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Abstract

What gives rise to the human sense of confidence? Here, we tested the Bayesian hypothesis 

that confidence is based on a probability distribution represented in neural population activity. 

We implemented several computational models of confidence, and tested their predictions using 

psychophysics and fMRI. Using a generative model-based fMRI decoding approach, we extracted 

probability distributions from neural population activity in human visual cortex. We found that 

subjective confidence tracks the shape of the decoded distribution. That is, when sensory evidence 

was more precise, as indicated by the decoded distribution, observers reported higher levels 

of confidence. We furthermore found that neural activity in the insula, anterior cingulate, and 

prefrontal cortex was linked to both the shape of the decoded distribution and reported confidence, 

in ways consistent with the Bayesian model. Altogether, our findings support recent statistical 

theories of confidence and suggest that probabilistic information guides the computation of one’s 

sense of confidence.

Virtually any decision comes with a sense of confidence – a subjective feeling that clearly 

affects our everyday choices. For example, we reduce speed when driving at night because 

we feel less confident about our estimates of distance to surrounding traffic, we hesitate 

to try a piece of food when unsure about its taste, and resist investing in stocks unless 

convinced of their likely future profit. But what is this sense of confidence that accompanies 

almost all of our decisions?
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Recent Bayesian decision theories 1–5 propose that confidence corresponds to the degree 

of belief, or probability, that a choice is correct based on the evidence. More specifically, 

these theories propose that confidence is a function of the posterior probability of being 

correct, which links confidence directly to the quality of the evidence on which the decision 

is based. Thus, greater imprecision in evidence reduces the probability that the choice is 

correct, which should result in lower levels of confidence. The agent’s evidence is similarly 

described as a degree of belief in an event, or more formally, as a probability distribution 

over a latent variable. For example, the evidence could be a probability distribution over 

perceived distance to surrounding traffic. The width of the distribution (range of probable 

distances) is broader in the dark than on a clear day, thereby signaling greater imprecision 

or uncertainty. Although central to the Bayesian confidence hypothesis, whether such 

probabilistic representations play a role in confidence is currently unclear.

Results from behavioral studies 6–9 are consistent with the notion that confidence is 

computed from the degree of imprecision in sensory information. However, a major 

limitation of this work has been the use of physical sources of noise, such as a variation in 

image brightness or contrast, to manipulate uncertainty. This is problematic because it could 

be that observers simply monitor such stimulus properties as external cues to uncertainty and 

confidence 7,10–13 . While physiological studies have found neural correlates of statistical 

confidence in the orbitofrontal 14,15 and lateral intraparietal cortex 16 , these studies used 

a two-alternative forced choice (2AFC) task, so that the animal could simply rely on the 

distance between stimulus estimates (i.e. point estimates) and category boundary to compute 

confidence 17 , and need not use a representation of probability. Thus, one of the most 

fundamental assumptions of normative theories of decision-making – that confidence is 

derived from a probabilistic representation of information – has yet to be tested in cortex.

Here, we use a combination of functional Magnetic Resonance Imaging (fMRI), 

psychophysics, and computational modeling to address two fundamental questions. 1) Is 

confidence based on a probabilistic representation of sensory information? And if so, 2) 

what neural mechanisms extract confidence from this cortical representation of uncertainty? 

Human participants viewed random orientation stimuli, and reported both the orientation 

of the stimulus and their level of confidence in this judgment. Critically, no physical noise 

was added to the stimuli. We quantified the degree of uncertainty associated with stimulus 

representations in visual cortex using a probabilistic decoding approach 10,18 , relying on 

trial-by-trial fluctuations in internal noise to render the evidence more or less reliable to the 

observer. We used the decoded probability distributions to compare between human data and 

simulated data from a Bayesian observer, as well as two alternative models implementing 

heuristic strategies to confidence. Corroborating the Bayesian model, we discovered that 

human confidence judgments track the degree of uncertainty contained in visual cortical 

activity. That is, when the cortical representation of the stimulus was more precise (as 

indicated by a narrower decoded probability distribution), participants reported higher levels 

of confidence. In addition, activity in the dorsal Anterior Insula (dAI), dorsal Anterior 

Cingulate (dACC) and rostrolateral Prefrontal Cortex (rlPFC) reflected both this sensory 

uncertainty and reported confidence, in ways predicted by the Bayesian observer model. 

Taken together, these results support normative theories of decision-making, and suggest that 

probabilistic sensory information guides the computation of one’s sense of confidence.
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Results

Ideal observer models

The observer’s task is to infer the orientation of a stimulus from a noisy sensory 

measurement, and report both this estimate and their level of confidence in this judgment. 

We consider three model observers for this task. The decision process is identical for all 

three observers, but they use different strategies to confidence.

The observer’s measurement m of the sensory stimulus s is corrupted by noise: even when 

the physical stimulus is held constant, the measurement varies from trial to trial. Thus, 

the relationship between stimulus and measurement on each trial is given by a probability 

distribution, p(m|s) which we model as a circular Gaussian centered on the stimulus and 

with variance σm 2(s). This variability in the measurements stems from various sources 

of noise that are of both sensory and non-sensory origin. Specifically, we consider three 

sources of noise: two sensory and one non-sensory. The first source depends on stimulus 

orientation, with larger noise levels for oblique than cardinal stimulus orientations. This 

pattern captures the well-established ‘oblique effect’ in orientation perception 19,20 . The 

second source varies in magnitude from trial to trial, and captures, for example, random 

fluctuations in neural response gain in sensory areas 21 . Finally, non-sensory noise refers to 

those sources of variance that affect, for example, the stimulus representation while held in 

working memory, or task-related processes in areas downstream of sensory cortex.

To infer the orientation of the stimulus from the measurement, all three observers invert the 

generative model to compute the posterior probability distribution p(s|m) (Equation 12). This 

distribution quantifies the degree to which different stimulus values are consistent with the 

measurement. The mean of the posterior distribution is the model observer’s estimate of the 

stimulus ŝ. We take the (circular) variance of the distribution as a measure of the degree of 

uncertainty in this estimate. The observer’s internal estimate of orientation is subsequently 

translated into an overt (behavioral) response, r. This transformation from internal estimate 

into motor response is noisy. Thus, across trials, the response fluctuates around ŝ, where 

(motor) noise is drawn from a circular Gaussian (Equation 13).

How does each of the observer models compute confidence? The ideal strategy is to 

consider the degree of imprecision in the observer’s decision, which depends on all sources 

of variance that affect their reports. Specifically, for the estimation task used here, it is 

statistically reasonable to compute confidence as a function of the expected magnitude of the 

error in the observer’s response. We quantified this as follows:

cB = 1

∫ p(s ∣ m) angle (r, s)2ds #(1)

where cB refers to the reported level of confidence, and angle(r, s)2 represents the magnitude 

of the response error (i.e., the squared acute-angle distance between response and (latent) 

stimulus). In words, when uncertainty in evidence is higher, the expected decision error 

tends to be larger, and reported confidence will be lower. However, our predictions do 
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not strongly depend on the particular function assumed here, as long as confidence 

monotonically decreases when overall uncertainty increases. We refer to this model as 

the Bayesian or Probabilistic observer, as confidence is based (in part) on the posterior 

probability distribution – a probabilistic notion of uncertainty.

The second model observer uses certain properties of the stimulus, such as its orientation, 

as a cue to confidence. This observer has learned through experience that behavioral 

precision is usually better for cardinal than for oblique orientations. The observer utilizes 

this learned relationship as a heuristic, and simply reports lower levels of confidence for 

those orientations that generally result in reduced levels of performance. We refer to this 

model as the Stimulus heuristics observer, and formally define their confidence as:

cS = 1
f(s) #(2)

where f(ŝ) is a function that rises for oblique orientations (see Equation 14 in Methods). As 

the strategy ignores many sources of noise that create uncertainty, it is clearly suboptimal, 

but it could potentially explain human behavior, which is why we include the strategy here.

The third and final model observer ignores the imprecision in internal estimates altogether, 

and computes confidence exclusively from the noise in their motor response. We refer to 

this model as the Response heuristics observer. That is, on a given trial the observer simply 

notices a large offset between their internal orientation estimate and overt (motor) response. 

Observing that their response is off, they report lower levels of confidence. This is not an 

ideal strategy, but it is nonetheless a strategy that could result in a reliable link between 

confidence and behavioral performance, as we will show in our simulations below. We 

define confidence for this observer model as:

cR = 1
angle(r, s)2 #(3)

Where angle(r, ŝ)2 is the squared acute-angle distance between orientation estimate ŝ and 

response r. Fig. 1 summarizes the three observer models.

Model predictions

What behavioral patterns should one observe for the different strategies to confidence? 

To address this question, we simulated the behavioral orientation estimates and associated 

confidence reports of the three model observers. As we will show below, this leads to a set of 

concrete predictions that we can then test in psychophysical and neuroimaging experiments.

Does confidence predict behavioral performance? To address this question, we binned the 

simulated data according to reported level of confidence, and calculated the across-trial 

variance in behavioral orientation estimates for each of the bins. We first did this irrespective 

of the orientation of the stimulus. We found that the orientation judgments of the model 

observers were generally more precise when confidence was higher, regardless of the 

strategy to confidence employed by the observer (Fig. 2a). Thus, a predictive link between 
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confidence and behavioral precision is consistent with several strategies, and does not 

necessarily imply that confidence is based on a probabilistic representation of the degree of 

uncertainty in one’s evidence.

We next turned to the relationship between confidence and behavioral performance for a 

constant stimulus. Closely replicating the experimental analysis procedures (see below), we 

first removed the effect of stimulus orientation from confidence, binned the data according 

to residual level of confidence, and calculated the variance in behavioral orientation 

estimates for each of the bins. We found that higher levels of confidence again predicted 

greater behavioral precision for both the Probabilistic and Response heuristics model (Fig. 

