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Use of a graph neural network 
to the weighted gene 
co‑expression network analysis 
of Korean native cattle
Hyo‑Jun Lee1, Yoonji Chung2, Ki Yong Chung3, Young‑Kuk Kim4, Jun Heon Lee2, 
Yeong Jun Koh4,5* & Seung Hwan Lee2,5*

In the general framework of the weighted gene co‑expression network analysis (WGCNA), a 
hierarchical clustering algorithm is commonly used to module definition. However, hierarchical 
clustering depends strongly on the topological overlap measure. In other words, this algorithm may 
assign two genes with low topological overlap to different modules even though their expression 
patterns are similar. Here, a novel gene module clustering algorithm for WGCNA is proposed. We 
develop a gene module clustering network (gmcNet), which simultaneously addresses single‑level 
expression and topological overlap measure. The proposed gmcNet includes a “co‑expression pattern 
recognizer” (CEPR) and “module classifier”. The CEPR incorporates expression features of single genes 
into the topological features of co‑expressed ones. Given this CEPR‑embedded feature, the module 
classifier computes module assignment probabilities. We validated gmcNet performance using 4,976 
genes from 20 native Korean cattle. We observed that the CEPR generates more robust features than 
single‑level expression or topological overlap measure. Given the CEPR‑embedded feature, gmcNet 
achieved the best performance in terms of modularity (0.261) and the differentially expressed signal 
(27.739) compared with other clustering methods tested. Furthermore, gmcNet detected some 
interesting biological functionalities for carcass weight, backfat thickness, intramuscular fat, and 
beef tenderness of Korean native cattle. Therefore, gmcNet is a useful framework for WGCNA module 
clustering.

Weighted gene co-expression network analysis (WGCNA) is often used to explore the system-level functionality 
of gene sets. WGCNA groups thousands of genes into a number of modules, simplifying biological interpretation. 
The general framework of  WGCNA1 can be summarized as follows. First, the adjacencies of paired genes are 
calculated to define the gene co-expression network. The adjacencies are then incorporated into a topological 
overlap measure (TOM) to reveal gene-gene connections. Using the TOM, a clustering algorithm assigns inten-
sively connected genes to the same modules. Finally, functional analyses are used to determine the biological 
meanings of the modules. This pipeline has been widely used in various fields. For example, recent biomedical 
studies used WGCNA to identify specific modules and hub genes related to human  cancer2 and arterial  disease3. 
In animal and plant sciences, WGCNA has often been used to profile plant gene  expression4 and detect pathways 
responsible for complex animal  traits5,6. The module definitions greatly affect the interpretations of the results. 
WGCNA commonly uses a hierarchical clustering (HC) algorithm. This unsupervised clustering method places 
adjacent genes into the same modules based on pairwise TOM data. However, a concern has been raised that 
transformations of gene expressions into a TOM results in loss of raw-level expression features. HC-based 
module assignment depends strongly on the TOM. This can degrade similarity of expression not only between 
modules, but also within modules. In other words, HC may assign two genes with low topological overlap to dif-
ferent modules even though their expression patterns are similar. Furthermore, once a gene is added to a specific 
module, HC can never reverse the decision. This poses challenges when clustering complicated networks with 
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many interconnected gene pairs. Thus, a new algorithm is needed to more accurately identify WGCNA gene 
modules. Langfelder et al.7 developed a “dynamic tree cut” technique that clusters gene modules based on the 
shapes of dendrogram branches, but this still depends on TOM. Botía et al.8 employed a derivative of K-means 
processing to refine gene modules generated by standard HC. However, this algorithm requires more than four 
steps beginning with module clustering, centroid computation, distance measurements, and gene relocation. 
This complex pipeline requires significant computational time and is thus unsuitable for very large networks.

