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Abstract

Persistent infection or chronic inflammation contributes significantly to tumourigenesis and 

tumour progression. C-X-C motif ligand 8 (CXCL8) is a chemokine that acts as an important 

multifunctional cytokine to modulate tumour proliferation, invasion and migration in an autocrine 

or paracrine manner. Studies have suggested that CXCL8 and its cognate receptors, C-X-C 

chemokine receptor 1 (CXCR1) and CX-C chemokine receptor 2 (CXCR2), mediate the initiation 

and development of various cancers including breast cancer, prostate cancer, lung cancer, 

colorectal carcinoma and melanoma. CXCL8 also integrates with multiple intracellular signalling 

pathways to produce coordinated effects. Neovascularisation, which provides a basis for fostering 

tumour growth and metastasis, is now recognised as a critical function of CXCL8 in the tumour 

microenvironment. In this review, we summarize the biological functions and ficlinical 

significance of the CXCL8 signalling axis in cancer. We also propose that CXCL8 may be a 

potential therapeutic target for cancer treatment
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1. Introduction

Long-lasting chronic infection is a hallmark of tumourigenesis. Inflammation caused by 

chemical and physical agents increases the risk of malignancy [1]. Inflammatory responses 
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to numerous cytokines in the tumour microenvironment play a more crucial role in 

facilitating tumour growth, progression, and immunosuppression compared to rendering a 

potent anti-tumour effect [2].

CXCL8 which is recognised as a prototypical chemokine belonging to the CXC family is 

responsible for the recruitment and activation of neutrophils and granulocytes to the site of 

inflammation [3]. CXCL8 is almost undetectable in physiological states, but is rapidly 

induced by pro-inflammatory cytokines such as tumour necrosis factor a (TNFa) and 

interleukin-1b (IL-1b) [4]. The function of CXCL8 mainly relies on its interaction with 

specific cell surface G protein-coupled receptors (GPCR), CXCR1 and CXCR2 [5]. Ligation 

of CXCL8 with different receptors triggers signalling with distinct biological outcomes, 

even though CXCR2 is its primary functional receptor [5]. While CXCL8/CXCR1 mainly 

increases the proliferation of tumour cells, CXCL8/CXCR2 promotes angiogenesis in 

prostate cancer [6].

The mechanism of CXCL8-CXCR1/2 signalling in tumourigenesis and tumour progression 

has been explored extensively. CXCL8 is typically known to promote angiogenesis, but it 

also activates matrix metalloproteinase (MMP) that is involved in metastasisrelated tissue 

remodelling [7–9]. The CXCL8 signalling nexus directly influences the sensitivity of tumour 

cells to chemotherapies by altering pathways associated with apoptosis and multidrug 

resistance [10,11]. High levels of CXCL8 are indicative of an increased risk of cancer and 

poor disease prognosis [12,13].

In this review, we summarize our current understanding of CXCL8-CXCR1/2 signalling 

pathways and their role in initiation, immunosuppression, angiogenesis and metastasis of 

tumours. We discuss the implication of CXCL8 and its receptors as potential biomarkers for 

cancer diagnosis and prognosis as well as cancer therapeutic targets.

2. Structure of CXCL8 and CXCR1/2

CXCL8, also known as Interleukin-8 (IL-8), belongs to the elastin-like recombinamer (ELR)
+ CXC chemokines family. It is produced by macrophages, epithelial cells, airway smooth 

muscle cells and endothelial cells [14]. CXCL8 is initially produced as a protein of 99 amino 

acids that undergoes cleavage to form active CXCL8 isoforms, a 77 amino acid peptide in 

non-immune cells or a 72 amino acid peptide in monocytes and macrophages [5]. The gene 

encoding CXCL8 is located on chromosome 4q13-q21 [15]. Dimerisation of CXCL8 forms 

the structural basis for receptor binding [16].

CXCR1 and CXCR2, known as Interleukin-8 receptor A (IL-8RA) and Interleukin-8 

receptor B (IL-8RB), respectively, are members of the GPCR family which contains 7 

transmembrane domains (Fig. 1A–D) [17]. IL-8RA, IL-8RB and IL8RBP (a pseudogene of 

IL8RB) form a gene cluster in a region located on chromosome 2q33-q36 [18]. CXCR1 

interacts with CXCL6 and CXCL8, whereas CXCR2 binds to CXCL1, CXCL2, CXCL3, 

CXCL5, CXCL6, CXCL7 and CXCL8 with high affinity [19]. Both CXCR1 and CXCR2 

are expressed on granulocytes, monocytes, mast cells and some natural killer cells [20]. 