2b). For the Stimulus heuristics observer, in contrast, we observed no clear link between 

confidence and behavioral performance. This makes sense, as this observer uses orientation 

as a cue to confidence, so an identical orientation stimulus should, when averaged across 

repeated presentations, always result in the same level of confidence, irrespective of any 

stimulus-independent sources of variance. Thus, this analysis could potentially enable us to 

differentiate between some, though not all, strategies to confidence.

We next considered the relationship between confidence and the quality of the observer’s 

evidence. Specifically, we determined the extent to which the degree of uncertainty in their 

sensory evidence predicted reported levels of confidence. Sensory uncertainty was quantified 

as the width of a probability distribution (see Methods), similar to the empirical conditions. 

For practical reasons, we here disregard the contribution of non-sensory sources of variance 

and focus on sensory uncertainty alone, so as to closely match the empirical analyses. Data 

were binned for visualization only, and mean levels of confidence and uncertainty were 

computed for each of the bins. When analyzed across stimulus orientation, and for both 

the Stimulus heuristics and Bayesian observer, reported levels of confidence consistently 

decreased as sensory uncertainty increased. However, we observed no such relationship 

between confidence and uncertainty for the Response heuristics observer (Fig. 2c). When 

holding the stimulus constant, the results were even more distinct between confidence 

strategies. That is, after we removed the contribution of stimulus orientation (see Methods), 

the relationship between sensory uncertainty and confidence still held for the Bayesian 

observer, but no such link between the fidelity of the observer’s sensory representation 

and confidence was observed for the two remaining models (Fig. 2d). This illustrates the 

importance of considering internal levels of uncertainty when studying confidence, and 

moreover indicates that these analyses, when combined, should enable us to adjudicate 

between strategies to confidence.

In sum, if human confidence estimates are based on probabilistic computations, then 1) 

behavioral variance in an orientation judgment task should be higher with reduced levels 

of confidence for a constant stimulus; 2) there should be an inverse relationship between 

sensory uncertainty in cortex and reported confidence; and 3) this inverse relationship should 

hold both across orientations and when holding the stimulus constant. With these predictions 

in hand, we now turn to the experimental data to see which strategy best describes human 

confidence judgments.
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Human observers

Do human observers use a probabilistic representation of evidence quality when reporting 

confidence? To address this question, we presented 32 human participants with oriented 

gratings while we measured their brain activity using fMRI. Observers reported the 

orientation of the grating, as well as their confidence in this judgment (see Extended Data 

Fig. 1 for trial structure). They generally performed well on this task, with a mean absolute 

behavioral estimation error of 4.34° ± 0.212° (mean ± SEM across subjects).

We first focused on the link between behavioral performance and confidence. For each 

observer, we divided all trials, regardless of presented orientation, into ten bins of increasing 

confidence, and computed and compared behavioral variability and mean level of confidence 

in each bin. We found a significant inverse relationship between confidence and behavioral 

variability (t(287) = -16.79, p < 0.001, r = -0.70, 95% CI = [-0.76, -0.64]; Fig. 3a, left). 

Thus, the observers’ orientation judgments were more precise when confidence was high. 

This indicates that the participants were able to meaningfully estimate their own level of 

confidence in the task.

We next turned to the relationship between confidence and behavioral precision for repeated 

presentations of the same stimulus. For each observer, we again sorted trials into ten 

bins of increasing confidence, calculated the mean level of confidence and behavioral 

variability across all trials in each bin, and computed the partial correlation coefficient 

between the two (while controlling for stimulus orientation, see Methods). We considered 

two possible outcomes. If observers account for trial-by-trial fluctuations in internal noise 

when estimating confidence, as suggested by both the Probabilistic and Response heuristics 

model, then higher levels of confidence should predict improved behavioral performance. 

If, on the other hand, observers rely on orientation heuristics to confidence, then we should 

observe no systematic relationship at all between confidence and behavioral variability. The 

results revealed that behavior was more precise when confidence was high (Fig. 3a, right; 

t(286) = - 11.02, p < 0.001, r = -0.55, 95% CI = [-0.62, -.046]). This is consistent with 

both the Probabilistic and Response heuristics model, and argues against an explanation of 

confidence in terms of orientation heuristics.

To adjudicate between the two remaining hypotheses, we then turned to the brain data. 

Specifically, we used a probabilistic decoding algorithm 10,18 to characterize the degree 

of uncertainty in perceptual evidence from cortical activity patterns in areas V1-V3. 

Uncertainty in the cortical stimulus representation (‘decoded uncertainty’) was quantified 

on a trial-by-trial basis as the width (variance) of a decoded probability distribution (see 

Methods). Benchmark analyses verified that 1) orientation decoding performance was well 

above chance levels (Extended Data Fig. 2a, see also 10 ), 2) decoded uncertainty was 

lower for cardinal compared to oblique stimuli (Extended Data Fig. 2b, see also 10 ), and 

3) decoded uncertainty predicted behavioral variability, both within and across stimulus 

orientations (Extended Data Fig. 2c-d, see also 10 ). Altogether, this confirms that the 

precision of the observer’s internal sensory evidence was reliably extracted from the patterns 

of fMRI activity on a trial-by-trial basis.
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Do human observers rely on the quality of their internal visual evidence when estimating 

confidence? To address this question, we computed, for each individual observer, the trial-

by-trial rank correlation coefficient between reported confidence and decoded uncertainty 

(see Fig. 3b for an example observer). The obtained correlation coefficients were 

subsequently averaged across observers. Per our simulations, we predicted that if confidence 

is based on sensory uncertainty, then the imprecision in the observer’s sensory evidence, 

as assessed by the decoder, should predict the confidence judgments of the observer. 

If, however, confidence is consistent with heuristic computations based on non-sensory 

sources of noise, then we should observe no relationship between decoded uncertainty and 

reported confidence at all. Corroborating the Probabilistic model, there was a reliable inverse 

relationship between decoded uncertainty and behavioral confidence (z = - 2.17, p = 0.015, 

ρ = -0.018, 95% CI = [-0.035, -0.0018]; Fig. 3c, left). To further substantiate this result, we 

repeated the analysis while controlling for stimulus orientation (see Methods).

This did not significantly reduce the strength of the observed relationship between the 

fidelity of the cortical stimulus representation and reported confidence (z = 0.45, p = 0.33, 

q = 0.0054, 95% CI = [-0.018, 0.029]; Fig. 3c, right), and again reached significance 

when using smaller numbers of voxels, which respond more strongly to the visual stimulus 

(Extended Data Fig. 3). Thus, when the cortical representation of a stimulus is more precise, 

observers consistently report higher levels of confidence, as predicted by the Probabilistic 

model (and none of the other models). Control analyses verified that these results were 

robust to variations in the number of voxels selected for analysis (Extended Data Fig. 3), 

and moreover, could not be explained by eye movement, position or blinks, nor by mean 

BOLD amplitude (Extended Data Fig. 4). Taken together, these results suggest that human 

observers rely on a probabilistic representation of the quality of their sensory evidence when 

judging confidence.

Sensory uncertainty and confidence in downstream areas

To further test the probabilistic confidence hypothesis, we next asked which downstream 

regions might read out the uncertainty contained in visual cortical activity so as to compute 

confidence. Based on our modeling work, we reasoned that if confidence is based on a 

probabilistic representation of the evidence, then we should be able to find downstream areas 

whose activity reflects sensory uncertainty, and predicts reported confidence, on a trial-by-

trial basis. Specifically, we predicted an inverse relationship in activity between sensory 

uncertainty and confidence for these regions (cf. Fig. 2d). Thus, under the probabilistic 

confidence hypothesis, cortical activity should not only increase (decrease) with reduced 

reliability of the observer’s perceptual evidence, but also decrease (increase) when the 

observer reports greater levels of decision confidence.

We first focused on those areas that are driven by internal fluctuations in perceptual 

uncertainty. To identify candidate areas, we performed a whole-brain search. Specifically, 

we ran a general linear model (GLM) analysis in which we modeled the BOLD signal 

as a function of the degree of uncertainty decoded from visual cortical representations (in 

areas V1-V3), while controlling for differences in stimulus orientation (see Methods for 

further details). We found several clusters downstream of visual cortex where neural activity 
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reliably co-fluctuated with trial-by trial changes in decoded sensory uncertainty (see Fig. 4a 

for an overview, Supplementary Data for whole-brain maps, and Supplementary Table 1 for 

a list of clusters). This included the dorsal anterior insula (dAI), dorsal anterior cingulate 

cortex (dACC), and left rostrolateral prefrontal cortex (rlPFC) – regions that are commonly 

associated with uncertainty 22 (dAI), volatility 23,24 (dACC) and metacognition 25 (rlPFC).

We next asked whether these uncertainty-tracking regions would also show a reliable 

opposite relationship to confidence in their activity, as predicted by the Probabilistic 

observer model. To address this question, we performed region-of-interest (ROI) analyses 

within the candidate regions identified by the above whole-brain analysis. First, individual 

ROIs were created by selecting all uncertainty-driven voxels within predefined anatomical 

masks corresponding to dAI 26 , dACC 27 , and left rlPFC 28 , using a leave-one-subject-

out cross-validation procedure to avoid double dipping 29,30 (see Methods for details, and 

Extended Data Fig. 5 for remaining clusters). For each subject, we then averaged the 

BOLD signal across all voxels within the ROI. To test whether BOLD activity was reliably 

modulated by the level of confidence reported by the observer, we performed a GLM 

analysis (see Methods for model details). This revealed a significant effect of confidence on 

BOLD activity in all three regions (dAI: F(3,93) = 25.94, p < 0.001, R2 = 0.26, 95% CI = 

[0.12, 0.41]; dACC: F(3,93) = 27.33, p < 0.001, R2 = 0.25, 95% CI = [0.10, 0.39]; rlPFC: 

F(3,90) = 2.88, p = 0.040, R2 = 0.01, 95% CI = [-0.03, 0.05]). Thus, it appears that neural 

activity in dAI, dACC, and rlPFC is affected by both the trial-by-trial imprecision in sensory 

evidence and the level of confidence reported by the observers.

