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Phenotypic heterogeneity has been observed in most malignancies, which represents

a considerable challenge for tumor therapy. In recent decades, the biological function

and clinical significance of the human leukocyte antigen (HLA)-G have been intensively

explored. It is now widely accepted that HLA-G is a critical marker of immunotolerance

in cancer cell immune evasion and is strongly associated with disease progress

and prognosis for cancer patients. Moreover, it has recently been emphasized that

the signaling pathway linking HLA-G and immunoglobulin-like transcripts (ILTs) is

considered an immune checkpoint. In addition, HLA-G itself can generate at least seven

distinct isoforms, and intertumor and intratumor heterogeneity of HLA-G expression is

common across different tumor types. Furthermore, HLA-G heterogeneity in cancers

has been related to disease stage and outcomes, metastatic status and response to

different therapies. This review focuses on the heterogeneity of HLA-G expression in

malignant lesions, and clinical implications of this heterogeneity that might be relevant to

personalized treatments are also discussed.
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INTRODUCTION

Cancer is a very complex and heterogeneous disease that involves a broad range of mixed cells
with distinct features. Tumor cells not only vary in morphology and phenotype but also, in
genomes, transcriptomes, epigenomes and proteomes (1). Diversity among tumor cells termed
heterogeneity can be observed between tumor cells within a tumor (intratumor heterogeneity).
However, tumor heterogeneity is also common between the primary tumor and metastatic tumors,
betweenmetastases from the same patient, and between tumors of the same histotype from different
patients (intertumor heterogeneity) (2). Tumor heterogeneity is now widely acknowledged to
influence tumor cell characteristics such as growth, survival, metastasis and response to various
therapies and immune evasion. Consequently, tumor heterogeneity presents a formidable obstacle
in cancer treatment (3).

Human leukocyte antigen (HLA)-G, a non-classical HLA class I molecule, encompasses at
least four membrane-bound (mHLA-G, HLA-G1∼HLA-G4) and three soluble (sHLA-G, HLA-
G5∼HLA-G7) isoforms resulting from alternative splicing of in its primary mRNA. HLA-G
expression was initially observed in extravillous cytotrophoblasts and is considered to play
important roles in maintenance of fetal-maternal immune tolerance (4, 5). In addition to
extravillous cytotrophoblasts, HLA-G expression is restricted to a few healthy adult tissues,
including the cornea, thymic medulla and pancreatic islets (6–8). However, HLA-G expression
can be switched on in various pathological conditions such as cancers, viral infection, organ
transplantation, and autoimmune and inflammatory diseases (9).
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Though the functions of HLA-G were first explored in
reproductive immune regulation, its pre-clinical significance in
tumor biology has been intensively investigated (10). In the
context of tumor biology, Paul et al. (11) first reported that HLA-
G expression was specifically observed in melanoma lesions but,
absent in the adjacent non-tumorous tissues. This finding has
been solidified by numerous subsequent studies with thousands
of samples from more than thirty different types of tumors. It is
now well established that HLA-G expression in cancers is highly
related to immune suppressive microenvironments, advanced
tumor stage, and poor therapeutic responses and prognosis (12,
13).

In the context of heterogeneity of HLA-G expression in
cancers, the degree of HLA-G expression and the isoform
profiles vary dramatically among tumor types and patients,
within tumors of the same type, and between the primary tumor
and metastases (10). In clinical settings, the relevance of HLA-
G heterogeneity in therapeutic and immune responses, tumor
progression and prognosis has been documented in a body of
previous studies (14, 15). Herein, we reviewed the literature on
HLA-G heterogeneity in cancers, and the clinical implications
of this heterogeneity that might be relevant to personalized
treatments were also discussed.

DIVERSITY OF THE HLA-G ISOFORMS

Unlike the case for classical HLA class I counterparts, at least
seven HLA-G isoforms, including four membrane-bound (HLA-
G1, -G2, -G3, and -G4) and three soluble (HLA-G5, -G6,
and -G7) isoforms, can be generated by alternative splicing of
HLA-G primary transcripts (16). Moreover, proteolytic cleavage
of cell surface HLA-G1 by metalloproteinases (MMPs) such
as MMP-2 results in another soluble isoform called shedding
HLA-G1 (17). Different HLA-G isoforms are distinguished by
the number of extracellular immunoglobulin-like domains and
whether intronic sequence encoded residues are included or
not; however, all seven reported HLA-G isoforms have the
extracellular α1 domain (18). The conformation of HLA-G1 and
-G5 is similar to that of the classical HLA class I antigens, which
contain three extracellular domains including α1, α2, and α3
non-covalently bound to β2-macroglobulin (β2m). The antigen
presenting peptide-binding cleft is formed by the α1 and α2
domains in HLA-G1 and HLA-G5 molecules (19).