CXCR1 interacts with CXCL8 through its N-terminal b strand [16]. The simulated tertiary 
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structures of the interaction model between CXCL8-dimer and CXCR1 N-terminal are 

shown in Fig. 1E and 1F.

3. Intracellular signalling pathways of CXCL8

3.1. Activation of phospatidylinositol-3-kinase (PI3K) and mitogen-activated protein 
kinase (MAPK)

PI3K acts as the major downstream intracellular signal of CXCL8 inducing phosphorylation 

of its substrate, Akt, which plays a critical role in modulating cell survival, angiogenesis, 

and migration [21,22]. CXCL8 also increases the expression of Akt in androgen-

independent prostate cancer (AIPC) cell lines [3]. LY294002, GDC-0941 and BEZ235 are 

known potent inhibitors of PI3K.

MAPK signalling cascade consists of multiple serine/threonine kinases among which the 

best characterised is the Raf-1/MAP/Erk cascade. CXCL8 activates this classic signalling 

cascade in both neutrophils and cancer cells [23–26]. MAPK-targeted inhibitors such as 

vemurafenib, sorafenib, dabrafenib, trametinib, PD184352, SCH772984, and XMD8–92 

may potentially interrupt the MAPK-associated signal transduction in tumours. Activation of 

p38 MAPK cascade downstream of CXCL8 has also been reported; however, its functional 

significance is yet to be determined [27]. CXCL8 activates MAPK signalling via PI3K in 

neutrophils [26], and via transactivation of epidermal growth factor receptor (EGFR) 

resulting in Ras-GTPase activation in ovarian and lung cancer cell lines [24,25]. A 

subsequent study suggests that PI3K is essential for CXCL8-induced migration of human 

neutrophils independent of MAPK signalling [21].

3.2. Activation of phospholipase C (PLC)

CXCL8 stimulates PLC signalling which in turn induces the phosphorylation of protein 

kinase C (PKC). CXCL8 promotes migration of human cancer cells by activation of the 

PLC-dependent PKC signalling pathway which when coupled with an increase in Ca2+ 

concentration regulates the actin cytoskeleton[28]. CXCL8 also regulates cyclin D1 

expression in AIPC cells by activation of an atypical isoform of PKC, PKCj [23]. 

Enzastaurin, sotrastaurin, Go 6983, staurosporine and quercetin have been established as 

highly effective inhibitors of PKC in vivo.

3.3. Activation of non-receptor tyrosine kinases and Rho-GTPases

Non-receptor tyrosine kinases including Src family members and focal adhesion kinase 

(FAK) are involved in CXCL8-induced signalling cascades. CXCL8 signalling is positively 

correlated with an increase in phosphorylation of Src-kinases and FAK in cancer cells, 

which contributes to cell proliferation, cell survival, and chemoresistance [29,30]. A putative 

pathway linking PI3K signalling to the activation of FAK-Src has been described [3].

CXCL8 promotes motility and invasion of cancer cells via Rho-GTPases-induced 

polymerisation of actin cytoskeleton [3]. While CXCR1 rapidly stimulates Rho-GTPase in 

endothelial cells, activation of CXCR2 induces a delayed effect [31]. Moreover, Rho-
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GTPase may promote phosphorylation of Src and FAK with further impact on downstream 

transcriptional factors [3].

4. CXCL8-CXCR1/2 axis in tumour immunosuppression

4.1. CXCL8 and myeloid-derived suppressor cells (MDSCs)

The functional importance of MDSCs in the immune response to tumours has been well 

described. MDSCs are identified as a highly heterogeneous population with myeloid 

progenitor cells and immature myeloid cells as two major components [32]. Based on their 

surface markers, MDSCs exhibit two distinct phenotypes and are defined as granulocytic 

MDSCs (GrMDSCs) and monocytic MDSCs (MoMDSCs) [33]. In 1995, human MDSCs 

were first proposed to infiltrate tumours and metastatic lymph nodes in head and neck cancer 

patients [34]. MDSCs suppress anti-tumour immune response mainly by inhibiting T cells 

via multiple molecular mechanisms [35–37].

In a recent investigation, CXCR1/2 were detected on the surface of tumour-derived MDSCs. 