A graph neural network (GNN)9–12 is a good alternative algorithm for module clustering. GNNs extend deep 
neural networks to learn a graph representation by finding stable features of nodes and its neighbors in graph-
based data. Gilmer et al.11 introduced a general framework termed message-passing neural network (MPNN), 
which effectively aggregates each node with its neighbors into embedding features. Many other studies for GNN 
have achieved impressive performance using this  framework12,13. Given the recent successes of GNN, graph-based 
learning methods have been widely applied in bioinformatics. To predict drug-target interactions, recent studies 
employed various graphical convolutional  networks14,15. For single-cell RNA-seq analysis, a GNN was used to 
model cell-cell  relationships16 and impute gene expression levels within single  cells17. Yang et al.18 developed a 
GNN that extracted protein features from graphical information. However, most studies on WGCNA did not 
use GNN for module clustering.

In this paper, we introduce a GNN-based clustering algorithm for WGCNA: the gene module clustering net-
work (gmcNet). Our method clusters genes based on their co-expression topologies (genes in the same module 
should be strongly connected) and single-level expression (genes in the same module should exhibit similar 
expression patterns). The main innovation of gmcNet is incorporating the expression feature of single gene with 
co-expression feature of their neighbor genes. gmcNet includes a “co-expression pattern recognizer” (CEPR) 
and a module classifier. The CEPR has a message-passing (MP) operation similar to that of  MPNN11, except that 
the topological overlap  matrix1 is used as the input rather than the adjacency matrix. Using the former matrix, 
CEPR defines weighted relationships, consistent with the objective of WGCNA. The module classifier assigns 
genes to various modules using the CEPR-embedded features. We tested gmcNet using RNA-seq data for native 
Korean cattle, and compared the performance to that of other clustering algorithms. We also validated gmcNet 
performance on gene expression datasets of human, mouse, pig, and chicken which were downloaded from the 
Gene Expression Omnibus (GEO)  repository19. As GNNs are not widely used for WGCNA, our findings will be 
of interest to computational biologists.

Results
Model performance on Korean native cattle. To validate gmcNet performance, it was compared to 
four baseline clustering algorithms including HC, K-means clustering, and K-medoids clustering (Fig. 1). We 
measured performance in terms of clustering strength and functional enrichment. We used graph  modularity20 
to measure the clustering strength, and the differentially expressed module (DEM) signals to assess functional 
enrichment.

Figure 1.  Module clustering results. The upper panel displays the hierarchical clustering dendrogram. In the 
lower panel, the colors show the module memberships determined by the methods on the left.
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Table 1 presents the performances of the various methods on Korean native cattle dataset. The single gene 
expression-based method (K-means) is robust to DEM signal capture, whereas the TOM-based methods (HC, 
K-medoids) provide higher modularity. On the other hand, gmcNet, which leverages both single gene expression 
and TOM, achieves the best DEM signal (27.739) and cluster modularity ( Q : 0.261). Comparison of gmcNet and 
HC revealed that gmcNet markedly increases modularity and the DEM signal by 0.042 and 9.121, respectively. 
Thus, gmcNet is more powerful than the other methods for revealing the apparent closeness of genes within the 
same module, and when making biological sense of the complex traits of native Korean cattle.

CEPR embedding. Figure 2 shows plots based on the first and second principal components of three fea-
ture types (single-level expression, TOM, and CEPR embedding) of Korean native cattle dataset. Single-level 

Table 1.  Model performance on Korean native cattle dataset in terms of graph modularity Q and DEM 
signaling.

Method HC K-means K-medoids gmcNet

Q 0.219 0.138 0.171 0.261

DEM-signal 18.618 22.723 18.236 27.739

Figure 2.  First and second principal components of three feature type of Korean native cattle dataset and 
clustering results of each method. The x-axis and y-axis are first and second principal component. The colors 
show the module memberships determined by the methods on the top.
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expression fails to distinguish modules with ambiguous boundaries. This may reflect the low modularity of 
K-means, which uses single-level expression for clustering. The TOM provides stronger connections between 
genes than single-level expression. However, it also decreases the distances between different modules and genes. 
As shown in Fig. 2, K-medoids and HC, which use the TOM for clustering, do not clearly assign genes into dif-
ferent but closely related modules. Compared to the other types, CEPR embedding provides better separation, 
i.e. smaller distances between genes and larger ones between modules. With CEPR embedding, gmcNet defines 
gene modules more clearly and increases modularity.