Having established that activity in dAI, dACC and rlPFC is modulated by confidence, we 

next investigated the hypothesized inverse relationship between sensory uncertainty and 

reported confidence on the cortical response in these regions. To illustrate our approach, we 

first focus on a single ROI (dAI; Fig. 4b). We computed, for each observer, the trial-by-trial 

correlation coefficient between decoded uncertainty and mean BOLD amplitude within the 

ROI (after removing the effect of stimulus orientation, see Methods; see Fig. 4c for an 

example observer), averaged the coefficients across observers (Fig. 4d), and repeated the 

analysis over time (Fig. 4e, left panel). We also performed the same analysis for reported 

confidence (Fig. 4b-e), and dACC and rlPFC (Fig. 4e). We discovered, in all three ROIs, 

a significant positive relationship between decoded uncertainty and cortical activity that 

was sustained over an extended period of time (Fig. 4e; all p < 0.05, FWER-controlled). 

Critically, the effect on the cortical response was reversed for confidence (Fig. 4e), and 

similarly held up over time (all p < 0.05, FWER-controlled). Thus, while the cortical 

response in dAI, dACC and rlPFC reliably increased with decoded uncertainty, activity in 

these regions consistently decreased with reported confidence, further corroborating the 

Bayesian confidence hypothesis. These effects could not be explained by trial-by-trial 

fluctuations in the participant’s response time (see Extended Data Fig. 6 for control 

analyses). Especially interesting is that (in dACC and dAI) the positive correlation with 

uncertainty temporally preceded the negative correlation with reported confidence (dAI: 

t(31) = -3.05, p = 0.005, d = -0.54, 95% CI = [-0.90, -0.17]; dACC: t(31) = -2.72, p = 0.011, 

d = -0.39, 95% CI = [-0.75, - 0.032]; rlPFC: t(30) = -1.09, p = 0.29, d = -0.20, 95% CI 

= [-0.57, 0.17]); factoring in the (approximately 4-second) hemodynamic delay inherent in 

the BOLD response, the effect of sensory uncertainty appears to be roughly time-locked to 
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the presentation (and neural processing) of the stimulus, while the correlation with reported 

confidence coincides with the time when subjects had to estimate their confidence. These 

distinct latencies furthermore suggest that decoded uncertainty and reported confidence exert 

(partially) independent effects on activity in these regions, which was confirmed by a partial 

correlation analysis (Extended Data Fig. 7). Moreover, cortical activity in all three regions 

was additionally found to mediate the trial-by-trial relationship between decoded uncertainty 

and reported confidence (Extended Data Fig. 8). This indicates that some of the variance 

in cortical activity is shared between sensory uncertainty and subjective confidence, and 

alludes to a direct functional role of these regions in the computation of confidence from 

sensory uncertainty.

Taken together, these results are consistent with the Bayesian confidence hypothesis, and 

suggest that dAI, dACC, and rlPFC are involved in the computation of confidence from a 

probabilistic representation of the quality of the observer’s sensory evidence.

Discussion

What computations give rise to the subjective sense of confidence? Here, we tested the 

Bayesian hypothesis that confidence is computed from a probabilistic representation of 

information in cortex. We first implemented a Bayesian (Probabilistic) observer model 

as well as two models using alternative strategies to confidence. This resulted in a set 

of predictions that we tested using psychophysics and fMRI. Corroborating the Bayesian 

model, we found that reported confidence reflects behavioral precision, even when stimulus 

properties such as orientation are held constant. Moreover, probability distributions decoded 

from population activity in visual cortex predict the level of confidence reported by the 

participant on a trial-by-trial basis. We furthermore identified three downstream regions, 

dACC, dAI and rlPFC, where BOLD activity is linked to both the width of the decoded 

distributions and reported confidence in ways consistent with the Bayesian observer 

model. Taken together, these findings support recent normative theories, and suggest that 

probabilistic information guides the computation of one’s sense of confidence.

Earlier work on statistical confidence has manipulated evidence reliability by varying 

physical properties of the stimulus, such as its contrast. This left open the possibility 

that observers simply monitor these image features as a proxy for uncertainty 7,10–12 , 

without considering an internal belief distribution over the latent variable. For this reason, 

we held stimulus properties constant, relied on fluctuations in internal noise, and extracted 

probability distributions directly from cortical activity. Our work shows that the uncertainty 

decoded from visual activity predicts the level of confidence reported by the observer. No 

less important, we find that downstream regions commonly associated with volatility in the 

environment 23,24 , decision-making 22,31 , and confidence 25,32,33 , represent trial-by-trial 

fluctuations in both this decoded uncertainty and reported confidence. Altogether, this 

strongly suggests that not stimulus heuristics or point estimates, but rather a probabilistic 

representation of information drives human confidence reports.

While decision confidence is usually studied in the context of binary decisions, we here 

focused on a continuous estimation task, which requires observers to reproduce a feature of 
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the stimulus. For binary decisions, confidence is normatively defined as a function of the 

observer’s measurement and decision boundary, in addition to sensory uncertainty, and each 

of these parameters can vary on a trial-by-trial basis due to internal noise. For the continuous 

estimation task used here, on the other hand, confidence is more straightforwardly defined 

as a function of sensory uncertainty, without many additional parameters. This definition 

makes this task ideally suited for addressing the probabilistic confidence hypothesis. While 

we specifically focused on uncertainty in continuous estimation, it seems nonetheless likely 

that the probabilistic nature of the representation will extend to binary choices and other 

decisions of increasing complexity.

Our findings are also important for understanding how uncertainty is represented in cortex. 

Previous work has shown that the width of the decoded probability distribution predicts the 

magnitude of behavioral orientation biases 10 , serial dependence effects in perception 34 , 

and classification decisions 35 . The current work extends these earlier findings by linking 

the decoded distributions directly to activity in downstream decision areas and the subjective 

level of confidence reported by the observer. Taken together, these findings suggest that 

probability distributions are not only represented in neural population activity, but also used 

in the brain’s computations.

Earlier work has implicated the involvement of the dACC, dAI, and rlPFC in experimental 

(objective) manipulations of evidence reliability 23,33,36–38 . Our results suggest that these 

regions similarly track spontaneous (internal) fluctuations in uncertainty and moreover 

mediate the link between sensory uncertainty and reported confidence, further elucidating 

their functional role in human decision-making. Thus, it appears that a more general notion 

of uncertainty is represented in these regions, albeit for different functional purposes. 

While the representation in dACC may serve to inform internal models and response 

selection 39–42 , it seems likely that dAI integrates uncertainty with interoceptive and 

affective information to form a general subjective feeling state 22 . rlPFC, on the other hand, 

likely plays a key role in the integration of internal uncertainty with contextual information 

to compute confidence 32,36,43–45 .

While we here focused on the link between subjective confidence and the precision of 

early sensory evidence in visual areas, confidence should additionally reflect uncertainty 

added by later stages of processing; for instance, when the item is held in visual working 

memory before observers make their judgment (although the impact of memory imprecision 

might be relatively small 46 ). Indeed, our ideal observer model incorporates these sources 

of variance in its estimates of confidence (cf. equations 1, 8 and 9, σ n 
2). Given the 

involvement of early visual areas in visual working memory 47,48 , this predicts that the 

imprecision in the visual cortical representation during the delay period between stimulus 

presentation and response should predict the level of confidence reported by the observer, 

as well. Interestingly, additional analysis of the empirical data revealed that uncertainty 

decoded from signals during the retention interval indeed reliably predicted subjective 

levels of confidence (Extended Data Fig. 9). Although our design does not warrant 

strong conclusions regarding the nature of these signals (see Extended Data Fig. 9 for 

discussion), these findings are consistent with a model that considers additional sources of 

variance when judging confidence. Corroborating this interpretation, a very recent study 
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used our probabilistic decoding techniques and found that decoded uncertainty predicted 

the observer’s judgments of uncertainty in a visual working memory task 49 . It will be 

interesting for future work to further disentangle these and other sources of noise that affect 

the observer’s decisions and associated levels of confidence.

In conclusion, we showed that behavioral confidence tracks the degree of uncertainty 

contained in neural population activity in visual cortex, suggesting that human observers 

have access to and can report about the degree of imprecision in their visual cortical 

representations of the stimulus. Furthermore, activity in the dACC, dAI and rlPFC is 

modulated by both this uncertainty and reported confidence in ways predicted by the 

Bayesian model, suggesting that these regions are involved in the computation of confidence 

from sensory uncertainty. Taken together, the current results support recent normative 

theories of confidence and suggest that the subjective feeling of confidence is based on 

a statistical measure of the quality of one’s evidence.

Methods

Participants

32 healthy adult volunteers (age range 19-31, 20 female, 12 male) with normal or corrected-

to-normal vision participated in this study. Sample size (N=32) was based on a power 

calculation (power = 0.8; α = 0.05). All participants gave informed written consent prior 

to, and received monetary compensation for, their participation (8 and 10 euros per hour 

for behavioral and fMRI sessions, respectively). The study was approved by the local ethics 

committee (CMO Arnhem-Nijmegen, the Netherlands). Participants were included based on 

their ability to perform the task, which was assessed in a separate behavioral training session 

prior to the experimental sessions.