Other HLA-G isoforms lack one or two extracellular domains
(α2, or α3, or both) and are smaller than HLA-G1. The
extracellular structure of HLA-G2 contains α1 and α3 domains
but lacks the α 2 domain; HLA-G3 contains only an α1 domain,
and both α 2 and α 3 are deleted; HLA-G4 contains α1 and
α2 domains, while the α 3 domain is deleted. The C terminals
of soluble HLA-G isoforms including HLA-G5 (counterpart of
HLA-G1) and HLA-G6 (counterpart of HLA-G2) are encoded
by intron 4. HLA-G7 consists of only an α1 domain linked to
two amino acid residues encoded by intron 2 (10). Notably,
a study by Tronik-Le Roux et al. (20) recently reported that
previously undescribed novel HLA-G isoforms were predicted
by transcriptome analysis in renal cancer lesions. However,

more efforts should be carried out in the development of new
antibodies to identify these new isoforms and in evaluating their
biological functions and clinical relevance (Figure 1).

Among the HLA-G isoforms reported to date, HLA-G1 and
HLA-G5 have been studied more extensively than the others due
to the available antibodies (12). However, available antibodies for
HLA-G detection have a limited ability to discriminate different
isoforms, which has made it difficult to test the functional
importance of a specific isoform. Currently available antibodies
for HLA-G detection and their specificities are detailed in
Supplementary Table 1.

In addition to the different isoforms, the structure of HLA-
G is even more complex, since these isoforms can be presented
as homo- and hetero-multimers resulting from intermolecular
disulphide bonds by Cys42 or Cys147 in the α1 or α2
domain, respectively. Furthermore, HLA-G molecules can be
ubiquitinated, glycosylated and nitrated by post-translational
modifications (21–23). Finally, HLA-G has been reported as a
part of exosomes (24).

HLA-G-MEDIATED IMMUNE
SUPPRESSION

HLA-G has comprehensive suppressive functions exerted in
multiple steps to impair anti-tumor immune responses by
interacting with receptors expressed on immune cells. To date,
several receptors for HLA-G have been identified, such as
CD85j/immunoglobulin-like transcript 2 (ILT2), CD85d/ILT4,
and CD158d/killer cell immunoglobulin-like receptor 2DL4
(KIR2DL4). Moreover, CD8 and CD160 have also been reported
to bind HLA-G (25). Among these receptors, ILT2 is present on
all monocytes and B lymphocytes, and on subsets of dendritic
cells (DCs), myeloid derived suppressive cells (MDSCs), natural-
killer (NK) cells and T cells (26). ILT4 is mainly expressed on
DCs and monocytes, neutrophils and MDSCs (27–29); KIR2DL4
has been found predominately in decidual NK cells (30). Other
receptors such as CD160 are expressed by subsets of CD8+,
CD4+, Tγ/δ and CD56dim NK cells, and by activated endothelial
cells and intestinal intraepithelial cells. CD8 is a hallmark of
cytotoxic T cells and is also expressed by some NK cells (26).

The mechanisms involved in HLA-G/receptor (particularly
ILT2 and ILT4) mediated immune suppression have been
documented in previous studies and include impairment of
immune cell proliferation, differentiation, cytotoxicity, cytokine
secretion and chemotaxis; and induction of regulatory cells
and MDSCs or M2 type macrophages (31–33) (Figure 2). ILT2
and ILT4 have four tandem immunoglobulin-like extracellular
domains (D1∼D4), a transmembrane region of 23 amino acids
and three immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) in their cytoplasmic tails (34). The extracellular domains
(D1∼D2) of ILTs bind to the α3 domain in the HLA I molecule.
Among HLA I family members, HLA-G binds ILTs with the
highest affinity. Structural analysis showed that ILT4 could
recognize both HLA-G associated with β2m and free HLA-G
heavy chains, whereas ILT2 only recognized HLA-G associated
with β2m. The HLA-G binding affinities of the ILT2 and ILT4 are
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FIGURE 1 | Different HLA-G isoforms generated by alternative splicing of HLA-G mRNA. (A) Seven identified HLA-G isoforms including four membrane-bound

(HLA-G1, -G2, -G3, -G4) and three soluble (HLA-G5, -G6, -G7) molecules. The extracellular structures of HLA-G1 and HLA-G5 contain α1, α2, and α3 domains;