Model performance at different k (number of clusters). Our current implementation of gmcNet 
requires the setting of an optimal k (number of clusters). The effects of the k-value on modularity Q and the DEM 
signal are summarized in Fig. 3. With an increasing k-value, the DEM signal increases while the Q decreases. In 
contrast, gmcNet yields a larger DEM signal than HC even at smaller k-values ( 6 ≤ k < 8 ), and remains higher 
Q at larger k-values ( k = 9 ). gmcNet outperforms K-means and K-medoids for all k-values. These results can 
demonstrate the superiority of gmcNet regardless of the k-value.

Functional enrichment analysis of native Korean cattle. To identify the DEMs, we performed linear 
regression analysis of the module  eigengenes1 for four complex traits, including carcass weight (CWT), backfat 
thickness (BF), intramuscular fat content (IMF), and the Warner-Bratzler shear force (WBSF). Figure 4 shows 
the results. In terms of the number of DEMs, IMF ranked first with four modules (K2, K3, K4, and K8) followed 
by BF (K2, K3, and K4), WBSF (K5 and K7), and CWT (K1 and K6). Interestingly, K5 and K7, which contain 
large numbers of genes, were significant to WBSF. This may reflect our mode of data collection; the RNA-seq 
data were from the longissimus-dorsi muscle and WBSF indicates the tenderness of beef muscle. Also, gmcNet 
detected 11 significant module-trait interactions. gmcNet found more DEMs than the other methods (HC: 9, 
K-means: 10, and K-medoids: 10) (Fig. S1).

We used Gene Ontology (GO) enrichment  analysis21 to annotate the biological processes of the modules 
defined by gmcNet. Three modules (K1, K5, and K7) were linked to significant processes (Fig. 5). K1, a CWT-
related module, was enriched in “biosynthetic” and “metabolic” processes. Based on both the DEM analysis 
and the GO enrichment results, K1 seems to involve many genes associated with growth-related traits. Two 
WBSF-related modules (K5 and K7) were enriched in “immune system” and “protein catabolism” , respectively. 
Although several studies have suggested that the immune system plays a key role in cattle weight gain and feed 
 efficiency22,23, the association between beef tenderness and immune pathways is a novel finding. Various studies 
have reported an association between “protein catabolic process” and beef  tenderness24–26. Therefore, the results 
suggest that K7 is a key module of beef tenderness in native Korean cattle.

Figure 3.  Optimal k searching considering DEM signaling and the modularity Q.
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Hub gene searches for modules of interest. Given the functional enrichment results, we selected the 
four modules, K1, K2, K4, and K7, as the principal modules of complex traits. Figure 6 shows the hub gene 
networks and Table 2 shows the related traits. The six hub genes of K1 are related to quantitative traits includ-
ing growth (LAMTOR527 and PAM1628) and feed intake (NDUFB129, NDUFB430, ATP5MF31, and SEC61G32). 
These findings support our suggestion that K1 is significant in terms of CWT. K2 and K4, associated with fat-
related traits (BF and IMF) in DEM analysis, include eight (ACSL333, NFKB134, CYP2R135, HSF236, TMEM13537, 
PDCD438, HERPUD239, and NMRAL140) and seven (SPNS134, MYOD141, PDXK42, TMUB137, ARHGAP2643, 
RAB1534, and TP7344) fat-related hub genes, respectively. Thus, future research should identify the relationships 
between fat metabolism and modules K2 and K4. Although K7 was associated with WBSF in DEM analysis, only 
four hub genes (PARD345, EIF4G346, PAFAH1B147, and CAMTA248) were associated with growth-related traits; 
the other hub genes were all novel.

Gene Expression Omnibus (GEO) repository. We also performed our method on the NCBI GEO 
 datasets19. The datasets include four different species (GDS6010: human, GDS5618: mouse, GDS4246: pig, and 
GDS3857: chicken). We measured DEM signals using the trait included in each dataset (human: virus infection, 
mouse: pancreatic islets, pig: blood, chicken: light pulse). The implementation details for GEO datasets can be 
shown in supproting information S2. Table 3 presents the performances of the various methods on GED data-
sets. For mouse and chicken gmcNet achieves the best cluster modularity, while for human and pig gmcNet show 
much lower modularity than other TOM-based method (HC and K-medoids). However, gmcNet outperforms 
all methods on DEM signal capture with reasonable modularity for all datasets. These results can prove the gmc-
Net is useful method to group thousands of gene according to their system-level functionality.