Imaging data acquisition

MRI data were acquired on a Siemens 3T MAGNETOM PrismaFit scanner at the Donders 

Center for Cognitive Neuroimaging, using a 32-channel head coil. For anatomical reference, 

a high-resolution T1-weighted image was collected at the start of each session (3D 

MPRAGE, TR: 2300 ms, TI: 1100 ms, TE: 3 ms, flip angle: 8 degrees, FOV: 256 x 256 

mm, 192 saggital slices, 1-mm isotropic voxels). B0 field inhomogeneity maps (TR: 653 

ms, TE: 4.92 ms, flip angle: 60 degrees, FOV: 256 x 256 mm, 68 transversal slices, 2-mm 

isotropic voxels, interleaved slice acquisition) were acquired. Functional data were acquired 

using a multi-band accelerated gradient-echo EPI protocol, in 68 transversal slices covering 

the whole brain (TR: 1500 ms, TE: 38.60 ms, flip angle: 75 degrees, FOV: 210 x 210 mm, 

2-mm isotropic voxels, multiband acceleration factor: 4, interleaved slice acquisition).

Experimental design and stimuli

Participants performed an orientation estimation task while their cortical activity was 

measured with fMRI. They completed a total of 22-26 task runs, divided over two scan 

sessions on separate days. Prior to the experimental sessions, participants extensively 

practiced the task (2-4 hours) in a separate behavioral session.
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Throughout each task run, participants fixated a bull’s eye target (radius: 0.375 degrees) 

presented at the center of the screen. Each run consisted of 20 trials (16.5 s each), separated 

by an inter-trial interval of 1.5 s, and started and ended with a fixation period (duration at 

start: 4.5 s; at end: 15 s). Each trial started with the presentation of the orientation stimulus, 

which remained on the screen for 1.5 s. This was followed by a 6-s fixation interval, and 

then two successive 4.5-s response windows (Extended Data Fig. 1). Orientation stimuli 

were counterphasing sinusoidal gratings (contrast: 10%, spatial frequency: 1 cycle per 

degree, randomized spatial phase, 2-Hz sinusoidal contrast modulation) presented in an 

annulus around fixation (inner radius: 1.5 degrees, outer radius: 7.5 degrees, grating contrast 

decreased linearly to 0 over the inner and outer 0.5 degrees of the radius of the annulus). 

Stimulus orientations were drawn (pseudo)randomly from a uniform distribution covering 

the full orientation space (0-179 degrees) to ensure an approximately even sampling of 

orientations within each run. At the start of the first response window, a black bar (length: 

2.8 degrees, width: 0.1 degrees, contrast: 40%) appeared at the center of the screen at an 

initially random orientation. Subjects reported the orientation of the previously seen grating 

by rotating this bar, using separate buttons for clockwise and counterclockwise rotation 

on an MRI-compatible button box. At the start of the second response window, a black 

bar of increasing width (contrast: 40%, bar width: 0.1-0.5 degrees, linearly increasing) and 

wrapped around fixation (radius 1.4 degrees) became visible at the center of the screen. 

Participants indicated their confidence in their orientation judgement by moving a white dot 

(contrast: 40%, radius: 0.05 degrees) on this continuous confidence scale, using the same 

buttons for clockwise and counterclockwise as for their orientation response. The mapping 

of confidence level to scale width (i.e. whether the narrow end of the scale indicated high 

or low confidence) was counterbalanced across participants. The scale’s orientation and 

direction (i.e. width increasing in clockwise or counterclockwise direction), as well as the 

starting position of the dot, were randomized across trials. For both response windows, the 

bar (scale) disappeared gradually over the last 1 s of the response window to indicate the 

approaching end of this window. Shortly before trial onset (0.5 s), the fixation bull’s eye 

briefly turned black (duration: 0.1 s) to indicate the start of the trial. Because we were 

interested in the effects of sensory uncertainty on cortical activity and confidence, rather 

than the cortical representation of confidence per se, and moreover, reward-related signals 

might contaminate the representation of sensory information in visual areas 50 , participants 

received no trial-by-trial feedback about the accuracy of their judgments.

Each scan session also included 1 or 2 functional localizer runs, during which flickering 

checkerboard stimuli were presented in seven 12-s blocks interleaved with fixation blocks 

of equal duration. The checkerboard stimuli were presented within the same aperture as 

the grating stimuli (contrast: 100%, flicker frequency: 10 Hz, check size: 0.5 degrees). 

Retinotopic maps of the visual cortex were acquired in a separate scan session using 

standard retinotopic mapping procedures 51–53 .

All visual stimuli were generated on a Macbook Pro computer using Matlab and the 

Psychophysics Toolbox 54 , and were presented on a rear-projection screen using a 

luminance-calibrated EIKI LC-XL100 projector (screen resolution: 1024 x 768 pixels, 

refresh rate: 60 Hz). Participants viewed the screen through a mirror mounted on the head 

coil.
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Behavioral data analysis

In general, participants finished adjusting their orientation and confidence responses well 

before the end of the response windows (4.5 s each), taking on average 2761 ± 378 

ms (mean ± S.D. across observers) for the orientation response and 2587 ± 313 ms for 

the confidence response. Trials on which participants did not finish their response by the 

end of the response window were excluded from further analyses (0-43 out of 440-520 

trials). The error in the observer’s behavioral orientation response was computed as the 

acute-angle difference between the reported and the presented orientation on a given trial. 

Orientation-dependent shifts (biases) in mean behavioral error were removed by fitting two 

fourth-degree polynomials to each observer’s behavioral errors as a function of stimulus 

orientation (see 10 for a similar procedure). One polynomial was fit to trials for which the 

presented stimulus orientation was between 90 and 179 degrees, and the second polynomial 

was fit to trials on which the presented stimulus orientation was between 0 and 89 degrees. 

We used the bias-corrected behavioral errors, i.e. the residuals of this fit, in subsequent 

analyses. Behavioral errors that were more than three standard deviations away from the 

mean of each participant (after bias correction) were marked as guesses and excluded 

from further analysis (1-7 out of 440-520 trials). To remove potential session- and subject-

specific differences in usage of the confidence scale, confidence ratings were z-scored 

within sessions.

Preprocessing of MRI data

The raw functional imaging data were motion-corrected with respect to the middle volume 

of the middle run of the session, using FSL’s MCFLIRT 55 . The functional data were 

corrected for distortion using the within-session B0 fieldmap, and aligned to the T1-

weighted image obtained during the same scan session. This anatomical (T1-weighted) 

image was aligned with a subject-specific unbiased template image, created by combining 

the T1-weighted images from the two sessions, using Freesurfer’s mri_robust_template 56 . 

Slow drifts in the BOLD signal were removed using FSL’s nonlinear high-pass temporal 

filter with a sigma of 24 TRs (two trials), corresponding to a cut-off period of approximately 

83 seconds.

For all univariate analyses, additional preprocessing steps were performed prior to high-pass 

filtering. Specifically, non-brain structures were removed using FSL’s BET 57 , and the 

data were spatially smoothed with a 6-mm Gaussian kernel using FSL’s SUSAN 58 . As 

the univariate analyses required combining data across subjects, each subject’s anatomical 

template image was non-linearly registered to MNI152 space using FSL’s FNIRT with a 

warp resolution of 10 mm isotropic 59 .

A set of nuisance regressors was used to remove residual motion effects and global 

fluctuations in the BOLD signal. Per session, we defined an intercept regressor per run, 

24 motion regressors based on the motion parameters estimated by MCFLIRT (all analyses), 

and two regressors reflecting the average signal in cerebrospinal fluid (CSF) and white 

matter (WM) (univariate analyses only). The CSF and WM regressors served to capture 

global fluctuations in signal intensity and were obtained by first creating WM and CSF 

masks based on the subject’s anatomical scan data using FSL’s FAST 60 , and then removing 
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the outer edges from these masks to exclude voxels at the tissue boundaries. For the 

multivariate and ROI-based univariate analyses, nuisance signals were removed from the 

BOLD signal prior to further analyses. For the whole-brain univariate analysis, motion, 

CSF/WM, and intercept regressors were included as covariates in the general linear model 

(see Whole-brain analysis).

For the multivariate analyses, the ROI (consisting of V1, V2, and V3) was identified on the 

reconstructed cortical surface. Within this ROI, and in the native space of each participant, 

we selected for further analysis the 2000 voxels that were activated most strongly by 

the functional localizer stimulus while surviving a lenient statistical threshold (p < 0.01, 

uncorrected). Control analyses verified that our results were not strongly affected by the 

number of voxels selected for analysis (Extended Data Fig. 3). The time series of each 

selected voxel was subsequently z-normalized with respect to corresponding trial time points 

in the same run. Activation patterns for each trial were obtained by averaging over the 

first 3 s of each trial, after adding a 4.5-s temporal shift to account for hemodynamic 

delay. This relatively short time window was chosen so as to ensure that activity from 

the behavioral response window was excluded from analysis. For the control analyses of 

Extended Data Fig. 4, mean BOLD intensity values were calculated by averaging the 

z-normalized activation values across the selected voxels and time window. The results of 

Extended Data Fig. 9 were obtained using a sliding window of size 3 s (2 TRs), chosen 

so as to match the window size of the main analysis. For each window of analysis, the z-

normalized activation values were averaged and subsequently fed to the decoding algorithm.

Multivariate analysis (visual cortex)

Decoding algorithm—Trial-by-trial uncertainty in cortical stimulus representations was 

computed using a generative model-based, probabilistic decoding algorithm 10,18 , applied to 

selected voxels in visual cortex (see previous section for voxel selection criteria). The model 

describes the generative distribution of the voxel activity patterns given a certain stimulus, 

p(b|s); in other words, the probability that stimulus s will evoke activation pattern b. The 

model assumes that, across trials, voxel activity follows a multivariate Normal distribution 

around the voxel’s tuning curve for orientation. Voxel tuning curves are defined as a linear 

combination Wf (s) of 8 bell-shaped basis functions, each centered on a different orientation 

(cf. 61 ):

fk(s) = max 0, cos 2πs − φk
180

5
#(4)

where s is the orientation of the presented stimulus and φk is the preferred orientation of the 

k-th population. Basis functions were spaced equally across the full orientation space (0-179 

degrees) with the first centered at zero degrees. Wik is the contribution of the k-th basis 

function to the response of the i-th voxel.

