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Simple Summary: Metastatic urothelial cell carcinoma (UCC) is a significant public health burden
with a median survival estimated at about 15 months. The use of immunotherapy with immune
checkpoint inhibitors has greatly improved outcomes but only benefits a minority (~20%) of patients.
In this review we discuss the evidence showing how a key molecular pathway known as Wnt/β-
catenin signaling can be a driver of immunotherapy resistance and how these insights can serve as
lessons for improving future treatment of urothelial carcinoma.

Abstract: Urothelial cell carcinoma (UCC) is a significant public health burden. It accounts for
approximately 90 percent of all bladder cancers with an estimated 200,000 annual deaths globally.
Platinum based cytotoxic chemotherapy combinations are the current standard of care in the frontline
setting for metastatic UCC. Even with these treatments the median overall survival is estimated to
be about 15 months. Recently, immune checkpoint inhibitors (ICIs) have demonstrated superior
clinical benefits compared to second line chemotherapy in UCC treatment. However only a minority
of patients (~20%) respond to ICIs, which highlights the need to better understand the mechanisms
behind resistance. In this review, we (i) examine the pathophysiology of Wnt/β-catenin signaling,
(ii) discuss pre-clinical evidence that supports the combination of Wnt/β-catenin inhibitors and ICI,
and (iii) propose future combination treatments that could be investigated through clinical trials.
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1. Introduction

Urothelial cell carcinoma (UCC) is the most common malignancy of the urinary system.
It accounts for approximately 90 percent of all bladder cancers with an estimated 200,000
annual deaths globally [1,2]. UCC is also an aggressive histology as 25% of patients who
receive potentially curative treatment for localized disease will unfortunately succumb to
tumor metastasis.

Cytotoxic chemotherapy is the current standard of care in the frontline setting for
metastatic UCC. The median overall survival is estimated to be about 15 months with
modern chemotherapy regimens containing platinum-based agents [3,4]. Once patients
progress on first line chemotherapy treatments the second line chemotherapies have limited
efficacy with median progression-free survival periods of 3–4 months (Figure 1) [5,6].

More recently, immune checkpoint inhibitors (ICIs) have demonstrated superior
clinical benefits compared to second line chemotherapy in UCC treatment [7,8]. However,
only a minority of patients (~20%) respond to ICIs in the treatment of UCCs and other
malignancies [7–9]. It has also been noted that those patients who respond to ICIs can
often maintain an impressive durable response lasting more than 14–15 months [7,8]. This
phenomenon has been observed across numerous cancer subtypes [10], highlighting the
need to better understand the mechanisms behind ICI resistance.
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phenomenon has been observed across numerous cancer subtypes [10], highlighting the 
need to better understand the mechanisms behind ICI resistance. 

Several mechanisms of ICI resistance in cancers have been reviewed extensively else-
where [11,12]. Previously proposed resistance pathways include PTEN, FGF, MYC, TGFB, 
TP53, WNT, VEGF, and ANG2 [11,12]. The majority of studies investigating immunother-
apy resistance mechanisms have been done in non-UCC studies; as a result, the proposals 
in this review extrapolate data derived from both urothelial and non-urothelial studies. In 
this review, we will (i) examine the pathophysiology of Wnt/β-catenin signaling, (ii) dis-
cuss pre-clinical evidence that supports the combination of Wnt/β-catenin inhibitors and 
ICI, and (iii) propose future combination treatments that could be investigated through 
clinical trials. 

 
Figure 1. Current systemic treatments in metastatic urothelial cell carcinoma. 

2. Canonical Wnt Signaling 
Wnt signaling is a highly coordinated and conserved signaling cascade that occurs at 

the cell surface and within the cytoplasm. This pathway mediates an array of biological 
functions, including cell fate decisions during embryonic development, stem cell equi-
poise, and immune system homeostasis [13–16]. Recent reviews published elsewhere pro-
vide a more exhaustive discussion on the β-catenin dependent and independent pathways 
[17–22]. For the purposes of this review (which is most relevant to ICI resistance) we will 
focus primarily on β-catenin-dependent Wnt signaling. 