HLA-G2 and HLA-G6 contain α1 and α3 domains; HLA-G3 contains α1 domains; HLA-G4 contains α1 and α2 domains; HLA-G7 contains an α1 domain linked to two

amino acids encoded by intron 2. (B) Novel HLA-G isoforms predicted by Tronik-Le Roux et al. (20)*. N-terminal ends including the additional five amino acids

(NKTPR) in HLA-G1L, and potential isoforms contain α2 and α3 domains or only the α3 domain. Novel soluble HLA-G isoforms generated by skipping exons 5 and 6,

and with distinct C-terminal ends.

also different; ILT4 binds HLA-G with higher affinity than ILT2
due to the different recognition specificities. Previous studies
revealed that residues Tyr36 and Arg38 in ILT4 recognize the
195–197 loop, whereas the Tyr38 and Tyr76 locations of ILT2
bind Phe195 in the α3 domain of the HLA-G molecule (35).
Interaction of HLA-G with ILTs is a critical step for HLA-
G-mediated immune regulation. This HLA-G/ILTs interaction
causes phosphorylation of ITIMs and recruits protein tyrosine
phosphatase Src homology 2 (SH2) domain-containing proteins

such as SHP-1 and SHP-2, which initiates the inhibitory signaling
cascade (36, 37).

Moreover, it has also been reported that HLA-G can up-
regulate tumor-promoting agents such as MMPs (38). Because of
these functions, neoexpression of theHLA-Gmolecule on tumors
favors carcinogenesis and tumor progression. Fortunately, HLA-
G down-regulation with RNA interference or antibody blockade
can recover the functions of immune effectors and prevent tumor
reoccurrence, raising the possibility that HLA-G/ILTs interaction
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FIGURE 2 | Mechanisms of both membrane-bound and soluble HLA-G-mediated immune suppression in tumor immune evasion. (A) Dynamic transferring of HLA-G

by trogocytosis (membrane-bound HLA-G) and/or extracellular vesicles (EVs, both membrane-bound and soluble HLA-G) between HLA-G+ and HLA-G− tumor cells.

(B) Direct HLA-G-mediated immunosuppressive effects through engagement of inhibitory receptors (ILT2 and/or ILT4) expressed by immune cells such as T cells, NK

cells, B cells, macrophages and neutrophils. (C) Indirect HLA-G-mediated immunosuppressive effects by induction of immune suppressive or regulatory cells such as

tolerogenic DCs and MDSCs, which induce (D) CD4+/CD8+ T cells to become regulatory T cells (Tregs). (E) Immune effectors such as NK cells and T cells efficiently

act as suppressor cells when they acquire HLA-G from HLA-G+ tumor cells or HLA-G+ immune cells via the process of trogocytosis and/or EVs.

blockade could be a potential immuno-therapeutic strategy for
cancer treatment (32, 39, 40).

Direct HLA-G-Mediated Immune
Suppression Through Inhibitory Receptor
Engagement
Direct immunosuppressive effects induced by HLA-G could
occur through the engagement of inhibitory receptors expressed
by various immune cells such as NK cells, T cells, B cells,
neutrophils, macrophages, and DCs.

By interaction with the receptor ILT2, HLA-G could directly
inhibit the immune function of NK cells, T cells and B cells.
Inhibition of NK cell lysis against targets by HLA-G expression
has been observed for isolated decidual NK cells, peripheral
blood and NK cell lines (41, 42). HLA-G expression was also
found to inhibit xenogeneic cytotoxicity and rolling adhesion
of activated human NK cells to porcine endothelial cells (43,
44). Furthermore, HLA-G/ILT2 mediated inhibitory signals have
been shown to mitigate major histocompatibility complex class
I-related chain A (MICA)/ natural-killer group 2 member D
(NKG2D)-induced activation (45). Our previous studies revealed
that both the HLA-G1 and HLA-G5 isoforms could suppress NK
cell cytolysis in a manner dependent on the HLA-G expression,

and HLA-G1 and HLA-G5 isoforms had an additive effect on
NK cytolysis suppression (46, 47). Other studies also reported
that HLA-G expression in tumor cell lines such as ovarian
carcinoma, hepatocellular carcinoma (HCC), glioma, and renal
cell carcinoma could be protective against NK cytolysis. These
studies also revealed that the inhibition could be reversed by
blocking HLA-G antigens or its receptor with respective specific
antibodies (48–51). For T cells, HLA-G could inhibit the CD4+

T cell alloproliferative response and cytolytic functions of CD8+

and Vγ9Vδ2 T cells through ILT2 (52–54). Regarding B cells, Naji
et al. (55) demonstrated that the sHLA-G/ILT2 pathway could
induce B cell G0/G1 cycle arrest. Consequently, the proliferation,
differentiation, and immunoglobulin (Ig) secretion of B cells was
suppressed.

