, gene, DNA,
genome, and mutation (Figure 6A, Supplementary Table S5), indicating that the CRISPR/
Cas9 technology holds an important position in the field of gene editing research and has
been widely used for gene mutation and gene expression.
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Figure 6B shows the top 20 keywords with the strongest citation bursts, illustrating
the emergence and replacement of research hotspots from 1999 to 2022. According to the
emergent words, gene editing has been mainly applied to the research of mammalian
embryonic stem cells since 2005. Then, the focus shifted to molecular biology at the
gene level due to the emergence of homologous recombination, double-strand break,
DNA binding specificity, and gene targeting from 2006 to 2009. The emergence of ZFNs
technology in 1996 triggered a new round of research upsurge. With further improvement
and maturity, gene editing technology began to be applied to human cell research in 2014.
In the past two years, the research hotspots of gene editing have tended to be genomic
DNA and base editing. The realization of precise base editing technology benefits from
the cytosine base editor, adenine base editor, and prime editing developed by Liu, D.R.’s
laboratory [132,138].
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Based on the text clustering analysis, a total of eight clusters are obtained, namely, #0,
CRISPR; #1, homologous recombination; #2, gene expression; #3, identification; #4, mouse
model; #6, sequence correction; #7, somatic cell; #8, noncoding RNA (Figure 7). It indicates
that the application of gene editing in genetics, medicine, and gene therapy has become
a focus of research in recent years. In addition, many research topics have shown a spurt
in growth since 2012. The reason behind this may be the breakthrough of CRISPR/Cas9
which has made gene editing free from technical and cost limitations and greatly promoted
the breadth and depth of related research. Correspondingly, the CRISPR is a clustering
label word with the longest period from 2005 to 2022.
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Regulation is an important but controversial topic for GE technology commercializa-
tion and has intrigued researchers and governments for decades (Figure 8, Supplementary
Table S6). Since CRISPR/Cas9 launched in 2012, the boom of GE research and rapidly
expanding application have raised a series of social ethics and food safety issues as well
as economic and environmental benefits. Therefore, research publications related to the
regulatory framework soar up with an exponential growth afterward (Figure 8). However,
the growth rate of publications volume related to GE regulation has decreased significantly
since 2019, reflecting the international trend of relaxation in GE regulation. In March 2018,
the USDA clarified that GE crops were not being used as plant pests would not be regulated.
As a result, the commercialization of GE crops has been accelerated, and the number of
publications on regulatory research has thus declined.
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According to Figure 9 (Supplementary Table S7), the keywords in regulatory research
of GE are targeted mutagenesis, DNA, homologous recombination, protein, RNA, human
cell, and so on, indicating that the focus of gene editing supervision is not only the technical
details at the molecular level but also ethical issues of GE technology applied to human
embryos and germ cells. However, keywords of regulatory such as off-target effects,
efficiency or safety are missing or weak (Figure 9, Supplementary Table S7). We believe that
due to the rapid development of CRISPR technology and its high technological maturity,
compared with transgenic technology and other gene editing technologies, it has the
advantages of accurate targeting, low off-target rate, low cytotoxicity, etc. Therefore, in
the current regulatory process of CRISPR-based gene editing technology, compared with
related research on transgenic regulation, it will weaken the aspects of off-target effects,
efficiency and safety, and pay more attention to technical and ethical regulatory issues.
For instance, gene-edited crops are theoretically safer and have better economic prospects.
Some countries, represented by the United States, regard gene-edited crops as equivalent
to naturally mutated plants, so they are not included in the strict supervision of genetically
modified crops. At present, many countries have adopted laws or industry norms to
prohibit genetic modification of germ cells, explicitly the gene editing of human embryos,
while other countries still hold unclear attitudes. The Chinese academic community have
studied and discussed the ethical issues involved in the application of GE technology, but
there are still a lot of gaps in regulatory practice. Considering that the commercialization of
GE crops is advancing irresistibly, the regulation of GE crops draws more attention, as well
as whether regulation of GE crops in accordance with the standards of GMO has become
the focus of controversy. The insertion of foreign genes and the existence of off-target effects
are the main risks followed by the regulatory strategies in various countries.

As from Figure 10, the USA has the most publications and the strongest intermediary
centrality in the field of GE regulation, indicating its leading position and bridging role.
China ranks second in terms of publications and centrality, while the regulatory framework
is still not certain, and thus a hot point of contention in China. The following countries
are Germany, Japan, and the UK, with great development research potential and influ-
ence. Although Sweden, South Korea, and Italy have published fewer papers on gene
editing regulation, their international cooperation is very active (Figure 10, Supplementary
Table S8).
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In the process of formulating and implementing GE regulations, the management
ideas and practices in various countries are quite different. The USA, Canada, and other
countries focus on product supervision, the EU focuses on process supervision, and China’s
supervision includes both process and product supervision. Internationally, there is no
clear consensus on whether gene-edited organisms are subject to regulations as GMOs.
Taking GE crops as examples, the EU considers crops that have undergone the transfer of
exogenous DNA to be GMOs even if the final product does not contain exogenous DNA.
The USA, Canada, Australia, Japan, Argentina, and some other countries treat GE crops
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without inserted nucleic acids as non-GMO and allow them to enter the market [139–141].
In contrast, China’s GE regulatory policies are more conservative than those of the USA,
but looser than the EU’s tough stance on GE crops. The first time that the GE concept
been separated from GMO in the regulative level by the Chinese Ministry of Agriculture
and Rural Affairs on 24 January 2022, will greatly facilitate research on GE crops in China
to cultivate agricultural plant species with higher yields, greater disease resistance, and
resilience to climate change [142].