Canonical, or β-catenin-dependent, Wnt signaling is one of the primary sources of 
dysregulated transcription in cancer. In the “on-state”, the signal cascade begins at the cell 
surface with Wnt ligands binding to the Frizzled:LRP5/LRP6 receptor complexes, and cul-
minates in the nucleus with the formation of a transcription-activating complex [23]. The 
primary mediator of this cell surface-to-nucleus signal is β-catenin, a membrane/cytoplas-
mic armadillo repeat protein which lacks the ability to independently promote DNA tran-
scription [17,20,24]. Instead, β-catenin is trafficked into the nucleus to DNA-binding T-cell 
factor (TCF)/lymphoid enhancer binding factor (LEF) transcription factors [24,25]. 

Once bound to DNA by TCF/LEFs, β-catenin recruits other co-activators and regula-
tory components that collectively activate transcription of the downstream genes known as 
the Wnt target genes. These sets of Wnt target genes drive cells to proliferate, self-renew, 
differentiate and survive in a variety of tissues and contexts. In normal cells, feedback inhi-
bition results in this activity occurring only transiently, which in turn prevents overactiva-
tion of Wnt target gene transcription. Signal transduction is thus “turned off” in cells with 
low or absent Wnt because β-catenin becomes unstable by being tagged in the cytoplasm 
for ubiquitination by the destruction complex, which then leads to proteasome degradation. 

Figure 1. Current systemic treatments in metastatic urothelial cell carcinoma.

Several mechanisms of ICI resistance in cancers have been reviewed extensively else-
where [11,12]. Previously proposed resistance pathways include PTEN, FGF, MYC, TGFB,
TP53, WNT, VEGF, and ANG2 [11,12]. The majority of studies investigating immunother-
apy resistance mechanisms have been done in non-UCC studies; as a result, the proposals
in this review extrapolate data derived from both urothelial and non-urothelial studies.
In this review, we will (i) examine the pathophysiology of Wnt/β-catenin signaling, (ii)
discuss pre-clinical evidence that supports the combination of Wnt/β-catenin inhibitors
and ICI, and (iii) propose future combination treatments that could be investigated through
clinical trials.

2. Canonical Wnt Signaling

Wnt signaling is a highly coordinated and conserved signaling cascade that occurs
at the cell surface and within the cytoplasm. This pathway mediates an array of bi-
ological functions, including cell fate decisions during embryonic development, stem
cell equipoise, and immune system homeostasis [13–16]. Recent reviews published else-
where provide a more exhaustive discussion on the β-catenin dependent and independent
pathways [17–22]. For the purposes of this review (which is most relevant to ICI resistance)
we will focus primarily on β-catenin-dependent Wnt signaling.

Canonical, or β-catenin-dependent, Wnt signaling is one of the primary sources
of dysregulated transcription in cancer. In the “on-state”, the signal cascade begins
at the cell surface with Wnt ligands binding to the Frizzled:LRP5/LRP6 receptor com-
plexes, and culminates in the nucleus with the formation of a transcription-activating
complex [23]. The primary mediator of this cell surface-to-nucleus signal is β-catenin, a
membrane/cytoplasmic armadillo repeat protein which lacks the ability to independently
promote DNA transcription [17,20,24]. Instead, β-catenin is trafficked into the nucleus to
DNA-binding T-cell factor (TCF)/lymphoid enhancer binding factor (LEF) transcription
factors [24,25].

Once bound to DNA by TCF/LEFs, β-catenin recruits other co-activators and regula-
tory components that collectively activate transcription of the downstream genes known
as the Wnt target genes. These sets of Wnt target genes drive cells to proliferate, self-renew,
differentiate and survive in a variety of tissues and contexts. In normal cells, feedback
inhibition results in this activity occurring only transiently, which in turn prevents overacti-
vation of Wnt target gene transcription. Signal transduction is thus “turned off” in cells with
low or absent Wnt because β-catenin becomes unstable by being tagged in the cytoplasm
for ubiquitination by the destruction complex, which then leads to proteasome degradation.

However, in various cancers (i.e., colon cancer) mutations in the destruction complex
components (e.g., APC, AXIN2 and FAM123B/WTX) or regulators of the receptors/ligand
(e.g., RNF43/ZNRF3, RSPO2, or RSPO3) components can lead to unchecked Wnt signaling.
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These mutations negate the cytoplasmic feedback controls and create cells with constitutive,
high levels of β-catenin and aberrantly high levels of Wnt target gene transcription that
can initiate carcinogenesis and immune suppression [20,26–29].

