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Abstract
Background: One of the important challenges in microarray analysis is to take full advantage of
previously accumulated data, both from one's own laboratory and from public repositories.
Through a comparative analysis on a variety of datasets, a more comprehensive view of the
underlying mechanism or structure can be obtained. However, as we discover in this work,
continual changes in genomic sequence annotations and probe design criteria make it difficult to
compare gene expression data even from different generations of the same microarray platform.

Results: We first describe the extent of discordance between the results derived from two
generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification
of differentially expressed genes. We then propose a method for increasing comparability. The
dataset we use consists of a set of 14 human muscle biopsy samples from patients with
inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays.
We find that the use of the probe set matching table for comparative analysis provided by
Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still
remains inadequate. Rescaling of expression values for each gene across samples and data filtering
by expression values enhance comparability but only for few specific analyses. As a generic method
for improving comparability, we select a subset of probes with overlapping sequence segments in
the two array types and recalculate expression values based only on the selected probes. We show
that this filtering of probes significantly improves the comparability while retaining a sufficient
number of probe sets for further analysis.

Conclusions: Compatibility between high-density oligonucleotide arrays is significantly affected by
probe-level sequence information. With a careful filtering of the probes based on their sequence
overlaps, data from different generations of microarrays can be combined more effectively.
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Background
By providing a genome-wide view of gene expression,
microarrays have become a common exploratory tool in
many areas of biological and clinical studies [1-3]. While
there are several different microarray platforms, photo-
lithographically synthesized oligonucleotide arrays from
Affymetrix have become one of the principal technolo-
gies. These arrays feature multiple 25-mer probes (a
"probe set") for each gene, with their measurements sum-
marized into a single number for the estimated expression
level of that gene. Because of the important role played by
this technology, many methodological studies have
focused on improving the extraction of information from
these arrays, from image analysis and the proper role of
perfect and mismatch probes to distributional properties
of the measurements and optimal statistical tests for dif-
ferential expression [4,5].

Large-scale gene expression data often contain a large
amount of noise from various experimental factors. Fortu-
nately, in most cases, the technical variability is relatively
small compared to the biological one and its effect can be
minimized by using a sufficient number of replicates [6-
8]. However, the high cost of microarray experiments
often prevents gathering of enough samples for a reliable
analysis in a single laboratory. In such cases, employing
existing microarray datasets from other studies can be an
efficient way of improving the reliability of a study. More-
over, as the number of publicly available datasets grows
rapidly on public data depositories (e.g., Gene Expression
Omnibus [9]; Stanford Microarray Database [10];
ArrayExpress at EBI [11]), it is clear that these datasets
should be combined to generate a more comprehensive
understanding of underlying biology.

Several issues have made this process difficult so far. First,
different datasets have been processed using different pro-
cedures due to a lack of uniform standards, e.g., for back-
ground correction, normalization, and calculation of
expression values. This makes it difficult to compare them
directly. Raw data files are generally unavailable and, even
if they are, reprocessing them requires substantial effort.
Second, we have lacked datasets with enough controls and
replicates, performed under a proper experimental design
and with adequate annotations, in order to make proper
comparisons. Third, possibly the most troublesome, the
experiments have been performed on many different plat-
forms, with significant differences among them. Even
within a single platform, technological and algorithmic
advances as well as the evolving annotations of the
genomes have resulted in succeeding generations of arrays
with substantial modification from one generation to the
next. Until now, several studies have found varying
degrees of disagreement between platforms, sometimes
with large discrepancies that call into the question the reli-

ability of certain conclusions reached in microarray stud-
ies [12-19]. A comparison of two Affymetrix arrays,
HuGeneFL and HG-U95A, was made previously, but only
with the conclusion that the reproducibility is high when
the two probe sets share many exact probes and that it is
low when they do not [20].