4. Discussion and Perspectives

Based on the bibliometric evaluation of gene editing technology and its application in
subdivisions over the last two decades, we identified the competitiveness and cooperation
among main countries, institutions, and authors. Our data demonstrate the usefulness
of Web of Science, in this sense, which can be applied in any area. The methodology can
be further used to explore the popular topics and trends associated with GE research,
combined with social network analysis. Will the authors with high “recent 3-year rate” be
the intermediate forces in gene editing? How does the emerging keywords such as” lipid
nanoparticle” function in the development of gene editing? Can base editor, prime editor or
undiscovered Cas proteins be the future of CRISPR? Will a burst of gene editing innovation
come from within the field or from collaboration between various disciplines? It is believed
that bibliometrics never claims to offer insights into scientific knowledge, but it can put at
the service of advancing scientific research in actual practice as a useful tool [143].

With this in mind, we selected and analyzed the high-quality and typical papers
according to the quantitative result bibliometric analysis. By observing the academic
pathways of the most active authors, and the scientific reasons for the changes in research
trends, the main bottlenecks in the development and application of GE technology are
inferred. The first issue involves the PAM sequences in the CRISPR/Cas technology. In
practical applications, the PAM sequence of the traditional CRISPR/Cas9 system only
recognizes NGG, restricting the selection of specific target sites. The second issue involves
the low genetic transformation efficiency in some plants. For example, two transformation
systems in plants: Agrobacterium-mediated and particle bombardment, have disadvantages
such as multiple copies of DNA insertion, difficulties in enhancing genetic transformation
efficiency in certain genetic backgrounds, etc. Recent research has shown that nanomaterials
can transport Cas9 protein into cells to edit target genes, which may broaden the original
transformation methods and accelerate the genetic improvement of crops [144]. However,
there is still substantial work that needs to be done to improve operational efficiency. The
third issue involves the off-target phenomenon. The CRISPR/Cas9 technology relies on
the Cas9 nuclease to cleave the target DNA at a site 3-bp upstream of the PAM site under
the guidance of gRNA (on-target), but also cleave non-target sites (similar to the sgRNA
target site sequences and possessing the PAM sites), which results in so-called off-targets.
In addition, the Cas9 recognizes not only standard PAMs but also non-standard PAMs,
which may also cause a certain degree risk of off-targets, ultimately resulting in a series
of uncontrollable mutations. Some studies have suggested that off-target CRISPR editing
may increase the risk of cancer [145]. In a word, these limitations and problems of the gene
editing technology must be overcome so that it can be used to better serve human health
and better life, especially in the global spread of COVID-19 and similar living environments
that humans need to face in the long future.

The latest keywords in the timeline and achievements of the leading authors may
chart a course for the future of a certain area. In this sense, future strategies to promote the
development of gene editing technology may include three aspects. The first aspect involves
engineering Cas proteins and optimizing sgRNAs to reduce off-target effects as well as
developing more accurate detection methods of off-targets. To weaken the restriction of
Cas9 protein by PAM, the Cas9 protein can be modified so that more orthologous enzymes
of Cas9 can be used in gene editing systems. For example, Akcakaya, P. et al. [146] reported
that gRNA plays a key role in circumventing the off-target effects of CRISPR/Cas. They
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developed a method for verification of in vivo off-targets (VIVO), which can stably identify
the off-target effects of CRISPR/Cas in the whole genome in vivo. The base editor can
complete single-base substitution without DBS. The CRISPR variant (prime editor) formed
by the fusion of catalyzed damaged Cas9 nuclease and reverse transcriptase does not
require a donor DNA template. In this way, precisely targeted insertion, deletion, and point
mutation can be achieved, which will also be an important development direction of gene
editing and its application in the future. In addition, trying new transfection methods such
as nuclear injection of sgRNA and Cas9 complexes and establishing stable cell lines may
alleviate the problem of low transformation efficiency. Secondly, effectively expanding
the range of CRISPR/Cas9 nuclease PAM sites is the key to the widespread application
of the CRISPR/Cas system in gene editing. In 2018, Nishimasu, H. et al. obtained a
spCas9 variant (spCas9-NG) with a PAM sequence of NG by modifying the sequence
of spCas9 [147], breaking through the limitation of the PAM sequence and significantly
expanding the candidate range of target sites. The third aspect pertains to developing
new types of nucleases and new mRNA delivery technologies. Zhang, F.’s team published
consecutive papers in Science in 2021, discovering a class of proteins called IscB in bacteria.
The protein IscB retains programmable features and no other redundant structures, making
it easier to deliver into the body, and allows scientists to add more new functions to this class
of proteins through protein engineering, including PEG10-based human proteins [148–150].
These relevant results indicate that there may be many undiscovered proteins such as
Cas12b/C2c1 [124,151] with similar functions to Cas9 nuclease in nature, which means
that more research tools, drug delivery methods, and treatment modes are expected to be
explored and developed in the future.

To date, the USA has granted GMO regulatory exemptions for GE canola, high-oleic
soybeans, antioxidant mushrooms, waxy corn, and some other crops, and regulates most
GE crops as conventional plants. Japan, Finland, Sweden, Russia, Brazil, Argentina, and
many other countries have also listed some GE plant products as non-GMO products.
China has issued the Guidelines for Safety Evaluation of Agricultural Gene Editing Plants (Trial
Edition), in which it is shown that GE products without externally processed nucleic acids
will not be treated as GMOs. Nowadays, it is widely accepted that the GE products should
be handled differently according to whether or not they use the repair template and the
types of targeted sequence changes. Collectively, there is a trend of policy consistency all
over the world, and many countries tend to carry out the de-regulation of GE products. In
the future, as more countries update their regulatory frameworks on gene editing, more
GE products will flow into the market to improve the quality of life.
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