3. Upregulation of Wnt/β-Catenin in Bladder Carcinogenesis

Several correlative studies have shown conflicting evidence between upregulation
of Wnt/β-catenin signaling and UCC carcinogenesis [30–34]. For instance, The Cancer
Genome Atlas (TCGA) Research Network detected Wnt signaling alterations in 73% of UCC
tumors [35]. However, Ahmad et al. noted Wnt signaling in only 33% of their clinical UCC
samples [36–38]. The discrepancy could most likely be due to comparisons using different
methods and patient populations. For example, one Ahmad et al. study used a tissue
microarray array with core biopsy samples, whereas a TCGA study detected aberrations
in Wnt signaling through genomics using RNA-seq and whole exome sequencing [35–38].
Also there was a difference in sample size with TCGA and Ahmad et al. studies using
131 and 60 patient samples respectively [35–38]. Additionally it was noted that β-catenin
expression’s correlation to tumor grade and muscle invasion has been inconsistent [39].
Despite these discrepancies between studies, it is evident that a substantial proportion of
UCC develops in the context of Wnt signaling aberrations.

From a pathophysiologic perspective, numerous pre-clinical studies have implicated
the silencing of endogenous Wnt inhibitors as potential oncogenic events. CpG hyperme-
thylation of the WIF1 (Wnt inhibitory factor-1) promoter was found to lead to decreased
transcription and increased Wnt signaling activity in human bladder cancer cell lines [40].
Knockdown of WIF1 by siRNA in bladder cancer cell lines led to increased activity in c-myc
and cyclin D1 mRNA transcription and increased cell growth [40]. These results suggested
that Wnt signaling via WIF1 could potentially promote development of UCC [40]. Another
proposed mechanism involves aberrations in the oncogene activation-induced cytidine
deaminase, which upregulates the Wnt/β-catenin pathway and thereby promotes UCC
growth [41]. More studies are needed to better understand how Wnt signaling can drive
urothelial carcinogenesis.

4. Wnt/β-Catenin Induces Immune Cell Exclusion in Urothelial Cancer

Due to the limited efficacy of ICI treatments, much effort is being dedicated to devel-
oping predictive biomarkers of response and understanding the biological mechanisms
for resistance. One widely established predictive biomarker for ICI response is intratu-
moral enrichment of CD8+ T-cells prior to treatment [42,43]. Therefore, many studies have
used the presence and quantity of CD8+ T-cell infiltration as a surrogate marker when
performing correlative studies to determine if other molecular pathways may be involved
in predicting the ICI response.

A recent study by Sweis et al. used a bioinformatics approach to correlate CD8+ T-cell
infiltration with various signaling pathways [44]. The investigators analyzed the whole
exome sequencing (WES) and RNA-seq transcriptional profile data from the 267 samples
of urothelial bladder cancer collected for the TCGA study. The investigators stratified
these tumors based on a 160-gene T-cell inflamed expression signature indicative of a
T-cell inflamed and non-inflamed microenvironment. This T-cell inflamed gene signature
was then validated by performing immunohistochemistry (IHC) staining for CD8+ T-cell
infiltration on a sample of 19 tumors (7.1%).

Once stratified into inflamed vs. non-inflamed phenotypes, the investigators un-
covered that 730 genes were preferentially expressed in the non-T-cell-inflamed tumors.
Ingenuity pathway analysis then showed that one of the top upstream regulators for these
groups of differentially expressed genes were those that were regulated by β-catenin/Wnt
signaling. The authors then went back to the 19 samples which they had initially per-
formed CD8+ T-cell IHC staining and co-stained for nuclear β-catenin as a marker for
active β-catenin dependent Wnt signaling. The investigators found a statistically significant
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inverse relationship between nuclear β-catenin and the density of CD8+ T cells infiltrating
the tumor.