The covariance around the voxel tuning curves is described by noise covariance matrix Ω:

Ω = ρττT + (1 − ρ)I ∘ ττT + σ2WWT #(5)
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The first term of this covariance matrix describes noise shared globally between all voxels 

in the ROI, and the second term refers to noise specific to individual voxels (with variance 

τ i 2 for voxel i). The relative contribution of each of these types of noise is reflected in ρ. 

The third term models tuning-dependent noise, i.e. noise, with variance σ 2, shared between 

voxels with similar orientation preference.

Thus, the generative distribution of voxel responses is given by a multivariate Normal with 

mean Wf (s) and covariance Ω:

p(b ∣ s; θ) = N(Wf(s), Ω) #(6)

where θ = {W, τ,p, σ} are the model’s parameters. The model’s parameters were estimated 

in a two-step procedure (see 10 for further details). First, the tuning weights W were 

estimated by ordinary least squares regression. In the second step, the noise covariance 

parameters (ρ, σ, τ) were estimated by numerical maximization of their likelihood.

Model training and testing (‘decoding’) was performed following a leave-one-run-out cross-

validation procedure to prevent double-dipping 29 . That is, model parameters were first fit to 

a training dataset consisting of all but one fMRI run, and the model was then tested on the 

data from the remaining run. This procedure was repeated until all runs had served as a test 

set once.

Using the fitted parameters, a posterior distribution over stimulus orientation was computed 

for each trial in the test set. The posterior distribution is given by Bayes’ rule:

p(s ∣ b; θ) = p(b ∣ s; θ)p(s)

∫ p(b ∣ s; θ)p(s)ds
#(7)

where θ are the estimated model parameters. The stimulus prior p(s) was flat, given that 

the stimuli presented in the experiment were uniformly distributed, and the normalizing 

constant in the denominator was calculated numerically. The circular mean of the posterior 

distribution was taken as the estimate of the presented orientation on that test trial, and the 

squared circular standard deviation was used as a measure of the amount of uncertainty in 

this estimate.

Statistical procedures

Most of our analyses relied on the computation of a correlation coefficient between two 

variables. These coefficients were calculated for each individual participant, and then 

averaged across observers (see below). Based on the assumed relationship between the 

two variables (linear or monotonic), either Pearson’s or Spearman’s (rank) correlation 

coefficient was computed. For the analyses using Pearson’s correlation coefficient (Fig. 3a 

and Extended Data Fig. 2c-d), the data were visually inspected and appeared to be normally 

distributed, although this was not formally tested. Decoding accuracy was quantified by 

computing the circular analog of the Pearson correlation coefficient between the presented 

and decoded stimulus orientation. To test for an oblique effect in decoded uncertainty, 

we first calculated for each presented stimulus orientation its distance to the nearest 
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cardinal (i.e. horizontal or vertical) orientation, and then computed the Spearman correlation 

coefficient between this measure and decoded uncertainty. To test the relationship between 

reported confidence and decoded uncertainty (independent of stimulus orientation), we first 

removed orientation-dependent shifts in decoded uncertainty and confidence by modeling 

confidence (decoded uncertainty) as a quadratic (linear) function of distance to cardinal 

(see Extended Data Fig. 10 for fitted functions); the rank correlation coefficient between 

confidence and decoded uncertainty was subsequently computed on the residuals of these 

fitted functions. After obtaining correlation coefficients for each individual observer i, 
the coefficients were Fisher transformed and a weighted average was computed across 

observers. Specifically, the weight of the i-th correlation coefficient was calculated as wi = 

1/vi , where v i is the variance of the Fisher transformed correlation coefficient 62 . For the 

Pearson correlation, v i is given by 1/(ni - 3) (where n i is the number of trials), and for the 

Spearman correlation v i = 1.06/(ni - 3) 63 . Weights were adjusted for the additional degrees 

of freedom lost due to stepwise correction for the oblique effect in decoded uncertainty or 

reported confidence by subtracting 1 (for linear correction) or 2 (for quadratic correction) 

from the denominator in the variance term. The significance of the coefficients was assessed 

using a Z-test, testing specifically for effects in the direction predicted by the ideal observer 

models. The average of the Z-transformed values was translated back to the correlation 

scale for reporting purposes. To compare correlation coefficients between confidence and 

decoded uncertainty with and without correction for stimulus orientation, we computed 

Cohen’s q and used a Z-test to assess statistical significance. Similar procedures were used 

for the control analyses of Extended Data Fig. 4. For these control analyses, we additionally 

performed equivalence tests (using the two one-sided tests procedure 64 ), comparing against 

a smallest effect size of interest of ρ = 0.1 (see 65 for further rationale).

Some of our analyses required the computation of a dispersion measure (i.e., behavioral 

variability). For these analyses, each participant’s data were first divided into ten equal-size 

bins, based on either reported level of confidence or decoded uncertainty, and summary 

statistics were computed across all trials in a given bin. Behavioral variability was computed 

as the squared circular standard deviation of (bias-corrected) estimation errors across 

all trials in each bin, and the average level of confidence or decoded uncertainty was 

quantified by computing the statistical mean. To test the relationship between behavioral 

variability and confidence (or decoded uncertainty), we used a multiple linear regression 

analysis. Independent variables were level of confidence (or decoded uncertainty), and the 

absolute distance between the stimulus and the nearest cardinal axis (mean across trials 

in each bin). We also included subject-specific intercepts. The dependent variable was 

behavioral variability. Partial correlation coefficients were computed from the binned data 

and significance was assessed using t-tests, testing for effects in the direction predicted by 

the ideal observer models. Control analyses verified that our results did not strongly depend 

on the number of used bins, nor on the specific shape of the function used to model the 

effect of stimulus orientation on confidence (or decoded uncertainty).

Univariate analyses (whole-brain and ROI-based)

Whole-brain analysis—To identify brain regions that are modulated by sensory 

uncertainty, we used a whole-brain general linear model (GLM) approach. A GLM can 
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be written as y = Xβ + ε , where y represents the timeseries of a single voxel, X is referred 

to as the design matrix (or model), β is a vector of model parameters, and ε represents the 

residuals.

We constructed a model of task-related activity based on three components: 1) a 1.5-s boxcar 

function time-locked to the stimulus onsets of all excluded trials, with height one, 2) a 

1.5-s boxcar function time-locked to the stimulus onsets of all included trials, with height 

one, 3) a 1.5-s boxcar function time-locked to the stimulus onsets of all included trials, 

with its height equal to the decoded uncertainty on that trial (linearly corrected for trial-by-

trial differences in stimulus orientation, cf. Multivariate analysis). Each boxcar function 

was convolved with a canonical hemodynamic response function (HRF) and temporal and 

dispersion derivatives of the HRF (SPM’s informed basis set), yielding a total of nine 

regressors to include in the design matrix. The derivatives were added for additional model 

flexibility regarding the shape and latency of the BOLD response. In addition to the task-

related regressors, we further included nuisance regressors (24 motion regressors and 2 

CSF/WM regressors per session) and run-specific intercepts (see Preprocessing of fMRI 

data) to improve overall model fit.

The model X was fit to each subject’s timeseries, separately for each voxel, to obtain 

a set of parameter estimates β . Subject-level analyses were performed using SPM12, 

because of its increased efficiency (relative to FSL) when performing the GLM analysis 

on concatenated data rather than individual runs. The resulting subject-level β maps were 

then transformed from subject-specific to standard space (MNI152) to allow for comparison 

and combination of estimates across subjects. We were specifically interested in the 

effect of decoded uncertainty on the BOLD response, which was modeled by the three 

regressors corresponding to the third boxcar function. The combined explanatory power of 

the three regressors was quantified by computing an F-statistic over the corresponding β 
estimates (across subjects). To calculate p-values, a sign-flip test (5000 permutations) was 

performed in combination with threshold-free cluster enhancement (TFCE) 66 , using FSL’s 

randomise 67 . The family-wise error rate (FWER) was controlled by comparing the true 

voxel-wise TFCE scores against the null distribution of the maximum TFCE score across 

voxels 66,68 .

ROI analysis—Brain regions modulated by perceptual uncertainty were selected and 

further investigated as follows. ROIs were defined using existing anatomical atlases, 

combined with a functional parcellation based on the whole-brain GLM analysis (as 

described in more detail above). Specifically, within a given (anatomical) ROI, we 

selected voxels modulated by decoded uncertainty using the GLM analysis, while 

applying a leave-one-subject-out procedure 30 to avoid double-dipping 29 . This led to 

the definition of eight ROIs, for each participant individually: 1) dorsal anterior insula 

(using the functional parcellation by Chang et al. 26 , mirrored to obtain bilateral 

labels, retrieved from Neurovault: https://identifiers.org/neurovault.collection:13), 2) left 

rostrolateral prefrontal cortex (frontal pole label, Harvard-Oxford cortical atlas 28 , trimmed 

to include the left hemisphere only), 3) dorsal anterior cingulate cortex (bilateral RCZa 

and RCZp labels, Neubert cingulate orbitofrontal connectivity-based parcellation 27 ), 4) 
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precuneus (precuneus label, Harvard-Oxford cortical atlas 28 ), 5) supplementary motor 

area (SMA label, Sallet dorsal frontal connectivity-based parcellation 69 , mirrored to 

obtain bilateral labels), 6) dorsal perigenual anterior cingulate cortex (bilateral area 32d, 

Neubert cingulate orbitofrontal connectivity-based parcellation 27 ), 7) ventral posterior 

cingulate cortex (bilateral area 23ab labels, Neubert cingulate orbitofrontal connectivity-

based parcellation 27 ), 8) dorsal posterior cingulate cortex (bilateral CCZ labels, Neubert 

cingulate orbitofrontal connectivity-based parcellation 27 ). For ROIs 2 and 8, some of the 

leave-one-out, GLM-based masks did not contain any voxels. The corresponding data were 

excluded from further analyses for the respective ROIs (for ROI 2: 1 subject, ROI 8: 2 

subjects). The BOLD signal was averaged over all voxels within a given ROI.