Moreover, sHLA-G/ILT2 interaction impairs expression and
functions of chemokine receptors in T cells, NK cells and B
cells (31). sHLA-G could down-regulate the expression of CCR2,
CXCR3, and CXCR5 on CD4+ T cells, and CXCR3 on CD8+ T
cells and Vγ9Vδ2 T cells. Additionally, sHLA-G could impair the
CD4+ T cell chemotaxis response to CCL2, CCL8, CXCL10, the
CXCL11, CD8+ T cells response to CXCL10 and CXCL11, and
the Vγ9Vδ2 T cells response to CXCL10 and CXCL11 (56). For
NK cells, sHLA-G/ILT2 binding could down-modulate CXCR3,
CX3CR1, and CCR2 expression and binding to their specific
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ligands such as CCL2 and CXCL10 (26). Moreover, HLA-G could
decrease germinal center B cell CXCR5 expression and dampen
the chemotaxis of those cells to their chemokines (57).

The immune suppressive functions of HLA-G on neutrophils
have been demonstrated in a study by Baudhuin et al. (27)
who found that HLA-G5/ILT4 engagement impairs neutrophil
phagocytosis and reactive oxygen species production. For DCs,
the expression of HLA-G has been observed to inhibit DC
maturation and differentiation, and to disturb their cross-talk
with NK cells. A study by Liang et al. (58) revealed that HLA-
G/ILT4 interaction plays a critical role in DC differentiation
modulation through the IL-6-STAT3 signaling pathway.

When HLA-G binds ILT2 and ILT4 expressed on
macrophages, it not only induces macrophage differentiation
toward an M2 phenotype but also enhances macrophage IL-6
and CXCL1 secretion, which could inhibit the production of
interferon-γ (IFN-γ) by T cells (33). Notably, Barkal et al.
(59) recently released important findings that the MHC class I
component β2m expressed by cancer cells could directly prevent
malignant cells from performing phagocytosis through ILT2.
However, knowledge of the biological relevance of HLA-G
expression for the regulation of macrophage functions is very
limited. Therefore, more studies to explore the significance of
interactions between HLA-G and macrophage receptors such as
ILTs are needed.

Indirect HLA-G-Mediated Immune
Suppression Through
Suppressor/Regulatory Cells
Indirect immunosuppressive effects of HLA-G could bemediated
by the induction of immune suppressive or regulatory cells such
as regulatory T cells (Tregs), tolerogenic DCs and MDSCs.

HLA-G1-expressing antigen presenting cells (APCs) have
been found to induce CD4+ T cell anergy and differentiation
into suppressive cells. Furthermore, HLA-G-induced tolerogenic
DCs can induce the generation of CD4+CD25+CTLA-4+ and
CD8+CD28+ regulatory T cells (25, 60). The tolerogenic DC
sub-population DC-10s, expresses high levels of HLA-G and can
potently induce adaptive type 1 regulatory T cells (Tr1) through
the HLA-G/ILT4 signaling pathway (28).

The evidence for a role of HLA-G in MDSC proliferation and
functionmodulation has been obtainedmainly from experiments
with murine models. The HLA-G/ILT2 signaling pathway is
considered to play an important role in the expansion of
CD11b+Gr1+ MDSCs in ILT2 transgenic C57BL/6 mice and is
directly related to the long-term survival of skin allografts (61).
HLA-G5 expression has been observed to favor the expansion
of CD11b+Ly6G+ MDSCs in a tumor-bearing Balb/c murine
model with the murine mammary carcinoma cell line 4T1
(62). Similar findings, such as the fact that HLA-G and paired
immunoglobulin-like receptor B (PIR-B, murine homolog of
human ILT receptors) engagement expanded the population
of CD11b+Gr1+PIR-B+ MDSCs in an M8-HLA-G1 (human
melanoma cell line) tumor-bearing mouse model, have also been
reported (32). In addition to the murine models, a recent study
by Köstlin et al. (29) revealed that HLA-G/ILT4 interaction could

promote MDSC accumulation and suppressive activity during
human pregnancy.