To further validate the Wnt signaling pathway as a mediator of non-T-cell-inflamed
tumor microenvironments, a follow up study done by Luke et al. employed a similar ap-
proach (WES genomics and RNA-seq transcriptional profiling) and analyzed 9244 samples
across 31 different types of cancers [45]. The investigators used their previously devel-
oped 160-gene T-cell inflamed expression signature to segregate the samples into T-cell
inflamed, intermediate, or non-T-cell inflamed. The investigators defined Wnt/β-catenin
signaling activation at three different levels: assessment of somatic mutations or copy
number alterations in CTNNB1 (gene for β-catenin) and other regulatory genes predicted
to result in pathway activation, expression of downstream Wnt target genes, and β-catenin
protein levels which were assessed through reverse phase protein array (RPPA). With
respect to the 363 UCC samples included in this cohort, all three levels correlated with a
non-T-cell inflamed tumor signature, the most pronounced of which was CTNNB1 protein
level. Taken together, these findings suggest that there is a significant correlation between
upregulation of Wnt signaling and a non-T-cell-inflamed microenvironment in UCC.

5. ICI Attenuation via CCL4

As previously discussed, translational studies have suggested that Wnt/β-catenin
signaling may induce a non-T-cell-inflamed tumor phenotype thereby excluding immune
cells from the tumor microenvironment and dampening the therapeutic effect of ICIs.
To elucidate molecular mediators, the Gajewski group used a genetically engineered
melanoma mouse model with active β-catenin signaling (BRAF/PTEN/CAT-STA) in the
tumors [46].

In their mouse model, the authors found that β-catenin signaling activation was
associated with low levels of tumor infiltrating CD8+ T-cells. Conversely, mice in which
β-catenin signaling was absent contained a high density of CD8+ T-cell infiltration. In
order to discern if this was due to differences in neo-antigens, the authors introduced a neo-
antigen (SIY) expressing construct genetically into the tumors and adoptively transferred
T-cells with SIY T cell receptor. They found that the transferred T-cells accumulated in the
BRAF/PTEN-STA tumors but not the β-catenin expressing BRAF/PTEN/Bcat-STA tumors
despite both tumors now expressing the neo-antigen. Furthermore, anti-PD-1 and anti-
CTLA-4 agents were rendered ineffective in the Wnt-activated (BRAF/PTEN/Bcat-STA)
mice but remained effective in Wnt-inactivated (BRAF/PTEN-STA) mice. These results
suggested that upregulation of Wnt/β-catenin may indeed induce resistance to immune
checkpoint inhibition.

The investigators then queried whether this blunted response to ICIs could be depen-
dent on antigen presentation from CD103+ dendritic cells (DC). Within Wnt/β-catenin-
activated T-cell-depleted tumors, they found that CD103+ DCs were nearly absent and
IFN-β cytokine expression was reduced. The investigators then found that intratumoral
injection of CD103+ DCs led to restoration of T-cells infiltration within the tumor. This
supported the role of CD103+ dendritic cells as key mediators of an antitumor immune
response. To characterize the mechanism of failed recruitment of the CD103+ DCs, the
investigators analyzed the gene expression of these two tumor types and found that four
chemokines (CCL3, CXCL1, CXCL2, and CCL4) were lower in the non-T-cell inflamed
BRAF/PTEN/Bcat-STA tumors. Of these four chemokines, only CCL4 was found on an
in vitro DC migration assay to possess the ability to effectively modulate cell migration.

Furthermore, the investigators found that the Wnt signaling target gene ATF3–which
also binds at the promoter region of the CCL4 gene—was expressed at higher levels in the
β-catenin activated melanoma tumors. This negative feedback was substantiated by then
demonstrating that gene knockdown of ATF3 and CTNNB1 in melanoma cell lines led to
upregulation of CCL4 expression (Figure 2).
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Figure 2. Wnt/β-catenin signaling can alter T-cell infiltration status and ICI response via CCL4. (Created with BioRender®). 
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in the TME leading to a protumoral phenotype which may be ICI resistant [50,51]. In a study 
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mal transition [50]. These results suggested that the increased Wnt/β-catenin signaling from 
the TAMs could induce snail gene expression and drive a tumor mesenchymal transition 
phenotype [50]. Of note this nail driven tumor mesenchymal transition has recently been 
reported to be a possible mechanism for ICI resistance [50–52]. 
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6. Wnt/β-Catenin Signaling Induces Immune Cell Exclusion by Affecting the Tumor
Microenvironment (TME)

Tumor-associated macrophages (TAMs) are amongst the most common tumor immune
infiltrating cells in the tumor microenvironment (TME) [47]. TAMs are classically thought
to exist in two polarized states with the activated M1 and M2 subtypes [47]. The M1
subtypes are thought to play a significant role in the anti-tumor immune response by
producing reactive oxygen species (ROS) and pro-inflammatory cytokines [47]. The M2
subtype has been found to have an opposite immunosuppressive function by producing
anti-inflammatory cytokines (i.e., IL1, IL-13, and TGF-β) which can promote tumor growth
and ICI resistance [47]. These anti-inflammatory cytokines and chemokines can also induce
the production of regulatory T-cells which directly inhibit cytotoxic T cells further driving
immunosuppression [47–49].