Having defined our ROIs, we then proceeded to investigate the effects of confidence 

in these regions. We did this in two different analyses. To assess the degree to which 

confidence modulated the BOLD response in each ROIs, we performed a GLM analysis. 

The model structure was similar to the whole-brain univariate analysis, including three 

1.5-s boxcar functions time-locked to stimulus onset: one for excluded trials (height one), 

one for included trials (height one), and one to model the effect of confidence (included 

trials only; height equal to confidence value on that trial, quadratically corrected for trial-by-

trial differences in stimulus orientation, cf. Multivariate analysis). These boxcar functions 

were each convolved with SPM’s informed basis set (canonical HRF and its temporal and 

dispersion derivatives), and nuisance regressors (24 motion and 2 CSF/WM regressors per 

session). Run intercepts were also added.

To further investigate the magnitude and directionality of effects of reported confidence 

and decoded uncertainty over the course of a trial (without a priori assumptions regarding 

the shape or timing of the BOLD response), we also performed a trial-by-trial correlation 

analysis. Specifically, we computed the Spearman correlation coefficient between BOLD 

intensity and decoded uncertainty or reported confidence for each TR in the trial. 

Orientation-dependent changes in decoded uncertainty and confidence were first removed 

by modeling confidence (decoded uncertainty) as a quadratic (linear) function of distance 

to cardinal (cf. Multivariate analysis), and the correlation coefficient was computed using 

the residuals of this fit. For the control analyses presented in Extended Data Fig. 6, 

response time effects in the BOLD signal were removed by modeling BOLD intensity 

at each timepoint (relative to stimulus onset) as a linear function of the time it took for 

the observer to 1) respond to the presented orientation and 2) report confidence on that 

trial, and the correlation coefficient between BOLD intensity and decoded uncertainty or 

confidence was computed on the residuals of this fit. For the partial correlation analyses 

reported in Extended Data Fig. 7, both reported confidence (or decoded uncertainty) and 

BOLD intensity at each timepoint were modeled as a linear function of uncertainty (or 

confidence). The residuals of these fits were used to compute the (Spearman) correlation 

coefficient between confidence (or uncertainty) and the BOLD signal for each timepoint. 

The single-subject correlation coefficients were Fisher transformed, and a weighted average 

was computed across observers (cf. Multivariate analysis). Statistical significance was 

assessed using two-tailed permutation tests, in which uncertainty (or confidence) values 

were permuted across trials (1000 permutations). To control for multiple comparisons 

(FWER) we compared against the null distribution of the maximum correlation coefficient 
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across timepoints (cf. Whole-brain analysis). Finally, we tested whether there was a 

significant difference in latency between the effects of confidence and uncertainty on the 

BOLD signal in each ROI. To this end we determined, for each subject individually, the 

(within-trial) timepoint at which the correlation coefficient between BOLD and uncertainty 

(confidence) was most strongly positive (negative). We then performed a paired t-test on 

these values, comparing between uncertainty and confidence.

To investigate whether activity in downstream areas mediates the relationship between 

decoded uncertainty and reported confidence, we performed the following analysis. We first 

modeled both confidence and uncertainty as a linear function of the BOLD signal in a 

given ROI and at a given (within-trial) timepoint. We then took the residuals of these model 

fits and computed the Spearman correlation coefficient between the (residual) uncertainty 

and confidence values. If the selected ROIs mediate the relationship between uncertainty 

and confidence, the residual correlation coefficient should be smaller in magnitude than the 

baseline correlation coefficient between uncertainty and confidence (i.e., not controlled for 

activity in downstream areas; as reported in Fig. 3c). To quantify the mediating effect of 

the BOLD signal in each ROI at each timepoint, the single-subject correlation coefficients 

were Fisher transformed, and we subtracted from these values the (Fisher transformed) 

baseline correlation coefficient between uncertainty and confidence. Finally, a weighted 

average was computed across observers (cf. Multivariate analyses). Statistical significance 

of the predicted reduction in correlation strength was assessed using a permutation test, in 

which BOLD values were permuted across all trials (following otherwise similar procedures 

as for the whole-brain and main ROI-based analyses).

Eye tracking data—Eye tracking data were acquired using an SR Research Eyelink 

1000 system for 62 out of 64 sessions. For 11 of these sessions, data were collected 

for 4-12 runs (out of a total of 10-13) due to technical difficulties with the eye-tracking 

system. Gaze position was sampled at 1 kHz. Blinks and saccades were identified using the 

Eyelink software and removed. Eye fixations shorter than 100 ms in duration were similarly 

identified and removed. Any blinks of duration >1000 ms were considered to be artifacts 

and removed. For some trials, the quality of eye tracking data was of insufficient quality (as 

indicated by a high proportion of missing data points). This was identified by computing 

the percentage of missing (gaze) data points in a time window starting 4.5 seconds before 

stimulus onset and ending 4.5 seconds after stimulus offset, but excluding the stimulus 

window itself. Trials were excluded from further analysis if the percentage of missing data 

points within this pre- and post-stimulus window exceeded 50%. Based on this criterion, 

3.84 % ± 1.69 % (mean ± S.D.) of trials were excluded from further analysis. Data were 

band-pass filtered using upper and lower period cutoffs of 36 s and 100 ms, respectively. 

The median gaze position per run was computed and subtracted from all data points within 

that run. All measures of interest were computed during stimulus presentation only, i.e. over 

the first 1.5 seconds of each trial. Mean eye position was obtained by first computing the 

mean x- and y-coordinate of the gaze data, and then taking the absolute distance from this 

position to the central fixation target. The proportion of blinks was computed as the fraction 

of time labeled as blinks; this included saccades immediately preceding or following a blink. 

A break from fixation occurred when the absolute distance between gaze position and the 
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central fixation target was more than 1.5 degrees of visual angle. The proportion of fixation 

breaks was computed as the fraction of time labeled as such.

Ideal observer models

Model description—We implemented three different observer models, which make 

identical decisions but differ in how they compute confidence from internal signals. Model 

1 takes a statistical approach and computes confidence from the degree of imprecision in 

the orientation judgment. Models 2 and 3 use heuristic strategies; model 2 uses features 

of the stimulus as a cue to confidence, and model 3 bases confidence on the magnitude 

of the observed error in the response. We call these the Probabilistic (Bayesian), Stimulus 

heuristics and Response heuristics observer, respectively (see also Fig. 1).

The observer’s task is to infer the stimulus from incoming sensory signals. These signals 

are noisy, so that there is no one-to-one mapping between a given stimulus s and its 

measurement m. Rather, the relationship between stimulus and measurements is described 

by a probability distribution p(m|s). We assume that across trials, the sensory measurements 

follow a (circular) Gaussian distribution centered on the true stimulus s, with variance σm 
2(s):

p(m ∣ s) = 1
Z exp − 1

2σm2(s)  angle (m, s)2
#(8)

where Z is a normalization constant.

We make a distinction between three sources of measurement noise: stimulus-dependent 

sensory noise (σso 
2), stimulus-independent sensory noise (σsi 

2), and non-sensory 

(downstream) noise (σ n 
2). The total amount of measurement noise equals the sum of 

the three noise components:

σm2(s) = σso2(s) + σsi
2 + σn2 #(9)

The stimulus-dependent component σso 
2 represents Gaussian noise that varies in magnitude 

as a function of stimulus orientation. Specifically, human behavioral orientation judgments 

tend to be more precise for cardinal than oblique orientations 19,70 , and we model this 

oblique effect in orientation perception as a rectified sine function 20 :

σso2(s) = a ⋅ sins 2π
180 #(10)

where a is the amplitude of the oblique effect. The stimulus-independent component σsi 
2 

models any remaining sources of (Gaussian) sensory noise. Its magnitude varies randomly 

over trials, and we model the across-trial distribution of σsi 
2 as a gamma distribution:

σsi2 ∼ Γ(α, β) #(11)
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where α represents the shape parameter and β represents the rate parameter. Finally, the 

non-sensory (downstream) noise component, σn 2, is of constant magnitude and captures 

(Gaussian) noise that arises beyond the initial stages of sensory processing, but prior to 

the decision, for example when the item is held in working memory or in processing steps 

downstream of sensory areas V1-V3.

To infer which stimulus likely caused their sensory measurement, the observers use full 

knowledge of the generative model. Specifically, each observer inverts the generative model 

using Bayes’ rule. Assuming a flat stimulus prior, the posterior distribution is proportional to 

the likelihood function:

p(s ∣ m) ∝ p(m ∣ s) #(12)

All three observer models take the mean of the posterior distribution as their internal sensory 

estimate ŝ of the presented stimulus. This is the optimal solution for a squared-error loss 

function 71 . The observer’s internal estimate of orientation is subsequently translated into an 

overt behavioral (motor) response r. The transformation from internal estimate into a motor 

response is noisy. Thus, the behavioral response r for the observer models is given by:

r = s + εr #(13)

where εr is a zero-mean (circular) Gaussian noise variable with variance σr 2.

The three model observers differ in how they compute confidence. The Bayesian or 

Probabilistic observer computes confidence as a function of the expected response error. 

Specifically, this observer assumes a (circular) squared-error loss function and computes 

confidence as the inverse of the expected loss (Equation 1):

cB = 1

∫ p(s ∣ m)angle(r, s)2ds

Replacing this direct mapping with any other monotonically decreasing function does not 

qualitatively change any of the predictions for this model. Thus, for the Bayesian observer, 

confidence is based (in part) on the posterior probability distribution over the stimulus.