CXCL8 was identified as a potent chemotactic stimulus for recruitment of MDSCs to 

tumour foci in a dose-dependent manner in a tumour engraftment mouse model [38]. Similar 

results were obtained from CXCL8-containing super-natants of HT29 colon carcinoma cells 

as well as from CXCL8-containing sera of patients [38]. In this study, only MoMDSCs from 

peripheral blood of cancer patients exhibited a suppressive effect on T-cells [38]. 

Interestingly, CXCL8 was found to induce GrMDSCs to release DNA to form Neutrophil 

Extracellular Traps (NETs), which were involved in thrombus formation and metastasis in 

cancer patients [38–40]. Moreover, the CXCR1/2 blocking agent, Reparisxin, abolished the 

above effects of CXCL8 in vivo [38].

4.2. The relevant mechanisms of tumour-associated neutrophils (TANs) and Epithelial–
Mesenchymal Transition (EMT) in CXCL8-induced immune resistance

TANs are associated with poor clinical outcome and heavy tumour burden in most solid 

malignancies [41–49]. TANs exhibit two phenotypes that play diverse roles in the immune 

response to tumour. N1 TANs exert anti-tumour activity mainly via antibody-dependent 

cellular cytotoxicity and oxidative damage [50,51], as well as via enhancing immune 

surveillance by secreting multiple inflammation-associated cytokines [52]. In contrast, N2 

TANs contribute to tumour neovascularisation and distant metastasis [53,54]. Arginase 1 

secreted by N2 TANs was found to favour immunosuppression by restraining T-cell receptor 

expression, attenuating antigen-specific T-cell responses and recruiting T regulatory cells 

[35,55,56]. CXCL8 has been shown to chemoattract TANs to the tumour microenvironment 

in Ras-driven cancer [57–59]. It can be inferred that CXCL8-associated resistance to 

immune killing occurs mainly by attracting the N2 phenotype.

In addition to contributing to metastasis, EMT is proposed to confer tumour escape to 

immune destruction by inhibiting CTL lysis by inducing autophagy and reducing the 

formation of immunological synapse [60]. An autocrine feedback loop exists between 

CXCL8 and EMT. CXCL8 contributes to EMT and initiates the cytokines and/or growth 
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factors cascade including CXCL8 itself [61]. However, the mechanism of CXCL8-induced 

immunosuppression via EMT is still unknown.

5. The role of CXCL8-CXCR1/2 pathway in various cancer types

5.1. Breast cancer

CXCL8 can enhance the immunoregulatory ability to defend against cancer, and can also 

modify the microenvironment to facilitate tumourigenesis. In the context of breast cancer, 

the latter role is more dominant compared to the former. All breast cancer cells express 

CXCR1 and CXCR2 [62]. CXCL8 is also associated with growth receptors expressed on the 

surface of breast cancer cells. Increased CXCL8 has been mostly detected in oestrogen 

receptor (ER)-negative, progesterone receptor (PR)-negative and human epidermal growth 

factor receptor-2 (HER-2)/neu-positive breast cancers [62,63]. Moreover, CXCL8 increases 

the activity of breast cancer stem-like cells (CSCs) by transactivation of HER2 [64,65].

Breast cancer cell-derived CXCL8 cooperates with vascular endothelial growth factor 

(VEGF) to establish and expand tumour neovasculature [66]. Glucose deprivation and 

endoplasmic reticulum stress are regarded as effective upregulating factors of VEGF and 

CXCL8 [67]. Downregulation of CXCL8 significantly reduces the microvessel density 

(MVD) in ER-negative breast tumours in vivo, while it does not affect proliferation and cell 

cycle of cancer cells[68]. Paradoxically, anti-CXCL8 therapy alone is ineffective in vitro 
owing to the other compensatory angiogenic factors in supernatant such as monocyte 

chemotactic protein-1 (MCP-1), growth-regulated protein (GRO), VEGF, and TGF-b1 

[69,70].