In this work, we carry out a thorough examination of the
comparability between the two generations of Affymetrix
human GeneChip arrays, HG-U95Av2 and HG-U133A,
both of which have been used extensively for studying
human gene expression patterns. We then propose a
method for enhancing their comparability. The analysis
we carry out is made possible by a dataset consisting of the
same tissue samples hybridized on both platforms. The
procedure is illustrated in Figure 1. Using our replicate
dataset, we first examine the effectiveness of three
schemes for matching the probe sets across different
arrays. We then quantify the surprising amount of differ-
ence in analysis results between the platforms, as revealed
in correlation analysis, hierarchical clustering, and selec-
tion of differentially expressed genes. We find that compa-
rability can be improved by rescaling expression values or
data filtering but that these techniques are limited to few
specific analyses. As a generic method for comparative
analysis, we propose selecting a subset of probes that have
sequence overlaps with the probes on the other array and
recalculating the expression levels based only on this sub-
set. We demonstrate that this probe filtering significantly
improves the reproducibility, without eliminating a sig-
nificant number of genes from the analysis.

Results
Comparison of the methods for probe set matching
The most common method of matching genes in cross-
platform studies is to match the UniGene IDs among
genes [12,15-18]. One potential problem with this
method is that as the UniGene database is updated, some
tags are retired and new ones are created, and these may
not be tracked correctly unless the same version of Uni-
Gene was used to annotate each platform. LocusLink does
not suffer from this problem as much and therefore may
be preferable in some cases. We tested three methods for
matching probe sets between U95Av2 and U133A: Uni-
Gene IDs, LocusLink IDs, and Best Match provided by
Affymetrix [21]. As shown in Table 1, there are about 9000
unique IDs shared between U95Av2 and U133A in all
three cases, with slightly more for the Best Match. The
number of probe sets involved is higher for UniGene and
LocusLink matching, since there are multiple probe sets
corresponding to the same ID in those cases. For Best
Match, the sequence mapping is restricted to many-to-one
matching.
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A schematic view of the procedureFigure 1
A schematic view of the procedure. The same RNA was hybridized on both HG-U95Av2 and HG-U133A arrays, for 14 sam-
ples. Three methods for matching the probes were considered, but the two datasets gave highly inconsistent results in cluster 
analysis and identification of differentially expressed genes. To improve the comparability in general, probe-level sequence 
information was exploited. All 25-mer probes were aligned to human genome sequences by BLAT and then filtered based on 
the length of their overlap with the probes on the other array. New expression indices were calculated using only the selected 
probes, and this results in higher reproducibility.

Table 1: Comparison of the methods for probe set matching. In the case of Best Match, the relation of probe sets between U95Av2 and 
U133A is many-to-one. The Pearson correlation coefficients of array pairs from the same biopsies were calculated and averaged for the 
assessment of comparability. The main reason for the high comparability of Best Match is the selection of the most appropriate probe 
set from the multiple matches using sequence information.

No. of matched probe sets 
(U95Av2)

No. of matched probe sets 
(U133A)

No. of unique IDs shared 
between U95Av2 and 

U133A

Mean correlation 
coefficient of array pairs

UniGene IDs 11,596 15,858 8,867 0.832 ± 0.017
LocusLink IDs 11,389 15,666 8,661 0.831 ± 0.017

Best Match 10,507 9,530 9,530 0.870 ± 0.016
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As a simple way to assess comparability, the Pearson cor-
relation coefficient between each array pair from the same
sample was calculated and the 14 correlation coefficients
were averaged. The results are summarized in Table 1.
UniGene and LocusLink matching give practically identi-
cal results. Best Match, on the other hand, shows some-
what higher reproducibility than other matching methods
(.870 vs .831–.832). The main reason for the higher
reproducibility in Best Match is most likely that more
comparable probes are chosen among multiple matches
by considering the sequence information. The overall
reproducibility, however, is surprisingly low. It has been
observed in many replicate studies that expression values
from Affymetrix arrays show high reproducibility, typi-
cally in the range of >0.98 [20,22,23]. The low correlation
coefficient is already an indication that the cross-genera-
tion comparison may not be simple. We use the Best
Match in the following sections; UniGene or LocusLink
matching performs similarly or slightly worse than Best
Match.