HLA-G-Mediated Immune Suppression
Through Trogocytosis/Extracellular
Vesicles
In addition to HLA-G expression and interactions with receptor,
HLA-G mediated immune suppression by intercellular transfer
mechanisms such as trogocytosis or extracellular vesicles has
gained considerable attention in recent years.

Trogocytosis is a rapid process of transferring cell membrane
fragments containing molecules from one cell to another during
cell-to-cell contact (63). Immune cells such as activated NK
cells, T cells and monocytes can rapidly acquire membrane
fragments containing functional HLA-G from other cells (i.e.,
HLA-G+ immune or tumor cells) in their vicinity by the
process of trogocytosis. The acquired HLA-G molecule can
then immediately reverse the functional phenotype of the
recipient from effector to regulatory cells (64). In this scenario,
when activated NK cells acquired HLA-G1 from M8-HLA-G1
tumor cells, NK-HLA-G1acq+ cells lost their cytolytic functions
and ceased cell proliferation. Moreover, NK-HLA-G1acq+ cells
behaved as suppressor cells capable of suppressing the cytolytic
functions other NK cells (65). In other immune cells such as
T cells and monocytes, acquisition of HLA-G from tumor cells
or APCs can also rapidly reverse the phenotype from effector
to regulatory (66). In clinical settings, CD25–FoxP3– T cells
can acquire HLA-G from HLA-G+ malignant plasma cells in
multiple myeloma patients. Functionally, these HLA-G+ T cells
act as Tregs with inhibitory functions similar to those of natural
Tregs (67). Furthermore, intercellular transfer of HLA-G from
allogeneic as well as from autologous HLA-G positive tumor
cells to HLA-G negative tumor cells via trogocytosis has been
demonstrated (68).

Extracellular vesicles (EVs) are highly heterogeneous small
phospholipid bilayer vesicles that are released by most normal
and malignant cells (69). EVs harbor different types of genetic
materials and proteins. HLA-G-bearing EVs were first observed
in culture supernatants of an HLA-G+melanoma cell line (Fon),
and later in ascites and pleural exudates from cancer patients
(21, 70). Moreover, high levels of HLA-G-bearing EVs were
observed to be positively associated with disease progression
in advanced breast cancer patients undergoing neoadjuvant
chemotherapy (71). A recent study by Grange et al. (72) reported
that HLA-G-bearing EVs derived from renal cancer cells could
impair monocyte-derived DC differentiation and T cell immune
responses, indicating the potential of HLA-G-bearing EVs to
modulate functions of both the innate and adaptive immune
systems. These findings highlighted that the effects of HLA-
G-mediated tumor immune evasion can be extended to HLA-
G-negative tumor cells by the pathways of trogocytosis and/or
extracellular vesicles.

Given the abovementioned immune suppressive functions
of HLA-G in cancer immunology, the HLA-G/ILTs signaling
pathway has been recently recognized as a new immune
checkpoint in addition to other immune checkpoints such
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as cytotoxic T lymphocyte-associated protein 4 (CTLA-4)/B7
and programmed cell death protein-1 (PD-1)/PD-L1 (40).
Functionally, CTLA4/B7 interactions specifically inhibit T cell
responses during T cell priming by competing with CD28 for
the B7 receptor and thereby preventing CD4+ T cell activation.
PD1/PDL1 interactions have prominent roles in interfering with
T cell receptor (TCR) signaling and result in dysfunction and
exhaustion of activated T cells (73). Thus, blocking either CTLA-
4 or PD-1 has emerged as a promising anti-cancer strategy.
However, it is evident from large clinical trials that only a
fraction of patients respond with durable remission or are cured,
while many patients will relapse (74). One can hypothesize that
different responses to checkpoint inhibitor therapy could be a
consequence of heterogeneous intra- and inter-tumor expression
of different kinds of checkpoints, though data on the expression
status of ILTs and CTLA-4 and PD-L1 in cancers are rather
limited. Indeed, recent findings by Rouas-Freiss et al. (75)
revealed that intra- and inter-tumor heterogeneity of PD-1/PDL-
1 and HLA-G/ILT2/ILT4 expression does exist in various areas of
the same lesion or among different renal-cell carcinoma lesions
and in tumor infiltrating immune cells. In this regard, blocking
multiple checkpoints is urgently needed to target the entire
tumor.