Tumour neovascularisation not only contributes to the initiation and growth of breast cancer 

but also offers blood supply for distant metastasis. The ectopic expression of CXCL8 

stimulated by IL-1b and TNF-a can enhance the metastatic potential of breast cancer, as high 

level of CXCL8 can promote angiogenesis and attract neutrophils to release enzymes 

involved in tissue remodelling and tumour establishment [71]. Atypical methylation of two 

deoxycytidylate-phosphate-deoxyguanylate (CpG) sites (−1241 and −1311) upstream of the 

CXCL8 promoter counterintuitively upregulate the expression of CXCL8 in high metastatic 

cell lines, MDA-231 and MDA-345 [72]. As bone is a common site for breast cancer 

metastasis, it was suggested that cyclooxygenase-2 (COX-2)-mediated production of 

CXCL8 in the ER-negative breast cancer cells might contribute to both human osteoclast 

formation and bone resorption [73]. A novel tumour suppressor, Dachshund 1 (DACH1), 

inhibits CXCL8-induced breast cancer cell migration and metastasis through binding to the 

AP-1 and NF-kB binding sites of CXCL8 promoter [74].

Considering the significance of CXCL8 in the initiation, progression, angiogenesis and 

metastasis of breast cancer, CXCL8 is defined as an unfavourable prognostic factor. Elevated 

serum level of CXCL8 is associated with an advanced clinical status, a severe tumour load, 

and earlier distant metastasis [75]. In lymph node-negative breast cancer, patients with 

higher CXCL8 levels (>102.27 pg/mg) suffer a poor prognosis including shorter survival 

time and distant metastasis [76]. With the development of genomic sequencing in recent 

years, the single nucleotide polymorphism (SNP) of CXCL8 and CXCR2 indicates the 
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individual difference among different ethnic populations. The CXCL8 (−251) A allele 

and/or the CXCR2 (+1208) T allele are correlated with the increased risk and poor prognosis 

of breast cancer in Tunisian population [77]. Inversely, CXCL8 (−251) T allele (TT/TA) is 

associated with an increased risk in Asian population, but a decreased risk in African 

population [78]. However, the functional analysis of these SNPs in breast cancer has not 

been well explored. Influence of CXCL8 (−251) allele on its expression requires more in-

depth research.

5.2. Prostate cancer

Increased CXCL8 secretion by prostate cancer (PCa) cells is associated with malignant 

biological behaviours of cancer cells. CXCL8/CXCR2 promote castration-resistant growth 

and proliferation of AIPC cells by activating cyclin D1 expression in a PI3K/Akt/mTOR and 

MAPK pathways-dependent manner [6,23]. In addition to binding to its receptors, CXCL8 

also upregulates the expression of CXCR7, which directly interacts with EGFR to induce 

prostate cancer cell growth [79]. While CXCL8 promotes prostate cancer progression by 

recruiting adipose stromal cells (ASCs) to tumours, such chemotaxis is blocked by 

CXCR1/2-antibodies [80]. Phosphatase and tensin homologue (PTEN), a tumour suppressor 

gene, is frequently mutated in metastatic PCa [81]. PTEN-deficient prostate tumours may 

promote hypoxia-inducible factor-1 (HIF-1) and NF-kB, which in turn can upregulate the 

expression of CXCL8 resulting in sustained tumour development and accelerated tumour 

progression [82,83]. DACH1 inhibits CXCL8-mediated proliferation and migration of 

prostate epithelial cells by binding to its promoter and suppressing CXCL8 transcription in a 

tissue specific DACH1-knockdown model [84].

Poor clinicopathological features including high Gleason score and advanced pathological 

stage of PCa are associated with an increased mRNA expression of CXCL8 [85]. A 

combination of serum CXCL8 levels and free/total PSA ratios may provide a substantial 

improvement in distinguishing benign prostatic hyperplasia (BPH) from PCa and predicting 

disease outcome [86].

5.3. Lung cancer

Elevated CXCL8 was detected in lung cancer, especially in non-small cell lung cancer 

(NSCLC) cell lines [87–89]. The mitogenic role of CXCL8 in lung cancer is mediated 

mainly through CXCR1 or via transactivation of EGFR [25]. The combined effect of VEGF 

and CXCL8 on intratumoural angiogenesis of lung cancer has been verified [90]. Autocrine 

CXCL8 and VEGF collaboratively mediate neovascularisation and EMT, which facilitates 

invasion in A549 cells [91]. CXCL8 also mediates osteoclastogenesis in lung cancer patients 

via PLD/PKC/Erk1/2 or PLD/Akt signalling [92,93].