In a similar study [24], the authors report the average cor-
relation of .81 ± .01 between two different generations of
Affymetrix Arabidopsis arrays. But they conclude that this
reproducibility is sufficiently high and that the array gen-
erations can be compared without further manipulation
of the data. However, in our experience, this number is
much too low. In the current data set, for instance, the
samples in different disease groups give significantly
higher correlation coefficients than that. This is clearly
demonstrated later in Figure 2(b), where the arrays in the
same generation are shown to be more highly correlated
than the arrays in the same disease class.

Exactly matched probes between array generations are 
highly reproducible
There was a possibility that the lack of high correlation
between the two versions was caused by a true inconsist-
ency present in the data, perhaps due to RNA degradation
between the times when the hybridizations on the two
platforms were performed. To make sure that this was not
the case, we investigated the quality of our data by exam-
ining the subset of probes which have the exactly same
sequences between the array generations.

When we examined about 5% of probes that have the
same sequence between U95Av2 and U133A, the mean
correlation coefficient of array pairs, calculated by PM
intensity, was 0.967 ± 0.007. (A calculation using PM-MM
values also gives a very similar result.) This is similar to the
conclusion in [20] that the probe sets with exactly the
same set of probes have a very high correlation. The high
correlation in our dataset confirms that the samples and
other experimental factors were nearly identical between
the two hybridizations and that any discordant result in

comparative analysis is therefore most likely due to the
differences in the probe design of the two arrays. When we
compare the expression values between Best Match and
the exactly matched probes, we can easily see the lack of
reproducibility for the Best Match case (See Figure 2 in
Additional File 1). It is clear that the probe-level sequence
information has a large impact on the relationship
between the abundance of transcript and the reported
intensity [25] and that the use of probe sequences would
be necessary in order to choose a subset of relatively con-
sistent probes between U95Av2 and U133A for enhanced
reproducibility.

Standard probe set matching produces discordant results 
in analyses
To determine the extent to which the analysis results from
the two versions of the arrays agree, we employ the two
most frequent tools for exploratory analysis: cluster anal-
ysis and identification of differentially expressed genes.
For evaluating the compatibility in terms of cluster analy-
sis, we combined the datasets from U95Av2 and U133A
by Best Match. Then, the 28 samples were clustered by
agglomerative hierarchical clustering method with the
Pearson correlation coefficient as the distance measure.
Figure 2(a) shows the dendrogram of 28 samples. Unex-
pectedly, instead of each array pair from the same biopsy
specimen clustering together, the two array types form the
two main clusters. In other words, the most distinguishing
feature of the data is the array version, rather than the
actual characteristics of the samples. To examine the rea-
son for this incongruent result, correlation coefficients of
all the possible sample pairings of the combined dataset
were calculated. Figure 2(b) shows the correlation coeffi-
cients as a color map. The two red parts of the map (upper
left and lower right) represent the high correlation coeffi-
cients among samples from the same array version. Com-
pared to these, the correlation coefficients across U95Av2
and U133A are relatively low (lower left and upper right
parts of the map).

Next, we identified differentially expressed genes between
the DMs and other myopathies from each dataset (5 vs 9
samples), using the two-sample t-test with unequal vari-
ances (the Wilcoxon test gives very similar results). If the
two generations of arrays were comparable, the lists of dif-
ferentially expressed genes should contain many overlap-
ping genes. To increase the possibility of overlaps, we
filtered out non-expressed genes by deleting those in
which more than 75% of the samples received Absent
calls in both U95Av2 and U133A arrays. When we exam-
ine the list of genes identified in common in the two cases,
however, its length is disappointingly small. When we
look at the list of length 100 or smaller, the percentage of
overlap does not exceed 25%. The plot of the percentage
of genes common in both lists as a function of the list size
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is virtually identical to the dashed line in Figure 7b (A
detailed plot is shown in Figure 4 of Supplementary Mate-
rial). This low overlap indicates that the two array types
give highly inconsistent results and brings into question
the reliability of the highly ranked genes in either plat-
form. We do note, however, that this result must be inter-
preted in terms of the sample size and other characteristics
of the specific dataset. A low percentage is often partially

due to the presence of a large number of genes that are dif-
ferentially expressed to a similar extent in a particular
dataset, in which case a ranking of the genes would be
expected to be somewhat unstable.