In addition to the complexity of the tumor itself,
heterogeneous tumor immune microenvironments including
varying profiles of immune checkpoints molecule expression
can lead to different responses to immune therapy. In this
context, MHC I and II molecule expression pattern in melanoma
patients were reported to confer differential sensitivity to
CTLA-4 and PD-1 blockade therapy. Data revealed that an
anti-CTLA-4 therapy response requires MHC class I, while an
anti-PD-1 response is associated with MHC class II expression
(76). However, the significance of HLA-G expression for anti-
CTLA-4 and/or anti-PD-1 therapy needs to be evaluated. Given
this evidence, the proposed multiple checkpoint blockade to
overcome resistance to therapy and relapse should take MHC
expression status into consideration (75, 77).

HLA-G HETEROGENEITY IN CANCERS

Genetic and proteomic heterogeneity regarding markers such as
HLA-G is a common phenomenon in tumors. The inter- and
intra-tumor heterogeneity of HLA-G expression can be increased
by the complexity of mechanisms involved in the regulation
of HLA-G expression (20, 75). In addition to the genetic
background of HLA-G, multiple transcriptional, epigenetic, post-
transcriptional and environmental mechanisms and contexts
are involved in modulating HLA-G mRNA and/or protein
expression (13, 78). In this context, a number of HLA-G specific
microRNAs, including the miR-152 family (miR-148a, miR-148b,
miR-152) and miR-133 have been demonstrated to control HLA-
G expression (39, 79). Furthermore, cytokines such as IFN-γ
and/or TNF-α differentially regulated HLA-G isoform expression
in a retinal pigment epithelial cell line (80). In pathological
settings, fewer functional HLA-G molecules and differential
expression of HLA-G isoforms were observed in asthma and
prostatic adenocarcinoma patients, respectively (81, 82). All
these mechanisms of regulation and disease status alone or

in combination can contribute to the heterogeneity of HLA-G
expression.

INTRATUMOR HLA-G HETEROGENEITY

Intratumor heterogeneity is very common in cancers; however,
information on intratumor HLA-G heterogeneity is rather
limited. In a cohort of nineteen clear cell renal-cell carcinoma
patients (ccRCC), normal adjacent tissues and tumor lesions were
collected for each patient. Among these samples, different tumor
areas including 3–4 zones per tumor were obtained, and HLA-
G expression was evaluated with immunohistochemistry. The
authors found that intratumor HLA-G heterogeneity was present
in all the ccRCC patients; levels of HLA-G expression varied
markedly among different areas. In some patients, a high degree
of HLA-G expression was observed in all selected areas; however,
in other patients, HLA-G expression was only found in some but
not all areas among CA9+ ccRCC tumor cells (75).

In another study, expression patterns of HLA-G isoforms in
ccRCC lesions were analyzed with next-generation sequencing
technologies and immunohistochemical labeling (20). In this in-
depth study, expression levels of HLA-G isoforms such as HLA-
G1, -G5, and -G6 were highly variable among tumors from
different patients (intertumor heterogeneity) and among distinct
areas or subcellular locations in the same tumor (intratumor
heterogeneity). Importantly, the authors also identified novel
HLA-G isoforms that had not been recognized before, such as
the predicted isoforms without a transmembrane region and α1
domain. However, mechanisms underlying the high diversity of
HLA-G expression and whether they involve a manner of spatial
separation or selection of subclones remain to be explored.

INTERTUMOR HLA-G HETEROGENEITY

Interpatient Intertumor HLA-G
Heterogeneity
Aberrant HLA-G expression in cancers was first reported in
1998 (11), and studies later documented that up-regulated HLA-
G expression could only be found in primary and metastatic
melanoma cells; but not in tumor regression sites or in normal
adjacent skin tissues from a melanoma patient (83, 84). Based on
these pioneering studies, the hypothesis that HLA-G expression
is associated with malignant transformation and tumor cell
immune evasion was proposed.

Since Paul’s first report (11), HLA-G expression has been
analyzed and evaluated worldwide in thousands of malignant
samples of various types of cancers (12). Aberrant HLA-G
expression in cancers has been found to be associated with
advanced tumor stage, metastasis status and poor disease
outcome. However, among and within different tumor types,
discrepancies regarding HLA-G expression profiles have been
observed in various types of cancers, such as breast cancer (85–
94), colorectal cancer (CRC) (95–100), cervical cancer (101–
103), endometrial cancer (104, 105), oesophageal squamous
cell carcinoma (ESCC) (106–108), Ewing sarcoma (109), gastric
cancer (110–112), glioblastoma (113), HCC (49, 114, 115),
lung cancer (116–118), lymphoma (119–122), nasopharyngeal
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carcinoma (123), oral squamous cell carcinoma (124), ovarian
cancer (125–127), pancreatic adenocarcinoma (128–130), and
thyroid cancer (131, 132). The details of the methods applied and
main conclusions drawn from these studies are summarized in
Supplementary Table 2.