Early diagnosis is critical for lung cancer. Circulating CXCL8 may predict the risk of lung 

cancer, since it is upregulated prior to clinical diagnosis [12,94]. The National Cancer 

Institute-Maryland (NCI-MD) case–control study and the Prostate, Lung, Colorectal, and 

Ovarian (PLCO) cancer screening trial showed that high expression of CXCL8 can raise the 

risk of lung cancer by 45%−86% [12,94]. High CXCL8 mRNA levels were strongly 

associated with advanced stages, distant lymph node metastasis, shortened survival time and 
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early relapse of NSCLC [95,96]. As for SCLC, no statistical relevance was found between 

serum levels of CXCL8 and disease stage and tumour burden [97]. In conclusion, serum 

protein or tumour mRNA levels of CXCL8 can be an effective marker to monitor tumour 

occurrence and relapse in lung cancer patients.

5.4. Melanoma

CXCL8 is a predominant regulator of growth, angiogenesis and metastasis of melanoma in 

preclinical animal models [98–100]. The metastatic potential of CXCL8 relies on its ability 

to promote vascularisation, activate MMP-2, and enhance anoikis resistance [99,101]. 

Consistently, CXCL8 produced by melanoma cells correlates with tumour burden and poor 

prognosis [102]. However, controversies exist about whether both the receptors of CXCL8 

impact melanoma progression. While CXCR1 alone is associated with CXCL8-mediated 

chemotaxis [103], CXCR2 upregulates CXCL8-mediated angiogenesis, invasion and 

migration of human melanoma cells independent of CXCR1 [104,105].

Anti-VEGF drug, bevacizumab, slightly increases CXCR2 expression in human umbilical 

vein endothelial cells and activates CXCL8 signalling as an alternative pro-angiogenic 

pathway in uveal melanoma [106]. Knockdown of host CXCR2 decreases growth, 

angiogenesis, and experimental lung metastasis [111]. Together, these studies indicate that 

inhibition of the CXCL8/CXCR2 axis with neutralizing antibodies may control melanoma 

neoangiogenesis and enhance the sensitivity to therapy.

5.5. Other cancers

Apart from the cancer types discussed above, CXCL8 signalling axis also plays an 

indispensable role in colorectal carcinoma [107,108], renal cell carcinoma [109], pancreatic 

cancer [110], thyroid tumours [111,112], gastric cancer [113–115], ovarian cancer [116], 

lymphomas [117], and haematologic malignancies [118–120]. As one of the markedly 

upregulated chemokines in colorectal carcinoma (CRC), CXCL8 has been demonstrated to 

induce CRC cell proliferation in an autocrine manner and enhance the resistance to anoikis 

[107,108]. Aberrant expression of CXCL8 is correlated with progression, VEGF-

independent angiogenesis and chemoresistance of CRC in vitro and in vivo [121,122]. 

Demethylation of CXCL8 promoter region significantly increases its serum level, which 

correlates with distant metastasis, advanced Dukes stage and poor overall survival [123,124]. 

Notably, CXCL8 secreted by renal cancer cells induces the migration of mesenchymal stem 

cells (MSCs), which play a vital role in the development, metastasis, and drug resistance of 

cancers [125]. In clear cell renal cell cancer (ccRCC), resistance to kinase inhibitors such as 

sunitinib is accompanied with increased expression of tumour-derived CXCL8 [126]. Anti-

CXCL8 could sensitize tumours to sunitinib treatment in a nude mouse model [126].

6. Targeted therapy research

6.1. Preclinical studies

Owing to the significant association between the CXCL8-CXCR1/2axis and certain types of 

tumours, targeted therapies against this axis are expected to have high clinical value in 

tumour treatment. Reparixin, a clinical grade CXCR1/2 inhibitor, was shown to block the 
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binding of CXCL8 to CXCR1/2 in a non-competitive manner and inhibit CXCL8-induced T 

lymphocyte and NK cell chemotaxis and migration in previous study [127]. Reparixin or 

CXCR1-antibody can selectively deplete CSCs and tumour cells via FASL/FAS signalling in 
vitro and can inhibit tumour growth and metastasis in a tumour xenograft model in vivo 
[128]. While reparixin and paclitaxel exhibited a synergistic effect towards arresting cell 

cycle and inhibiting tumoursphere formation in vitro, they showed an additive effect towards 

reducing brain metastasis in vivo [129]. In addition to reparixin, other small-molecule 

antagonists of CXCR1/2 such as SCH479833 and SCH527123 exerted anti-tumour activity 

in xenograft models of breast cancer [128], colorectal cancer [130], melanoma [131] and 

spontaneous colon cancer liver metastasis [132]. SCH563705 has been demonstrated to 

robustly inhibit primary human breast CSC activity [133]. In preclinical colon cancer 

models, the combination of SCH527123 and oxaliplatin was more potent in controlling cell 

proliferation and angiogenesis and inducing apoptosis compared to single agents [130]. 