Cluster analysis on the combined dataset from U95Av2 and U133AFigure 2
Cluster analysis on the combined dataset from U95Av2 and U133A. (a) The result of hierarchical clustering of 28 samples using 
the Pearson correlation coefficient as a distance measure. The dendrogram is exactly divided into the two groups representing 
U95Av2 and U133A, rather than by sample type. (b) The correlation coefficients between every two arrays in the combined 
dataset. The red (green) color corresponds to a higher (lower) value of correlation coefficient. The bias between U95Av2 and 
U133A is clearly represented here (upper left and lower right parts of the rectangle). (c) The result of clustering after gene 
scaling. Each gene expression value was scaled across the samples before combining U95Av2 and U133A datasets. In the den-
drogram, the arrays obtained from the same biopsy are now joined together in all cases. (d) The bias between U95Av2 and 
U133A has clearly disappeared by gene scaling. The dark red diagonals in the upper right and lower left parts denote the high 
correlation coefficients for the same biopsy hybridized on different arrays.
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Expression pattern of probe sets for the same gene: 35828_at in U95Av2 and 208978_at in U133A (matched by Affymetrix "Best Match")Figure 3
Expression pattern of probe sets for the same gene: 35828_at in U95Av2 and 208978_at in U133A (matched by Affymetrix 
"Best Match"). (a) The expression patterns before gene scaling. Even though their shapes are somewhat similar, their scales are 
very different, (b) The expression patterns after gene scaling. After gene scaling, the similarity in the patterns is more clearly 
visible and these genes have a comparable effect on the clustering of the samples.
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Gene scaling and data filtering can enhance comparability 
in specific situations
To understand the reason for the discordance observed in
Figure 2(a), we have examined a large number of probes.
The underlying problem, we have discovered, is due to a
large number of probe sets that exhibit similar relative
expression patterns but at different absolute levels. As an
illustration, we plot the expression pattern of one such
probe set pair, 35828_at of U95Av2 and 208978_at of
U133A, in Figure 3(a). Clearly, although the expression
patterns of these genes are similar in terms of a correlation
coefficient, their scales are very different. This behavior is
not simple to explain, but we believe it may be related to
a large amount of cross-hybridization by a subset of badly
designed probes in a probe set, especially for U95Av2.
That would have the effect of amplifying the overall
expression values.

A simple solution to this problem is to scale expression
values for each gene across samples, for instance, making
the mean to be 0 and the standard deviation to be 1. The
effect of this gene scaling on the gene pair from Figure
3(a) is illustrated in Figure 3(b). The similarity in the
expression pattern is more clearly visible and the measure-
ments for this gene are now more comparable. While the
Pearson correlations for the genes are not impacted by this
linear scaling for genes, the correlations do change for the
arrays. Figures 2(c) and 2(d) show the effect of gene scal-
ing on the clustering result and the correlation coefficient
of sample pairs, respectively. In Figure 2(c), the arrays
from each platform corresponding to the same sample are
now clustered together in every case. In Figure 2(d), the
high correlation among the arrays of same type (shown by
red colors in Figure 2(b)) is diminished and the correla-
tion between specimen samples across array types is high-
lighted (shown by dark red diagonal lines in upper right
and lower left areas). For comparing datasets in a cluster
analysis, gene scaling appears to work very well.

While gene scaling was effective in cluster analysis, it is
limited to evening the influence of different genes in a glo-
bal analysis by focusing on their patterns. It does not
enhance the comparability, for instance, in terms of iden-
tifying differentially expressed genes in most algorithms.
For that case, some simple filtering schemes could
enhance reproducibility instead. One way is to consider
only the genes that exhibit strong correlations between
the two versions. To see the impact of this on the selection
of differentially expressed genes, we calculated the overlap
for the 1,000 genes whose profiles on the two array ver-
sions were highly correlated. The result is plotted in Figure
4(a) (solid line). To make sure that the increase in the
overlap percentage is not due to the smaller number of
genes, we also calculated the overlap for bootstrap sam-
ples of same size and averaged the result in Figure 4(a)