Notably, the percentage of HLA-G expressing malignant
cells depends on the type of cancers, and expression levels
vary from negative to totally positive among different types of
cancers (133, 134). However, the degree of HLA-G expression
also varies dramatically among different laboratories for almost
every histological type of tumor studied. For example, HLA-G
expression was assessed by immunohistochemistry with the same
HLA-G monoclonal antibody (mAb), 4H84, in seven previous
studies on breast cancer, in which the percentages of HLA-G
expression ranged from 24 to 94.1% (91, 94). In four other studies
using the HLA-G mAbs MEM-G1 (92), MEM-G2 (90), HGY
(87) and 5A6G7 (89), the percentages of HLA-G positive staining
cells were 43.8, 62.2, 66, and 59.6%, respectively. Similarly, rather
low interlaboratory concordance for HLA-G expression has been
observed for other malignancies.

The low concordance between different laboratories for the
same type of tumor lesions may reflect differences between
assessment methods and tumor heterogeneity. Indeed, among
these studies, there is a wide variation of immunohistochemistry
protocols, including variations in the antibodies used and their
dilution, the incubation time and staining evaluation criteria.
Different cohort sizes and clinicopathological parameters such as
treatment history, tumor subhistological type and tumor immune
microenvironment could all affect the evaluation of the status of
HLA-G expression among cancer patients.

Furthermore, genetic backgrounds of HLA-G may also
influence the profile of HLA-G expression; for example, in the
case of HLA-G molecules generated by the primary transcripts
from twoHLA-G null alleles. One null allele is theHLA-G∗0105N
(135) with a cytosine deletion at position 1597 (1C) in exon 3,
which causes an open reading frame shift mutation and generates
a premature stop at either codon 189 (TGA) in exon 4 or at
codon 297 (TAG) in exon 5. As a result of this mutation, the
translation and expression of the α2 domain-containing HLA-G
isoforms, including HLA-G1, -G4, and HLA-G5, are disrupted,
while the functional isoforms HLA-G2, -G3, -G6, and HLA-G7
can be still normally expressed (136, 137). The other null allele,
HLA-G∗01:21N (138), is a nucleotide mutation at codon 226
(CAG) that results in an early stop codon (TAG) in exon 4 and, is
predicted to translate a truncated and presumably non-functional
protein.

Intrapatient Intertumor HLA-G
Heterogeneity
This heterogeneity is noticeable in a patient with multiple
tumors of the same type. In cervical cancers, Ferns et al. (139)
analyzed HLA-A, -B, -C, HLA-E and HLA-G expression on
primary tumors and case-matched lymph node (LN) metastases
by immunohistochemistry. In a cohort of 136 patients, HLA-G
expression (probing with mAb 4H84) was detected in 25% of the
primary cervical cancers and in 11% of paired metastatic LNs.

In squamous cell carcinoma (SCC) subtypes, HLA-G positive
staining was found in 22% (20/90) of the primary tumors and
20% (18/90) of their LN metastases. In adenocarcinoma (AC),
positive HLA-G was staining observed in 31% (10/32) of the
primary tumors and in 28% (9/32) of paired LNmetastases. These
findings revealed that primary tumors and paired LN metastases
in both histology types of cervical cancers had similar HLA-G
expression patterns. Similarly, a study by Guimarães et al. (103)
revealed that, in invasive cervical cancer (ICC) patients, HLA-G5
expression was positive in 31.6% (25/79) of the patients. Among
these patients, HLA-G5 expression was observed in 29.6% (8/27)
of the patients with LN metastasis and in 32.7% (17/52) patients
without LN metastasis.

An evaluation of HLA-G expression in primary CRC and
liver metastases using different HLA-G mAbs including 4H84,
MEM-G/1 and MEM-G/2, was performed by Swets et al. (95).
In this study, HLA-G expression was observed in 29, 6, and
10% of primary CRC lesions, and 30, 4, and 0% of paired liver
metastases when using the mAbs 4H84, MEM-G/1 and MEM-
G/2, respectively. These findings indicated that HLA-G molecule
probing with different antibodies with different specificities could
dramatically impact the interpretation of the relevance of HLA-G
in clinical settings.

HLA-G Heterogeneity and Cancer Therapy
Alterations in HLA expression are frequent and early events
during tumor development and progression as a result of
immune editing (140). Consequently, tumor cells that fail to
present surface neoantigens due to an altered classical HLA class
I complex can avoid killing by T cells, and aberrant induction of
HLA-G expression can suppress the functions of various immune
cells for immune escape (141).