G31P, another CXCR1/2 inhibitor, significantly reduced the viability, adhesion and 

migration of PC-3 cells in vitro, and inhibited the growth of transplanted PCa xenografts in a 

nude mouse model [134].

CXCL8 neutralising antibodies, ABX-CXCL8 and HuMax-CXCL8, are mostly used to 

block CXCL8-CXCR1/2 pathway in preclinical studies. ABX-CXCL8 had no effect on 

proliferation of bladder cancer cells in vitro but significantly inhibited tumour growth in a 

mouse model [135]. ABX-CXCL8-treated mice exhibited a significant reduction in tumour 

growth, angiogenesis and metastasis of human melanoma cells [136]. Mechanistically, 

ABX-CXCL8 suppresses tumour metastasis by downregulation of MMP-2 and MMP-9 in 
vitro [135].

6.2. Clinical trials

Based on the preclinical studies, reparixin is a potential candidate for clinical trial in breast 

cancer. An open label phase I clinical trial including 33 female patients diagnosed with 

HER-2-negative metastatic breast cancer was conducted to determine the pharmacokinetic 

profile and evaluate safety and tolerability of orally administered reparixin in combination 

with a fixed dose of weekly paclitaxel (NCT02001974). Subsequently, a double-blind phase 

II study with 190 estimated enrolments is in progress to compare the progression free 

survival of metastatic TNBC patients receiving paclitaxel alone or with reparixin 

(NCT02370238). Reparixin has also been introduced to prevent graft dysfunction after islet 

transplantation (NCT01220856), kidney transplantation (NCT00248040) and lung 

transplantation (NCT00224406) in phase II clinical trials. A phase Ib pilot study to perform 

gradient trial with HuMax-CXCL8 is recruiting patients with metastatic or unresectable, 

locally advanced malignant solid tumours (NCT02536469).

7. Conclusions

To date, great endeavours have been made to identify the roles of the CXCL8-CXCR1/2 

pathways in human cancers. CXCL8 exerts multiple effects on biological activities of 

tumour cells including proliferation, invasion and migration, all of which are essential for 

tumour growth and metastasis. PI3K, Akt and Erk signalling pathways have been identified 
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to be involved in CXCL8-associated intracellular signals. A simplified signalling diagram is 

shown in Fig. 2 and detailed information is presented in Table 1. Interruption of the related 

signalling pathways may thus provide promising therapeutic avenues for tumours with high 

activity of CXCL8-CXCR1/2.

Given that high expression of CXCL8 and its receptors is associated with tumourigenesis 

and progression of certain types of tumours, these factors may serve as biomarkers in 

screening patients and evaluating prognosis. The CXCL8–CXCR1/2 pathways play a 

confirmed role in resistance to chemotherapy in breast cancer, prostate cancer and colorectal 

carcinoma. CXCL8-upregulated expressions of anti-apoptotic protein and thymidylate 

synthase (TS) may attenuate the efficacy of chemotherapies. Therefore, targeted-inhibition 

of CXCL8 may be an attractive therapeutic strategy to sensitise tumour cells to 

chemotherapeutic agents and eventually increase the survival of patients with end-stage 

disease. CXCL8 or CXCR1/2 may offer effective approaches for the development of 

targeted molecular therapeutics for tumours. Nevertheless, substantial investigations are 

warranted before practically applying the predictive, prognostic, and therapeutic value of 

CXCL8 signalling in human cancers.
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IL-8RB Interleukin-8 receptors B

PI3K phospatidylinositol-3-kinase

MAPK mitogen-activated protein kinase

AIPC androgen-independent prostate cancer

EGFR epidermal growth factor receptor

PLC phospholipase C

PKC protein kinase C
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TAN tumour-associated neutrophils