(dashed line). As expected, data filtering by correlation
coefficients greatly improved the comparability, more
than doubling the percentage of genes in common. With
more datasets such as the one we examine here, it is in
theory possible to catalog a comprehensive list of genes
that are reproducible across arrays, and use only these
genes in subsequent comparative studies. Instead of
choosing highly-correlated gene pairs, we can also filter
data by expression values. Figure 4(b) shows the distribu-
tion of correlation coefficients for genes between the ver-
sions stratified by their average expression values. We first
note that the distribution for all genes is very wide, with
the Pearson correlation coefficient of .426 ± 390, reflect-
ing the poor concordance for the probe set values on the
two platforms. With the stratification, it is clear that
highly expressed genes tend to give more reproducible
expression patterns across the two versions, although
there still is a fraction of genes with low or even negative
correlation. The disadvantage of this type of filtering is
that, as in the filtering by correlation, it inevitably reduces
the number of probe sets for the analysis significantly.

Probe filtering by overlapping length highly improves 
reproducibility with enough probe sets for comparison
We now describe a more general method for improving
comparability by filtering at the probe level, instead of at
the probe set level. We have already observed that the
probes with exactly the same sequences on the two gener-
ations give highly reproducible values (Additional File 1,
Figure 2) but that the probe sets do not. This implies that
specific probe sequences within the same target region can
produce strikingly different results, and suggests that com-
parability would improve if we select only those probes
that have sequence similarities on the two arrays. To carry
this out, we mapped the location of all probes using BLAT,
as described in Methods. When we select a subset of
probes, we mask the rest in the raw data (cel files) and
then recompute the expression values using the same
algorithm used in MAS 5.0.

An optimal selection scheme requires a balance. On the
one hand, we would like to require as large a sequence
overlap as possible between the probes to ensure high
reproducibility. On the other hand, a stringent restriction
means that the number of usable probe sets in an array is
reduced and also that each probe set value will be less
robust because it is derived from fewer probes. Figure 5
shows the correlation coefficient of array pairs from the
same sample according to two criteria: the minimum
overlapping length (1 bp ~ 25 bp) and the minimum frac-
tion of used probes per probe set (10% ~ 100%). The lat-
ter refers to the fraction for each probe set, e.g., 30%
minimum means that at least 4 out of 11 probes for
U133A and 5 out of 16 for U95Av2 must satisfy the
Page 7 of 16
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The effect of data filtering on identification of differentially expressed genes and on correlation between array types for the same genesFigure 4
The effect of data filtering on identification of differentially expressed genes and on correlation between array types for the 
same genes. (a) Percentage of differentially expressed genes common in U95Av2 and U133A datasets. When we considered 
only the top 1,000 highly correlated genes across U95Av2 and U133A, the overlap between the lists of differentially expressed 
genes increased dramatically (solid line). For comparison, we show the result without gene selection by correlation (dashed 
line). For the latter, we subsampled a random gene set of same size repeatedly to eliminate the effect of total size; we also fil-
tered using Present and Absent calls to increase the overlaps. (b) Distribution of the correlation coefficient of probe sets strat-
ified by their mean expression value across U95Av2 and U133A. The density was estimated for upper quartiles using a 
Gaussian kernel. Filtering by expression values clearly enhances the correlation of probe sets across array types, thus improv-
ing the reproducibility in the selection of differentially expressed genes.
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sequence overlap requirement. If there are too few probes
left in a probe set, we discard the probe set as unreliable.

In Figure 5, we plot the average of the correlations for the
pairs of U95Av2 and U133 chips on which the same sam-
ple is hybridized. We see that the average correlation
improves substantially with the greater amount of
sequence overlap at all ranges. It also improves with the
minimum percentage of probes used but only slightly.
Figure 6 shows the number of usable probe set pairs
according to the same two criteria. It appears, for example,
that we can obtain highly comparable results (correlation
coefficient > 0.9) with a large number of probe sets (more

than 80%) for comparative analysis. For a given value of
minimum overlap length, we can also calculate the aver-
age number of probes per probe set (See Figure 5 in Sup-
plementary Material) in addition to the number of
retained probe sets. With 20 bp minimum overlap, more
than 90% of probe sets can be used, with the expression
levels calculated from an average of 30% of the original
probes per probe set.