As with other molecules, mechanisms underlying the
regulation of HLA-G expression involve in multiple levels
such as epigenetic modification, transcriptional regulation
and post-transcriptional modifications (78, 79). In addition,
microenvironmental factors such cytokine profiles and even
therapeutics can enhance HLA-G expression. In this context,
previous studies showed that HLA-G expression could be
induced by 5-aza-2′-deoxycytidine and IFN-γ treatment in vitro
in glioblastoma, and an enhanced peripheral sHLA-G level was
observed in melanoma patients treated with IFN-α (113, 142).
Given the immune suppressive functions of HLA-G in favoring
tumor immune evasion and progression, induction of HLA-
G expression during immune therapy which may impair the
therapeutic effects, should be considered.

Moreover, the fact that HLA-G expression status can
dramatically affect therapeutic responses has been addressed
in tumor patients and patients with other diseases. In 2000,
Wagner et al. (15) highlighted the importance of classic and non-
classic HLA molecule expression status in melanoma patients
treated with postsurgery adjuvant IFN-α-2b. In that study,
they found that the status of classic HLA I molecules and
HLA-G expression were significantly related to the outcome
of melanoma patients receiving IFN-α-2b treatment. Disease
relapse occurred in patients with HLA-G expression that
had lost classic HLA I molecules. However, with or without

Frontiers in Immunology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 2164

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lin and Yan Heterogeneity of HLA-G Expression in Cancers

HLA-G co-expression, no relapse was observed in patients
with classic HLA I molecule expression. This study indicated
that HLA-G expression can enable classic HLA I deficient
melanoma cells to lose responsiveness to IFN-α treatment.
Thus, evaluation of the status HLA antigen expression before
immunotherapy may have important practical implications for
treatment.

CONCLUSION

Tumor heterogeneity has gained attention in the field of
individualized cancer therapy due to its implications for
oncogenesis, and metastasis, and its potential to affect responses
to therapies and clinical outcomes (3). Tumor heterogeneity can
be caused by genetic mutations during clonal evolution, and/or
by tumor microenvironment selective pressure during tumor
development (143).

Alteration of HLA antigen expression is a well-recognized
mechanism employed by malignant cells to avoid innate and
adaptive immune surveillance and responses (144). Many efforts
have been made by multiple laboratories worldwide to assess
the expression and clinical significance of HLA-G expression
in cancers. From these studies, a strong relationship of HLA-
G expression with tumor progression and patient outcomes has
been established.

Based on numerous previous studies, HLA-G has been
promoted as a new checkpoint molecule and a promising
immunotherapy target, such as via application of HLA-
G antagonists or anti-HLA-G or anti-ILT antibodies to
block the interaction between ILT receptors and HLA-G.
Additionally, HLA-G as an effective target for drug delivery
was proposed by Zhang et al. (145). In that study, authors
successfully developed HLA-G antibody and methotrexate
(MTX)-loaded nanobubbles (mAbHLA−G/MTX/PLGA NBs) as
HLA-G-targeted drug delivery molecule. The results showed
that mAbHLA−G/MTX/PLGA NBs could specifically transport
to the HLA-G positive tumor cells in vitro or tumor tissues
in vivo in a murine model, and the released MTX from the NBs
could kill the residual tumor cells and inhibit the reoccurrence
of tumors.

However, available results from the literature reveal that
intertumor and intratumor heterogeneity of HLA-G expression
varies dramatically. In addition to the heterogeneity that
inherently occurs in tumors, the low concordance in HLA-G
detection and evaluation results among different laboratories
remains a major obstacle for the interpretation of the
clinical significance of HLA-G. These controversies might be
caused by the use of different HLA-G monoclonal antibodies,
technical procedures, immunostaining evaluation criteria, or
different clinicopathological and HLA-G genetic backgrounds
of the included cohorts. Therefore, international recommended
standardization protocols, larger cohorts and prospective studies
are required to confirm and validate HLA-G as a target
before routine clinical application. Furthermore, in addition
to the seven well-known HLA-G isoforms, novel unrecognized
HLA-G isoforms do exist, as presented by Dr. Carosella and
colleagues (20). In this context, more specific antibodies for
a particular HLA-G isoform and new technologies such as
next generation sequencing are needed. With these tools, we
can further discriminate different isoforms and evaluate their
respective functions in tumor biology to finally improve and
optimize personalized medicine.
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