It has been shown that Wnt/β-catenin signaling can modulate the TAMs population
in the TME leading to a protumoral phenotype which may be ICI resistant [50,51]. In a
study done by Kaler et al. using isogenic colon cancer cell lines (HCT116 and Hke-3 cells)
with mutated active β-catenin, the investigators found that TAMs could further enhance
the pre-existing Wnt/β-catenin signaling present and protect the cancer cells from TRAIL-
induced apoptosis [50]. In contrast, when HCT116 cancer cells with an inactive β-catenin
allele were cultured with TAMs, the investigators noted that these cells were susceptible
to TRAIL induced apoptosis and were unable to increase their Wnt/β-catenin signaling
levels [50]. The investigators also found that the isogenic colon cancer cell lines (HCT116
and Hke-3 cells) with mutated active β-catenin when cultured with TAMs would produce
more snail protein, which is a known Wnt/β-catenin signaling target gene and driver of
tumor mesenchymal transition [50]. These results suggested that the increased Wnt/β-
catenin signaling from the TAMs could induce snail gene expression and drive a tumor
mesenchymal transition phenotype [50]. Of note this nail driven tumor mesenchymal
transition has recently been reported to be a possible mechanism for ICI resistance [50–52].

Another potential mechanism for ICI resistance is through the tumor’s ability to
create a hostile TME that is acidic from increased lactic acid production which can lead to
impaired cytotoxic T-cell function [53–55]. A detailed discussion on how tumors create
a hostile hypoxic and acidic TME which leads to suppression of the T-cells’ cytotoxic
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function is beyond the scope of this manuscript. For a more comprehensive review on
this topic there are many excellent reviews which can be found in the reference section of
this manuscript [53,56,57]. Briefly, the oncogenic mutations that drive carcinogenesis (i.e.,
Akt/PI3k/mTOR and Wnt/β-catenin signaling) have also been shown to drive a metabolic
reprogramming of cells from oxidative phosphorylation towards aerobic glycolysis [56,58].
This phenomenon wherein cancer cells prefer to undergo the more inefficient aerobic
glycolysis even in the presence of oxygen has been known for almost 100 years since it was
first described by Dr. Otto Heinrich Warburg [57,59]. It is thought that cancer cells have
evolved this shift towards aerobic glycolysis as a way to produce metabolic byproducts
which can then be converted to provide the needed biomass to use as building blocks for
its rapid cell proliferation [56,57]. As the tumor grows larger in size its metabolic demands
also increase in an unregulated manner which often outstrips the local oxygen and nutrient
supply [53,56]. This imbalance in metabolic demand and available supply of local resources
creates a hostile TME that is hypoxic, acidic (due to lactic acid build up), and nutrient
deficient [53,56]. In addition, to the existing overactive oncogenic signaling pathways
present in the cancer cells (i.e., Akt/PI3k/mTOR and Wnt/β-catenin signaling) these hostile
TME conditions will further drive the tumors to adapt by increasing angiogenesis and
glycolysis via the VEGF and HIF signaling pathways [53,56]. These same acidic and hypoxic
TME conditions will then inhibit the oxidative phosphorylation that is needed by T-cells in
order to perform their cytotoxic functions potentially leading to immunosuppression and
ICI resistance [53]. In fact it has been shown that high lactate concentrations in the TME
can impede the CD8+ T-cells ability to export lactate and suppress their natural cytotoxic
function [60].