To emphasize the improvement, we again show in Figure
7(a) the increase in the mean correlation coefficient of
array pairs, without any criterion on the fraction of used
probes per probe set. As a baseline, the mean correlation

Improvement in the correlation coefficients of array pairs for the same biopsy according to the minimum overlapping length (1 ~ 25 bp) and the percentage of used probes per probe set (10 ~ 100%)Figure 5
Improvement in the correlation coefficients of array pairs for the same biopsy according to the minimum overlapping length (1 
~ 25 bp) and the percentage of used probes per probe set (10 ~ 100%). The correlation coefficients are the average of 14 
arrays pairs. The probes are selected based on sequence overlap, and the probe sets with a sufficient number of such probes 
are used to recalculate the expression profiles. The correlation is enhanced with increasing number of minimum overlap length 
and, to a lesser extent, with increasing percentage of probes required for probe set.
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coefficient of array pairs using Best Match is also repre-
sented (dashed line). Enhancement in the mean
correlation coefficient of array pairs is roughly propor-
tional to the minimum overlapping length. It appears that
the mean correlation coefficient can be worse than in the
case of Best Match when the minimum overlapping
length is less than 10 bp. It is possibly because such a
small overlap constitutes enough dissimilarity as to confer
no functional relationship between the probes and
instead other good probes that do not have overlaps are
thrown away. Based on Figures 5 and 7(a), we suggest that
the minimum overlapping length of more than 18 bp is
necessary for obtaining significantly improved results in
terms of correlation coefficient of array pairs (>0.9).

Next, we show the improvement of comparability in
terms of selecting differentially expressed genes. Figure

7(b) shows the percentage of commonly identified differ-
entially expressed genes between U95Av2 data and
U133A data when the probes are filtered with minimum
overlapping length of 18 bp. The number of usable probe
set pairs in this case is more than 9,500. For comparison,
the result for the Best Match (10,507 probe set pairs) case
is also drawn (dashed line). From Figure 7(b), it is clear
that the improvement in comparability is significant,
especially when the number of selected genes is small. For
example, without the probe filtering, the lists of top 15
genes in the two data sets have no genes in common; with
filtering, 30 ~ 50% of the genes are shared. These results
demonstrate that the filtered and recomputed data sets are
more comparable with only a small reduction in the
number of usable probe sets.