Figure 4.  The DEM signals of modules defined by gmcNet. The y-axis shows the module names and numbers 
of genes within each module. The x-axis shows the complex traits. The numbers in each cell are regression 
coefficients (no parentheses) and the regression p-values (in parentheses). Red and blue indicate negative and 
positive coefficients, respectively. * p < 0.05 , **p < 0.01.
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Discussion
Single-level expression is generally appropriate to identify trait-specific marker genes that are differentially 
expressed depending on the biological  phenotype63. Here, we found that single-level expression also revealed 
trait-specific modules with strong DEM signals. However, most existing WGCNA methods address only the 
co-expression topology (including TOM); the DEM signals are weak. On the other hand, our gmcNet simultane-
ously addresses single-level expression and TOM. gmcNet thus yielded larger DEM signals than other cluster-
ing methods. Furthermore, gmcNet produced some novel and interesting results. Threfore, gmcNet can detect 
module functionality and improves our understanding of WGCNA system-level biology. Also, gmcNet yields 
strong adjacencies between genes in the same module. gmcNet exploits the learnable properties of CEPR, which 
aggregates single-gene expressions with the co-expression features of its first neighbors, embedding these features 
to reduced dimensions. As noted in the Results section, CEPR generates more robust features than single-gene 
expression data or TOM. Given the CEPR-embedded feature, gmcNet achieved the best WGCNA modularity 
of all clustering methods tested.

Many genes are uniformly expressed in all individuals. Such genes (“noise”) are intimately connected with 
nested modules and exhibit no differential expression in complex trait analysis. Any attempt to cluster them 
disrupts module identification and obscures the biological implications. HC uses a dendrogram cut-off to exclude 
noisy genes. On the other hand, gmcNet assigns every gene to the most probable module. This may yield some 
meaningless assignments, because uniform expression may render the assignments to nested modules similar. 
Therefore, in future, it will be important to eliminate noise. We are exploring probability thresholding to this 
end. Specifically, genes with maximum probabilities lower than a given threshold will be excluded from module 
assignment. We will also add the optimal k search method to gmcNet; k-values can greatly increase model per-
formance and may be modified depending on the characteristics of a dataset. Here, gmcNet used the optimal k 
of HC and performed better than other methods. In addition, gmcNet outperformed K-means and K-medoids 
at all k-values tested (2-10). Thus, the addition of an optimal k search would improve gmcNet performance in 
the context of WGCNA.

We derived a gene module clustering network, gmcNet, which simultaneously addresses single-level expres-
sion and TOM. We validated gmcNet performance using 4,976 genes from 20 native Korean cattle and four 
GEO datasets. gmcNet reliably assigned genes to modules exhibiting high modularity and DEM signals. gmcNet 
also detected some interesting biological functionalities. Therefore, gmcNet is a useful framework for WGCNA 
module clustering.

Materials and methods
Korean native cattle data. A total of 20 native Korean steers, born 2013 at Hanwoo Experiment Station, 
National Institute of Animal Science (NIAS), Rural Development Administration, South Korea, were used; all 
were humanely slaughtered at 30 months of age. The CWT (kg), and BF (mm) were measured after chilling 
for 24 hours. BF was measured at the junction of the 12th and 13th ribs. The WBSF and IMF were measured 

Figure 5.  The biological processes of three significant modules: (a) K1, (b) K5, and (c) K7. p.adjust is a p-value 
adjusted by the Bonferroni method.
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at the longissimus-dorsi muscle according  to64  and65, respectively. RNA from the longissimus-dorsi muscle was 
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA quality and quantity were assessed by 
automated capillary gel electrophoresis performed using a Bioanalyzer 2100 running the RNA 6000 Nano Lab-