The Stimulus heuristics observer uses the estimated orientation of the stimulus as a cue to 

uncertainty and confidence. That is, this observer knows that behavior tends to be more 

precise for cardinal than oblique orientations, and simply exploits this knowledge in their 

confidence judgments (Equation 2):

cs = 1
f(s)

where the function f(ŝ) takes the shape of the oblique effect (cf. Equation 10):
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f(s) = a ⋅ sins 2π
180 + E σsi2 #(14)

The Response heuristics observer bases confidence on the observed error in the motor 

response. Specifically, the observer simply notices the difference between the overt response 

r and internal estimate ŝ, and adjusts confidence accordingly. We quantified confidence for 

this model observer as the inverse of the squared acute-angle distance between the internal 

orientation estimate and the external response (Equation 3):

cR = 1
angle(r, s)2

Simulations—We simulated 50,000 trials for each of the three model observers. Stimulus 

orientations were drawn from a uniform distribution on the interval [0-179°]. Sensory 

measurements were randomly sampled from the generative model as described above 

(Equations 8-11), with a = 20, σd 2 = 5, α = 10, and β = 1. The normalization constant 

Z was computed numerically.

Probabilistic inference proceeded with full knowledge of the parameter values and according 

to Equation 12. Behavioral responses were obtained using Equation 13 and with σr 2 = 5. 

Confidence judgments were obtained using Equations 1-3 and 14. To obtain a reasonable 

range of confidence values, a constant (of value 1) was added to the denominator of 

Equation 3. Confidence ratings were z-scored per observer to ensure that they would all 

fall on the same scale. Sensory uncertainty was quantified as:

σs2 = σsi2 + σso2 #(15)

Data were preprocessed following the procedures described in Behavioral data analysis. 

Similar to the empirical analyses, orientation-dependent shifts in confidence judgments, 

behavioral variability or sensory uncertainty were removed. For data visualization, simulated 

data were divided over 10 equal-sized bins of increasing confidence (Fig. 2a-b) or sensory 

uncertainty (Fig. 2c-d), and the mean confidence level, variance of behavioral errors (Fig. 

2a-b), and mean level of sensory uncertainty (Fig. 2c-d) were computed across all trials in 

each bin.
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1 Extended Data

Extended Data Fig. 1. Trial structure.
Each trial started with the presentation of an oriented grating (1500 ms) followed by a 

6000-ms fixation interval and two 4500-ms response intervals, during which the participant 

first reported the orientation of the previously seen stimulus by rotating a bar, and then 

indicated their level of confidence in this judgment on a continuous scale. Trials were 

Geurts et al. Page 23

Nat Hum Behav. Author manuscript; available in PMC 2022 July 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



separated by a 1500-ms intertrial interval. Stimulus, response bar and confidence scale are 

not drawn to their true scale and contrast.

Extended Data Fig. 2. Orientation and uncertainty decoding performance.
The orientation of the presented stimulus, and associated uncertainty, decoded from activity 

patterns in areas V1-V3. (a) Orientation decoding performance was quantified by means of 

the circular equivalent of the Pearson correlation coefficient between presented and decoded 

orientations. Correlation coefficients were computed for each subject individually and then 

averaged across subjects (N = 32). Presented and decoded orientations were significantly 

correlated (z = 83.58, p < 0.001, r = 0.60, 95% CI = [0.58, 0.61]). (b-d) To assess the 

degree to which the decoder captured uncertainty contained in neural population activity, 

we compared decoded uncertainty to behavioral variability, the rationale being that a more 

precise representation in cortex should also result in more precise behavioral estimates (see 

Geurts et al. Page 24

Nat Hum Behav. Author manuscript; available in PMC 2022 July 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



also 10 ).(b) Corroborating our approach, we found that decoded uncertainty was greater 

for oblique compared to cardinal orientation stimuli (correlation distance-to-cardinal and 

decoded uncertainty: z = 2.95, p = 0.002, ρ = 0.025, 95% CI = [0.0083 0.041]). This finding 

was paralleled by the imprecision in observer behavior (correlation distance-to-cardinal 

and behavioral variability: t(287) = 13.60, p < 0.001, r = 0.63, 95% CI = [0.55, 0.69]). 

(c-d) In addition, behavioral orientation responses were more precise when the decoded 

probability distributions indicated greater certainty in cortex, (c) both across orientation 

stimuli (correlation decoded uncertainty and behavioral variability: t(287) = 2.30, p = 0.011, 

r = 0.13, 95% CI = [0.019, 0.25]), and (d) when controlling for orientation (t(286) = 1.68, 

p = 0.047, r = 0.099, 95% CI = [-0.017, 0.21]). Altogether, this further underscores the 

validity of the decoding approach and shows that decoded uncertainty reliably characterizes 

the degree of imprecision in cortical representations of the stimulus (see 10,18 for further 

proof of this approach). Note that these are partial residual plots, which is why the data 

is centered around 0. Error bars (a-b) represent ± 1 s.e.m. (c-d) Shades of red indicate ten 

equal-size bins of increasing decoded uncertainty, dots represent individual observers (N = 

32).

Extended Data Fig. 3. Relationship between decoded uncertainty and reported confidence across 
different numbers of voxels.
Correlation coefficients between decoded uncertainty and reported confidence as a function 

of the number of voxels included in the ROI, both across all orientations (a) and after 

removing the effect of stimulus orientation (b). Voxels within V1-V3 were ranked and 

selected for multivariate analysis based on their response to the visual localizer stimulus (see 

Methods), using a lenient statistical threshold of p<0.01, uncorrected. The results proved 

reasonably robust to variations in the number of voxels selected for analysis. Dark red line 

indicates group average correlation coefficients, error bars denote ± 1 s.e.m.
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Extended Data Fig. 4. No effects of overall BOLD or eyetracking measures on confidence.
Reported confidence is not significantly correlated with the mean BOLD response to the 

stimulus in areas V1-V3 (z = 0.73, p = 0.47, ρ = 0.0062, 95% CI = [-0.010, 0.023]; 

equivalence test: z = -0.094, p < 0.001), nor with mean eye position (mean absolute distance 

to screen center; z = -1.38, p = 0.17, ρ = -0.012, 95% CI = [-0.030, 0.0051]; equivalence 

test: z = -0.088, p < 0.001), eye blinks (z = 0.99, p = 0.32, ρ = 0.0087, 95% CI = [-0.0086, 

0.026]; equivalence test: z = -0.11, p <0.001), or the number of breaks from fixation during 

stimulus presentation (z = 0.57, p = 0.57, ρ = 0.0050, 95% CI = [-0.012, 0.022]; equivalence 

test: z= -0.11, p < 0.001), suggesting that participants did not rely on heuristics in terms 

of eye position (‘did I look at the stimulus?’) or eye blinks (‘were my eyes closed?’) for 

reporting confidence. It furthermore rules out simple heuristic explanations in terms of 

attentional effort (‘my mind was elsewhere’, ‘I didn’t really try that hard’), as the mean 

BOLD response to the stimulus tends to increase with attention in these areas 73 . Shaded 

blue represents ± 1 s.e.m. Gray dots denote individual observers (N = 32).
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Extended Data Fig. 5. Effects of decoded uncertainty and reported confidence on the BOLD 
response in precuneus, supplementary motor area, dorsal perigenual anterior cingulate cortex, 
ventral posterior cingulate cortex, dorsal posterior cingulate cortex, and stimulus-driven voxels 
in V1-V3.
Group-average correlation coefficients for the relationship between decoded uncertainty 

and BOLD contrast, and reported confidence and BOLD contrast, in six ROIs. (a) In 

precuneus, the effects of both decoded sensory uncertainty and reported confidence on 

BOLD peaked around the same time, i.e. during the second half of the response window. 

This finding is consistent with previous work suggesting that precuneus may represent 

uncertainty in memory but not in perception 74–76 . (b) In supplementary motor area, both 

decoded uncertainty and reported confidence modulated cortical activity relatively early in 

the response window, while the effects of confidence lingered until after observers gave 

their response. (c-d) In dorsal perigenual anterior cingulate cortex and ventral posterior 

cingulate cortex, decoded uncertainty had a moderate effect on the BOLD response. 

Reported confidence modulated cortical activity during as well as shortly after the response 

window. (e) In dorsal posterior cingulate cortex, the modulatory effect of both decoded 

uncertainty and reported confidence on the cortical response was largest around the onset of 

the response window. (f) Stimulus driven voxels in early visual cortex were modulated by 

both decoded uncertainty and reported confidence, most notably during the first portion 

of the response interval. Given the timing of the effect (and taking into account the 

hemodynamic delay), this likely does not reflect uncertainty in the sensory representation 

per se, but is consistent with anticipatory processes or working memory-related signals 

potentially influenced by the imprecision in the cortical stimulus representation 77–79 . Please 

note there is no net effect of uncertainty on the overall (univariate) BOLD response during 

the decoding window (stimulus presentation; dashed lines). (a-f) Horizontal lines indicate 
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statistical significance (p<0.05, FWER-controlled). Error bars represent ± 1 s.e.m. Dark gray 

area marks stimulus presentation window, light gray area marks response window.

Extended Data Fig. 6. Effects of decoded uncertainty and reported confidence on the BOLD 
response in dAI, dACC and rlPFC, after accounting for trial-by-trial fluctuations in behavioral 
response times.
Behavioral response time effects were linearly regressed out from decoded uncertainty 

and reported confidence, prior to computing the Spearman correlation coefficient between 

decoded uncertainty (reported confidence) and the BOLD response at different moments in 

time after stimulus presentation. The remaining analysis steps are identical to those in the 

main text. Removing the effect of behavioral response time did not qualitatively change 

the pattern of results in any of these ROIs. Horizontal lines indicate statistical significance 

(p<0.05, FWER-controlled). Dark gray area marks stimulus presentation window, light gray 

area denotes response window. Error bars represent ± 1 s.e.m.