As discussed above, the Wnt/β-catenin signaling pathway was found to initially play
a central role in carcinogenesis by driving cell proliferation [20]. More recently, it has also
been found to play an additional role in cancer metabolism by metabolically reprogram-
ming cancer cells to promote aerobic glycolysis and lactic acid production [58,61–63]. In
a study done by Pate et al. the investigators found that by using genetically engineered
human colon cancer cell lines that overactive Wnt/β-catenin signaling drives aerobic
glycolysis and lactic acid production by upregulating the genes pyruvate dehydrogenase
kinase 1 (PDK1) and monocarboxylate transporter 1 (MCT1/SLC16A1) [58,61]. They also
found that when this metabolic shift towards glycolysis occurred that there was also a
corresponding inhibition in the gene expression of pyruvate dehydrogenase (PDH) and
oxidative phosphorylation [58,61]. Other independent studies have also provided further
supporting evidence that Wnt/β-catenin signaling can drive the metabolic reprogramming
of cancer cells towards lactic acid production and aerobic glycolysis [62,63].

It has also been shown that the lactic acid in the TME can play a role in immuno-
suppression and drive further tumor growth [53,54,64]. In a study done by Brand et al.
the investigators found that patients who had melanoma tumors with increased LDHA
gene expression and lactic acid levels were more likely to have findings of impaired T
and NK cell infiltration consistent with an immunosuppressed or immune deficient tumor
phenotype [54]. The investigators then used shRNA to create LDHlow murine melanoma
and pancreatic cancer cell lines [54]. Through the use of various clever control experiments
the investigators showed that knockdown of the LDHA gene resulted in a stable tumor cell
phenotype that produced low levels of lactate with no effects on the other metabolic path-
ways analyzed [54]. They then proceeded to inject these murine melanoma and pancreatic
cells lines which were either LDHhigh or LDHlow into syngeneic mice [54]. They found
that the LDHlow had impaired tumor growth and higher T-cell and NK cell infiltration
compared to the LDHhigh tumors [54]. These findings suggested that the acidic TME
created by uncontrolled lactate production led to impaired immunosurveillance and T-cell
and NK cell infiltration leading to an immune deficient TME [54]. In another independent
study done by Harel et al. the investigators found that increased oxidative phosphorylation
and lipid metabolism in melanoma tumors by proteomic analysis were more likely to have
potentiated antigen presentation and response to anti-PD1 immune checkpoint inhibitor
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or TIL-based immunotherapy [64]. The investigators of the Harel et al. study concluded
that the tumors with increased oxidative phosphorylation were undergoing less glycolysis,
secreting less lactate, and creating a more favorable TME for immune cells [64].

The above studies provide evidence supporting the hypothesis that the presence of
lactic acid in the TME can be immunosuppressive by inhibiting the needed oxidative
phosphorylation of cytotoxic T-cells. As a result, this has led to the proposal that targeting
lactic acid production could be a potential way to overcome ICI resistance [55]. In sum-
mary, the above findings provide evidence that Wnt/β-catenin signaling can drive ICI
resistance by modulating the TME through the interaction with TAMs or driving lactic
acid production and creating a local immunosuppressive environment for cytotoxic T-cells
(Figure 3) [50,53–58,61,64].
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7. Overcoming ICI Resistance with β-Catenin Inhibition

The above mentioned studies provide strong evidence that the Wnt/β-catenin sig-
naling pathway drives immune cell exclusion which can then lead to immune checkpoint
inhibitor resistance in cancer treatment [44,45,65]. As a result, one could reason that com-
bining a Wnt/β-catenin signaling inhibitor and ICI may lead to overcoming this resistance
mechanism (Figure 4).

Early therapeutic efforts primarily centered on finding targets for Wnt inhibition
[23,66–68]. However, one of the major hurdles that researchers encountered was develop-
ing a molecule small enough to penetrate the nuclear membranes yet robust enough to
counteract the large β-catenin regulatory complex [23,68,69]. Another challenging adverse
class effect was on-target bone toxicity, which ultimately led to the early termination of
several Phase I studies [23,68,70–72].

https://app.biorender.com/biorender-templates
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More recently, several studies have shifted focus toward downstream inhibition of
the intranuclear transcriptional β-catenin complex to enhance immune cell infiltration
within the tumor microenvironment. For instance, Ganesh et al. designed a β-catenin
inhibitor (DCR-BCAT) that selectively silenced CTNNB1 (the gene which transcribes/β-
catenin) in tumors using an RNAi oligonucleotide [73]. Using allografted B16F10 mouse
melanoma cells on immunocompetent C57BL/6 mice, which are known to be refractory to
ICI treatments through T-cell exclusion [73], Ganesh et al. found that treatment with DCR-
BCAT significantly increased the intratumoral density of CD8+ T-cells compared to the
placebo control. Quantitative analysis of tumor RNA detected a decrease in β-catenin gene
expression as well as a concomitant increase in CCL4 expression. Furthermore, single-cell
flow cytometry of the DCR-BCAT mouse tumors showed a significant increase in CD8+,
CD3+, CD103+, and PD-1 positive cells, suggesting that these tumors were transitioning to
a T-cell-inflamed phenotype.