EMT epithelial–mesenchymal transition

CSCs cancer stem-like cells

HER2 human epidermal growth factor receptor 2

ER oestrogen receptor

PR progesterone receptor

SNP single nucleotide polymorphism

VEGF vascular endothelial growth factor

NF-κB nuclear factor kappa B

MVD microvessel density

MCP-1 monocyte chemotactic protein-1

GRO growth-regulated protein

CpG deoxycytidylate-phosphate-deoxyguanylate

COX-2 cyclooxygenase-2

TNFβ tumour necrosis factor β

DACH1 Dachshund 1

TNBC triple negative breast cancers
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MDR multidrug resistance

PCa prostate cancer

PTEN phosphatase and tensin homolog

NE neuroendocrine

PSA prostate-speci c antigen

BPH benign prostatic hyperplasia

1α, 25-(OH)2 D3 1α, 25-dihydroxyvitamin D3

NSCLC non-small cell lung cancer

SCLC small cell lung cancer

ADC lung adenocarcinoma

DFS disease-free survival

OS overall survival

NCI-MD National Cancer Institute-Maryland

PLCO Prostate, Lung, Colorectal, and Ovarian

CRC colorectal carcinoma

ccRCC clear cell renal cell cancer
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Fig. 1. 
PyMOL Molecular Graphics System was used to present above structures. (A, B). 

Corresponding transmembrane regions within CXCR1 tertiary structure. Regions marked in 

different colours with arrows showed its seven transmembrane domains. Simulation of 

tertiary structure was constructed using PDB lefiof 2LNL produced by Park et al. [17]. (C, 

D). Corresponding transmembrane regions within CXCR2 tertiary structure. Regions 

marked in different colours with arrows showed its seven transmembrane domains. The 

amino acid sequence of CXCR2, NCBI RefSeq NP_0015481, were used to model CXCR2 
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tertiary structure in Swiss Model [155]. (E, F). Interaction model between CXCL8-dimer 

and CXCR1 N-terminal. Simulation of tertiary structure was constructed using PDB le of 

1ILP produced by Skeltonfiet al. [16].

Liu et al. Page 24

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2018 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The diagram summarizing the major signalling pathways of CXCL8 in cancers. CXCL8 

chemoattractant myeloid-derived suppressor cells (MDSCs) and tumour-associated 

neutrophils (TAN) to tumour microenvironment which are associated with immune 

suppression. At the celluar level, CXCL8 binds to G protein-coupled receptors (GPCRs), 

namely CXCR1 or CXCR2, leading to the activation of G protein. Heterotrimeric Ga and bg 

subunits stimulate the main effectors PLC and PI3K to induce phosphorylation of PKC and 

Akt, respectively. The two signalling pathways have been reported to activate respective 

Liu et al. Page 25

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2018 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcription factors associated to survival, angiogenesis and migration of tumour cells. In 

addition, CXCL8 activates non-receptor tyrosine kinases (e.g., Src and FAK) and members 

of the RhoGTPase family, which promote cell proliferation, survival, motility and invasion. 

Activated Raf-1/MAP/Erk signalling cascade contributes to cell proliferation and survival. 

Dashed arrows, uncon rmed pathways involved in CXCL8 signalling axis.
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Table 1

The role of CXCL8-CXCR1/2 pathway in common cancers.

Cancer type Function Associated factors Ref.

Breast cancer Proliferation cyclin D1, p27Kip21 [137]

Angiogenesis MVD [7,63,66]

Metastasis integrin 3β [137,138]

Chemoresistance MRP [10]

CSCs activation HER2 [64,65]

Prostate cancer Proliferation cyclin D1, AR, CXCR7, p53 [23,79,139,140]

Angiogenesis VEGF [8,9]

Metastasis MMP-2/9, E-cadherin [9,141]

Chemoresistance src, NF-κB, c-FLIP, Akt [6,11,142]

Lung cancer Proliferation EGFR [25]

Angiogenesis VEGF, MVD [88,90,143,144]

Metastasis PLD, Akt, PKC, MMP-2/9, [92,93,145,146]

Colorectal cancer Proliferation EGFR, MAPK [107,147,148]

Angiogenesis CD31, MVD [107,121]

Metastasis PI3K, Akt, Erk, integrin αvβ6 [108,149,150]

Chemoresistance NF-κB, Bcl-2, survivin [151,152]

Melanoma Proliferation Akt, Erk [105]

Angiogenesis MMP-2/9, VEGF [99,153,154]

Metastasis MMP-2 [99]

MRP, Multidrug resistance protein; AR, androgen receptor; Bcl-2, B-cell CLL/lymphoma 2.
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