Extended Data Fig. 7. Effects of decoded uncertainty (or reported confidence) on the BOLD 
response in dAI, dACC and rlPFC, after controlling for confidence (or decoded uncertainty).
Reported confidence (or decoded uncertainty) was linearly regressed on both decoded 

uncertainty (or reported confidence) and the BOLD response at different moments in time 

after stimulus presentation. The residuals of these fits were then used to compute the 

group-averaged correlation coefficient between cortical response amplitude and decoded 

uncertainty (red) or reported confidence (blue). For all ROIs, the results are qualitatively 

similar to the main results reported in Fig. 4 in the main text. Horizontal lines 
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indicate statistical significance (p<0.05, FWER-controlled). Dark gray area marks stimulus 

presentation window, light gray area denotes response window. Error bars represent ± 1 

s.e.m.

Extended Data Fig. 8. Activity in dAI, dACC, and left rlPFC mediates the relationship between 
decoded uncertainty and reported confidence.
To assess the degree to which the cortical activity in these regions mediates the observed 

relationship between decoded uncertainty and reported confidence, we performed the 

following analysis. We first modeled both uncertainty and confidence as a function of the 

overall BOLD signal in a given ROI at each timepoint, and then used the residuals of 

these fits to compute the Spearman correlation coefficient between decoded uncertainty and 

reported confidence when controlled for the BOLD signal. From the resulting correlation 

coefficient, we subtracted the (baseline) correlation coefficient that was obtained while we 

did not control for the BOLD signal (see Fig. 3c). We observed a significant net effect at 

various moments in time, which indicates that there was a reliable reduction in the strength 

of the inverse (negative) correlation coefficient between uncertainty and confidence when 

we controlled for BOLD intensity. This suggests that the level of cortical activity in these 

windows (partially) mediates the relationship between decoded uncertainty and reported 

confidence. Horizontal lines indicate statistical significance (p<0.05, FWER-controlled). 

Dark gray area marks stimulus presentation window, light gray area denotes response 

window. Dashed lines indicate the decoding window used in the main analyses (Fig. 3b-c 

and Extended Data Fig. 2). Error bars represent ± 1 s.e.m.
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Extended Data Fig. 9. Decoding results over time.
Does reported confidence similarly reflect imprecision in the cortical representation when 

the orientation is held in visual working memory? To address this question, the analyses 

of Fig. 3b-c and Extended Data Fig. 2 were repeated over time, using a sliding window 

of size 3 s (2 TRs). We focused on successive intervals from 1.5 s before to 13.5 s 
after stimulus onset (which roughly corresponds to the onset of the response window 

after accounting for hemodynamic delay). Benchmark tests verified that the decoded 

probability distributions reliably predict the orientation of the presented stimulus (a), and 

variability in the observer’s behavioral estimates (b-c) over extended periods of time. Having 

established that the decoded distributions meaningfully reflect the degree of imprecision in 

the cortical representation, we next investigated the extent to which decoded uncertainty 

predicts reported confidence during the retention interval. We found a reliable negative 

relationship between decoded uncertainty and reported confidence that held up well into 

the delay period (d). This is consistent with an imprecise working memory trace in V1-

V3 that influences subjective confidence. Please note, however, that our design does not 

warrant strong conclusions regarding the nature of this representation: due to fMRI’s low 

temporal resolution, it is difficult to say whether these signals are purely perceptual or 

working memory-related (see e.g. 47 , for similar rationale), and later TRs could simply 

reflect the visual presentation of the response bar, rather than memory-based signals. (a-d) 

Data are centered to the middle of the analysis window (of size 2 TRs). Horizontal lines 

indicate statistical significance (p<0.05, FWER-controlled). Dark gray area marks stimulus 
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presentation window, light gray area denotes response window. Dashed lines indicate the 

decoding window used for the main analyses (i.e., Fig. 3b-c and Extended Data Fig. 2). 

Shaded regions represent ± 1 s.e.m. (standard errors in (a) are too small to be visible).

Extended Data Fig. 10. Oblique effect in reported confidence and decoded uncertainty.
Effect of stimulus orientation on reported confidence (a) and decoded uncertainty (b). 

Each participant’s data were first binned based on the absolute distance between presented 

stimulus orientation and the nearest cardinal axis (equal-width bins), and then averaged 

across trials and finally across subjects (error bars represent ± 1 s.e.m). Dashed lines indicate 

best-fitting function (least-squares; quadratic for confidence, linear for decoded uncertainty). 

Functions were fitted on the trial-by-trial data for each participant, and averaged across 

participants.
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Fig. 1. Overview of sources of noise and three observer models.
The observers’ task is to estimate the presented stimulus orientation s from a noisy 

measurement m. Multiple sources of noise affect the perceptual decision-making process. 

The measurements (m) vary from trial to trial due to sensory sources of noise, which can be 

decomposed into stimulus-related (σso 
2) and stimulus-independent (σsi 

2) noise, as well as 

(unexplained) downstream (non-sensory) noise (σ n 
2). The observers compute their stimulus 

estimates ŝ as the mean of the posterior distribution p(s|m). The internal orientation estimate 

is transformed into a behavioral (overt) response r, which is subject to further noise (σr 2). 

The observer also gives their level of confidence in this behavioral estimate. The Bayesian 

observer computes confidence as a function of the expected distance between latent stimulus 

and response, which depends on both the response itself, and the width of the posterior p(s|

m), which incorporates all sources of measurement noise. The Stimulus heuristics observer 

computes confidence as a function of their perceptual orientation estimate (ŝ). The Response 

heuristics observer computes confidence as a function of the distance between internal 

orientation estimate (ŝ) and overt motor response (r). Both Heuristics observers ignore the 

degree of uncertainty in their orientation estimates when computing confidence.
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Fig. 2. Ideal observer predictions.
(a) Relationship between confidence and behavioral variability for a uniform stimulus 

distribution (orientation range: 0-179°). Trials (N = 50,000) were binned into ten equal-size 

bins of increasing confidence. For each bin, the variance of orientation estimation errors 

was computed and plotted against the mean level of confidence in that bin. Lines represent 

best linear fits. (b) Same as (a), but holding the stimulus constant. Confidence values were 

z-scored per observer such that they fall in the same range for all models. (c) Relationship 

between sensory uncertainty and confidence for a uniform stimulus distribution (orientation 

range: 0-179°). For visualization purposes, trials were binned into ten equal-sized bins of 

increasing uncertainty. The mean of both confidence and sensory uncertainty was computed 

across all trials in each bin, and is shown in the plot. Lines represent linear best fits 

computed on single-trial (unbinned) data. (d) Same as (c), but controlled for stimulus 

orientation. (a-d) Insets indicate, for each model, whether there is a relationship between the 
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plotted variables (✓), or not (ø). For ease of exposition, the group mean was added to the 

residuals plotted in these (b, d) and subsequent figures (3a).
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Fig. 3. Reported confidence, behavioral variability, and decoded sensory uncertainty.
(a) Behavioral variability decreases as confidence increases (left panel: t(287) = -16.79, p < 

0.001, r = -0.70, 95% CI = [-0.73, -0.67]); right panel: t(286) = -11.02, p < 0.001, r = -0.55, 

95% CI = [-0.59, -.050]). Shade of blue indicates ten within-observer bins of increasing 

confidence. Dots represent single observers (N = 32). (b-c) Decoded sensory uncertainty 

reliably predicts reported confidence. (b) Example observer (S24; left panel: z = -1.67, p = 

0.047, ρ = -0.078, 95% CI = [-0.17, 0.014]; right panel: z = -1.52, p = 0.064, ρ = -0.071, 

95% CI = [-0.16, 0.021]). Analyses were performed on trial-by-trial data (N = 493); data 
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were binned (ten bins) for visualization only. Error bars represent ± 1 s.e.m. (c) Group 

average (red line; shaded area represents ± 1 s.e.m.), probability density, and individual 

correlation coefficients (Left panel: z = -2.17, p = 0.015, ρ = -0.018, 95% CI = [0.035, 

-0.0018]; right panel: z = -1.53, p = 0.063, ρ = -0.013, 95% CI = [-.030, .0036]). Gray dots 

indicate observers (N = 32), circle denotes S24.
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Fig. 4. Activity in dorsal anterior insula (dAI), dorsal anterior cingulate cortex (dACC), and left 
rostrolateral prefrontal cortex (L rlPFC) over time.
(a) Downstream clusters significantly modulated by uncertainty decoded from visual cortex 

(p<0.05 FWER-controlled) (data were masked to exclude occipital cortex; Supplementary 

Table 1 gives an overview of all activations and see Supplementary Data for whole-brain 

maps). (b) Cortical response in dAI for high versus low decoded uncertainty (top) and 

high versus low reported confidence (bottom), averaged across all observers. Trials were 

binned by a median split per observer. Black arrows indicate the data presented in c and 

d. (c) Example observer S24. The observer’s cortical response tentatively increases with 

decoded uncertainty and decreases with reported confidence. Trials (N = 493) were binned 

(ten bins) for visualization only, correlation coefficients were computed from trial-by-trial 

data. (d) Group average (red/blue line) and correlation coefficients for individual observers 

(gray dots; N = 32). Shown is the relationship between cortical response amplitude and 

decoded uncertainty (top) or reported confidence (bottom). Both effects are statistically 

significant (permutation test; uncertainty: ρ = 0.044, p < 0.001; confidence: ρ = -0.047, p < 

0.001). (e) Group-averaged correlation coefficient between cortical response amplitude and 

decoded uncertainty (red) or reported confidence (blue). Horizontal lines indicate statistical 
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significance (p<0.05, FWER-controlled). Arrows indicate data in d. (b,e) Dark gray area 

marks stimulus presentation window, light gray area represents response window. (b-e) 

Shaded areas and error bars denote ± 1 s.e.m.
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