Encouraged by these results, the investigators subsequently examined if their β-
catenin inhibitor could reconstitute an immune response within their T-cell-excluded
tumor model. Although monotherapy with either the DCR-BCAT or an ICI was minimally
effective, the combination of DCR-BCAT plus ICI elicited a synergistic effect with reduc-
tions in tumor size by as much as 87% [73]. Moreover, the authors confirmed that this
combination was effective in another model, the Neuro2A (neuroblastoma) cell lines, which
are also non-T-cell-inflamed at baseline [73]. These findings suggest that a β-catenin in-
hibitor can effectively downregulate Wnt/β-catenin signaling and induce a T-cell-inflamed
phenotype that can potentiate a response to immune checkpoint inhibitors [73].
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8. Ongoing Clinical Trials and Future Directions

In recent years, several novel agents with varied mechanisms of action have attempted
to mitigate the immunosuppressive tumor microenvironment through WNT/β-catenin
inhibition (Figure 5, Table 1). One such therapeutic effort in development is DKN-01, an an-
tibody that antagonizes the WNT/β-catenin pathway through inhibition of DKK1 [74]. Pre-
liminary results from a Phase 1b/2a study of DKN-01 plus pembrolizumab (NCT02013154)
demonstrated a disease control rate of 80% in patients who had tumors with high DKK1
expression as compared to a disease control rate of 20% in patients with low DKK1 expres-
sion [74].
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Table 1. Current clinical trials combining Wnt inhibitor and immune checkpoint inhibitor.

Drug ICI Agent Mechanism of Action
of Wnt Inhibitor Disease Clinical

Trial Trial Phase

LGK974 PDR001 (anti-PD-1) PORCN inhibitor Solid tumors NCT01351103 Phase I
ETC-1922159 pembrolizumab (anti-PD-1) PORCN inhibitor Solid tumors NCT02521844 Phase IA/B

CGX1321 pembrolizumab (anti-PD-1) PORCN inhibitor Advanced GI Tumors NCT02675946 Phase I/Ib
DKN-01 nivolumab (anti-PD-1) DKK1 inhibitor Advanced Biliary Tract Cancer NCT04057365 Phase II

DKN-01 ±
chemotherapy tislelizumab (anti-PD-1) DKK1 inhibitor Advanced Esophagogastric Cancer NCT04363801 Phase IIa

DKN-01 pembrolizumab (anti-PD-1) DKK1 inhibitor Advanced Esophagogastric Cancer NCT02013154 Phase I

Another class of WNT/β-catenin inhibitors disrupt PORCN, an enzyme that facilitates
WNT secretion [75]. A recent Phase I study of the PORCN inhibitor WNT974 combined with
the PD-1 monoclonal antibody spartalizumab (NCT01351103) reported impressive results
across several solid tumors, including stable disease in 53% of patients who were previously
refractory to ICIs [76]. Of note, neither one of these trials included urothelial carcinoma
and focused on other malignancies such as GI cancers, melanoma, and NSCLC. However,
seeing how the combination of ICIs with WNT/β-catenin inhibitors has produced some
signal of efficacy even in the early phase clinical trials, this combination warrants further
investigation for the treatment of UCC.

https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates


Cancers 2021, 13, 889 10 of 13

9. Conclusions

In summary, WNT/β-catenin signaling can drive immune cell exclusion and may
be a resistance mechanism for immune checkpoint inhibitors. Several preclinical studies
have shown that inhibition of the WNT/β-catenin pathway in conjunction with an ICI can
effectively overcome this resistance mechanism. With respect to UCC, this combination
is particularly promising given the high frequency of WNT/β-catenin aberrations in
correlative studies as well as its potential role in upregulating urothelial oncogenesis. Thus,
to complement ongoing clinical trials across other solid tumors, additional studies that
validate the synergistic relationship of ICIs and WNT/β-catenin inhibitors in UCC are
urgently needed.
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