Figure 6.  Hub gene networks of the four principal modules of native Korean cattle: (a) K1, (b) K2, (c) K4, (d) 
K7. From the outside in, the top 200, top 25, and top 5 hub genes are shown. The linkages of the top 5 hub genes 
are shown as the edges of the networks.
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Chip (Agilent Technologies Ireland, Dublin, Ireland). Only RNA samples with RNA integrity ≥ 7 were retained. 
Complementary DNA (cDNA) libraries were synthesized with Illumina TruSeq preparation Kit according to the 
manufacturer’s instruction (Illumina, San Diego, CA, USA). The RNA sequencing was done using Hiseq 2000 
Illumina platform to obtain paired-end reads. The quality of the raw RNA samples was confirmed using FastQC 
v0.1166, and the reads with low quality were removed using Trimmomatic v0.3667. The reads were aligned to the 
reference genome Bos taurus (Ensemble UMD3.1) with TopHat v2.168. The gene count of the reads was done 
with HTSeq v0.9169. Reads per kilobase per million (RPKM) were computed for each gene. We used Pearson 
correlation test to filter out uniformly expressed genes for the four traits (CWT, BF, IMF, and WBSF). Specifi-
cally, we calculated correlation coefficients between each gene and the traits. Then, the genes which show non-
significant correlation ( p-value > 0.1 ) for any of the traits, were excluded in further progresses. After deriving 
Pearson correlation test, we excluded 7,555 genes and subjected 4,976 genes in 20 samples to this study. Notice 
that the National Institute of Animal Science (NIAS) of the Rural Development Administration (RDA) of South 
Korea approved the experimental procedures (ethics committee approval number: 2015-150).

Co‑expression network construction. To represent the co-expression network in matrix form, we used 
the topological overlap matrix  of1. Briefly, the adjacency of each pair of genes i and j is given by aij =

∣∣corij
∣∣β 

where β is a smoothing parameter and corij is the correlation coefficient between the single-level expressions 
of the two genes. Given the adjacency values aij , the topological overlap matrix T ∈ R

n×n was created using a 
 TOM70, where n is the number of genes. TOM tij , which provides a similarity measure in the topological overlap 
matrix, is calculated as follows:

where, lij =
∑

u aiuauj and ki =
∑

u aiu is a node connectivity.
Also, we constructed two additional topological overlap matrices to train gmcNet (Fig. 7). Tp ∈ R

n× , rep-
resenting the positive network, was created leaving only positive correlation coefficients, whereas Tn ∈ R

n×n , 
representing the negative network, was created leaving only negative correlation coefficients. After scale-free 
model  fitting1, we chose β = 6 , β = 9 , and β = 10 as the smoothing parameters for T , Tp , and Tn , respectively.

(1)tij =
lij + aij

min{ki , kj} + 1− aij

Table 2.  Hub genes and associated traits of the main modules.  Hub gene1 : Top 25 hub genes; Significant 
trait2 : Significant traits revealed by DEM analysis (p-values). The reported traits affected by each hub gene are 
listed in S4 Table.

Module Hub gene1 Significant trait2 Reported cattle traits affected

K1
ROMO1, ANAPC16, LAMTOR5, NDUFB4, MRPL13, LAMTOR2, 
MRPL27, CDK3, MRPL55, ELOB, TMEM147, GLRX2, ATP5ME, 
C21H15orf40, ATP5MF, MRPS16, SAT2, EIF3K, BLOC1S1, SEC61G, 
NDUFB1, EIF1AX, SF3B5, CMC2, PAM16

CWT** (0.005) Growth27,28;  Tenderness7,49,50,50; Feed  intake29,31,32;  Fat34,51,52

K2
TPD52, TMX3, ACSL3, SMARCA1, LRP11, MACO1, LRP12, SESTD1, 
NFKB1, ADGRL2, CYP2R1, MKRN2OS, MED17, POLA1, FEM1C, SLU7, 
MAP4K5, HSF2, CENPC, LOC508131, TMEM135, PDCD4, HERPUD2, 
NMRAL1, SRP72

BF* (0.023); IMF** (0.0001) Fat33–35;  Growth53–55

K4
SPNS1, MYOD1, DTYMK, PDE8B, PHC3, FANCA, PTP4A3, INSC, PDXK, 
TMUB1, C18H19orf48, CCDC141, SLC35E4, RAD51C, SAAL1, ARH-
GAP26, IRF2BPL, RAB15, ZNF524, GIMAP8, ST6GALNAC2, ABHD8, 
SLC16A3, TP73, TUBB

BF** (0.0002); IMF** (0.0001) Fat34,41,42;  Growth51,56,57; Feed  intake5,58,59;  Tenderness60,61

K7
ZFP91, PARD3, FXR1, DOP1A, USP47, KIF1C, ECPAS, PLEKHM2, 
EIF4G3, PAFAH1B1, EHBP1L1, NCOR1, UBR3, IARS1, NF2, CMYA5, 
FOXJ3, CAP2, KPNA4, CAMTA2, ARIH2, MAP2K4, HDGF, MAP4, 
CARM1

WBSF** (0.008) Fat62;  Growth45–47

Table 3.  Model performance on GEO dataset in terms of graph modularity Q and DEM signaling. Significant 
values are in [bold].

Method HC K-means K-medoids gmcNet

Human
Q 0.255 0.155 0.276 0.231

DEM-signal 21.620 24.975 22.082 27.558

Mouse
Q 0.174 0.088 0.146 0.186

DEM-signal 66.505 74.591 65.494 76.680

Pig
Q 0.181 0.122 0.177 0.132

DEM-signal 14.11 20.388 14.182 21.295

Chicken
Q 0.328 0.334 0.265 0.366

DEM-signal 25.95 31.709 23.65 33.083
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Gene module clustering network. We developed a gene module clustering network (gmcNet) that clus-
ters genes according to their co-expression topologies (genes in the same module should be strongly connected) 
and their single-level expression (genes in the same module should exhibit similar expression patterns). Figure 8 
shows an overview of gmcNet, which features a co-expression pattern recognizer (CEPR) and module classifier. 
The CEPR incorporates the expression features of single genes into the topological features of co-expressed ones. 
Given this CEPR-embedded feature, the module classifier computes module assignment probabilities.

Network structure. CEPR: The goal of CEPR is to integrate single-expression features with co-expression fea-
tures. To achieve this, we used the MP operation of  MPNN11, but employed the topological overlap matrix rather 
than the adjacency matrix. We computed a new topological overlap matrix T̃ by zeroing the diagonal of T and 
applying degree normalization:

(2)Tz = T− In; T̃ = D
− 1

2TzD
− 1

2

Figure 7.  Construction of three topological overlap matrices. T is the topological overlap matrix of all 
relationships. Tp and Tn are the topological overlap matrices of positive and negative relationships respectively.
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where D = diag(Tz1n) is a degree matrix. Let X ∈ R
n×m be the single-level expression of n genes in m samples. 

Then, single and co-expression can be simply combined via an MP operation:

where Wco and Wsingle are the trainable parameters of the co- and single-expression features. As T̃ includes the 
topological adjacencies between gene pairs, it is easy to see that T̃X can be interpreted as a co-expression feature.

A simple MP operation cannot separate positive and negative co-expressions, even when they differ in dif-
ferent biological pathways. Therefore, we refined a simple MP to become a CEPR, as follows:

where {Wc,Wp,Wn,Ws} ∈ R
m×m′ are the trainable weights of the co-expression, positive co-expression, nega-

tive co-expressions, and single-expression, respectively. m′ is an embedding dimension (set to 8). As T̃pXWp and 
T̃nXWn are identical in terms of dimensionality, CEPR learns various co-expressions by simply adding them. 
By skip connections of single-expression XWs , CEPR generates the embedding feature X̄ ∈ R

n×m′ , which deals 
with single-expression and three different co-expressions in the m′ dimension.

Module classifier: Given the CEPR-embedded feature X̄ , the module classifier computes a module assign-
ment probability using a multi-layer perceptron (MLP):

where Wm ∈ R
m′×k are the trainable weights for clustering of k modules. As softmax activation guarantees that 

mij ∈ [0, 1] , the ith-row of M ∈ R
n×k corresponds to the module-assignment probability of gene i. In other words, 

gene i belongs to module c if mic is the maximum value of the ith-row of M.

Loss function. For unsupervised clustering, we employed the cut and orthogonality loss terms of  MinCutPool71. 
The loss function when training gmcNet was defined as:

where �·�F indicates the Frobenius norm and Tr is the trace; � is a balancing hyper-parameter, which is set to 
2.6. The cut loss term, Lc , encourages clustering of strongly connected genes within the same module, and the 
orthogonality loss term, Lo , penalizes assignment to similarly sized modules.

Implementation Details. The model was iterated for 5,000 epochs using a GeForce RTX 2080ti. For the first 100 
epochs, the balancing hyperparameter � was set to 0 and the learning rate to 0.01. This prevented the creation of 
empty modules. After epoch 100, we set � to 2.6 and the learning rate to 0.001. Model training was early stopped 

(3)MP(X, T̃) = ReLU(T̃XWco + XWsingle)

(4)X̄ = CEPR(X, T̃, T̃p, T̃n) = ReLU(T̃XWc + T̃pXWp + T̃nXWn + XWs)

(5)M = softmax(X̄Wm)

(6)
L = �L

c
+Lo = �

(
−
Tr(MT

T̃M)

Tr(MTD̃M)

)

︸ ︷︷ ︸
Lc

+

∥∥∥∥∥
M

T
M∥∥MTM
∥∥
F

+
Ik√
k

∥∥∥∥∥
F︸ ︷︷ ︸

Lo

Figure 8.  The architecture of gmcNet. X ∈ R
n×m is the single-level expression of n genes in m samples. 

X̄ ∈ R
n×m′ is CEPR-embedded feature with m′ dimension. M ∈ R

n×k is assignment probability matrix of n 
genes to k modules. L is loss function.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9854  | https://doi.org/10.1038/s41598-022-13796-9

www.nature.com/scientificreports/

at Lo > τ , where τ is the orthogonal threshold, which was set to 0.8. The Adam  optimizer72 was used to mini-
mize the loss function. Finally, M at the end of training was used for module assignment.

Model performance. To validate gmcNet performance,  HC7, K-means73 and K-medoids74 were also used 
for module clustering and the results were compared to those of gmcNet. K-means uses single-expression feature 
X as input data; the HC and K-medoids use the topological distances 1− T as inputs. The optimal k for K-means, 
K-medoids, and gmcNet was set to 8, as suggested by application of the dynamic tree cut  technique7 to HC.

Metrics. We measured the model performance in terms of modularity and DEM signaling. Module modularity 
is a commonly used metric in graph clustering. In a fully random graph, gene i and j of degrees ci =

∑
u tiu and 

cj =
∑

u tju are connected with a probability cicj/s , where s is the total topological overlap s =
∑

ij tij . Modular-
ity measures the divergence between intra-module connections as:

where δ
[
i, j
]
= 1 if i and j belong to the same module; otherwise, δ

[
i, j
]
= 0.

To assess functional enrichment of clustering method, we introduce a novel metric, called DEM signal. Let 
ρ[l, t] = 1 if module l is significant ( ≤ 0.05 ) for trait t; otherwise, ρ[l, t] = 0 . The final DEM signal was defined as:

where t is traits and p-valuelt indicates the significance value of module l in terms of trait t. We employed linear 
regression analysis to the module eigengenes, i.e. the first principal components of the modules, for four complex 
traits: CWT, BF, IMF and WBSF.

Functional enrichment analysis. The Bioconductor R package “clusterProfiler”75 was used for GO analy-
sis. The adjusted p-value (obtained using the Bonferroni method) was employed to examine the significance 
(p.adjust< 0.05 ) of all GO terms. The top 20 biological processes were extracted if there were more than 20 sig-
nificant results. To identify hub genes, we calculated the correlation coefficients between single-level expression 
of each gene and the ME of the module it belong to. The top 25 genes (in terms of correlation coefficients) were 
defined as hub genes.

Data availability
The gmcNet code and example data is available on GitHub at https://github.com/gywns6287/gmcNet. Request for 
full gene expression data of Korean native cattle can be made to Korea National Institute of Animal Science, Ani-
mal Genome & Bioinformatics Division (http://www.nias.go.kr/english/sub/boardHtml.do?boardId=depintro).
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