The number of retained probe set pairs for comparative analysis according to the same two criteria as in Figure 5Figure 6
The number of retained probe set pairs for comparative analysis according to the same two criteria as in Figure 5.
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Effect of probe filtering on the comparability between U95Av2 and U133AFigure 7
Effect of probe filtering on the comparability between U95Av2 and U133A. (a) We plot the mean correlation coefficient of 
array pairs from the same biopsy according to the minimum overlapping length used for probe filtering. (standard deviations 
are drawn as thin dotted line.) Improvement in reproducibility is roughly proportional to the allowed minimum overlapping 
length. For comparison, the mean correlation coefficient with all 10,507 probe set pairs of Best Match is also drawn (dashed 
line). For significant enhancement in comparability, the minimum overlapping length should be more than 15 bp. (b) Improve-
ment of reproducibility in the selection of differentially expressed genes (DM vs others). Here, we compare Best Match 
(10,507 probe sets) with having a minimum overlapping length of 18 bp (9,515 probe sets). The reproducibility was markedly 
improved by probe filtering, especially for the top ranked genes.
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Deviation from the original expression profiles after probe filteringFigure 8
Deviation from the original expression profiles after probe filtering. (a) We compared the modified expression profile of each 
sample with the original one using the Spearman rank correlation coefficient. The mean correlation coefficient decreases as the 
minimum overlapping length increases. In addition, the effect of probe filtering is much stronger in U95Av2 than U133A. (b) 
Percentage of Present calls in the masked dataset compared to the original dataset. It drops down sharply after the minimum 
overlapping length of around 18 bp.
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Deviation from the original expression profile after probe 
filtering can be controlled by criterion on the overlapping 
length
A reduction in the number of usable probes inevitably
results in the deviation of the recomputed expression
values from the original values calculated using all probes.
Figure 8(a) shows the mean Spearman correlation
coefficients between the expression values using all
probes and those using only the selected probes by our
criteria. We use the Spearman correlation here to capture
the changes in the ranks of genes. As expected, the corre-
lation decreases, as more stringent criteria are applied and
a smaller subset of probes is chosen. Interestingly, the
deviation in U95Av2 arrays is much larger than in U133A
arrays, although the average fraction of used probes per
probe set in each case is similar (see Figure 5 of Supple-
mentary Material). For example, the mean correlation
coefficient is greater than 0.9 in U133A when the criterion
on the minimum overlapping length is less than 20 bp.
For the same criterion, the mean correlation coefficient is
about 0.85 in U95Av2. This appears to indicate that, in
the process of making the two versions more similar, the
larger changes occur to the expression levels in U95Av2
arrays. This result is consistent with the fact that probe
design for U133A was performed in a more principled
way than for U95Av2 and that U133A values are closer to
the true values [25]. In addition to recalculating the
expression values, the Affymetrix Present or Absent calls
can also be calculated. Figure 8(b) shows the percentage
of Present calls for each reduced group of probe sets. The
probe filtering appears to reduce the percentage of Present
calls, possibly because having fewer probes per probe set
increases the likelihood of Absent calls. The usefulness of
these calls can be debated; we simply present it here for
those who find the calls helpful. In any case, we note that
the percentage sharply drops down as the minimum over-
lapping length increases past 18 bp. Both Figures 8(a) and
8(b) indicate that 18–20 bp may be a reasonable cut-off
values for the overlap length. We note that in filtering the
probes, our goal is to simply make the expression profiles
from U95Av2 and U133A more comparable. In the proc-
ess, it is possible that this procedure sometimes results in
less accurate expression values in absolute terms. By
requiring that the probes in U133A have a sequence over-
lap with the less reliable set in U95Av2, we may be dis-
carding some useful probes and, as a result, may be
producing less accurate expression values. This is a trade-
off that we make in order to utilize other data sets for a
comparative study, but we should be aware of this fact in
subsequent analysis.

Conclusions
Comparative analysis of different microarray types has a
potential to generate more comprehensive and reliable
results by fully exploiting available data. Understanding

and resolving both the inter-platform and inter-genera-
tion data remain an important and challenging practical
issue. So far, attempts at such comparisons have been few,
and many were limited to simple observations of low cor-
relations in expression values. In this work, we provided a
more quantitative and comprehensive description of the
issues and inconsistencies through the analysis of a
unique dataset consisting of HG-U95Av2 and HG-U133A
hybridizations for each of the sample biopsies, and then
we described a general method for resolving some of the
problems.

We first observed in cluster analysis that with a standard
matching of genes, the dominant feature of the dataset is
not the sample characteristics but the array type. But we
found that for clustering, this problem can be mitigated
by rescaling each gene. We note, however, that this
method is effective under certain assumptions, e.g., that
there are enough samples for each array type and that each
dataset does not contain unrelated experiments. If two
groups of patients under study are measured on two dif-
ferent arrays, for example, a gene scaling will simply make
the samples more homogeneous and reduce the differ-
ences between the groups. We also examined the incon-
sistencies in the list of differentially expressed genes
obtained in the two cases. The overlap was very low, indi-
cating that such a list may be platform-dependent and
must be interpreted with caution. Some data filtering
steps, either by selecting a subset of genes that are empiri-
cally shown to be well-correlated between platforms or by
focusing only on highly-expressed genes, can be helpful at
times, but they do not resolve the underlying problem.

Our approach based on the probe-level sequence infor-
mation resulted in a significant improvement in the
reproducibility in terms of correlation coefficients and
selection of differentially expressed genes. As the probes
aligned to multiple regions in the genome are eliminated
and the probes that share larger segments are selected, the
expression values become more consistent. This result is
promising because it does not use data-dependent
information such as the empirical correlation for each
gene between different versions of arrays, which can only
be obtained through special datasets such as ours. We
examined the effect of the minimal sequence overlap
length and the minimum number of probes per gene on
the reproducibility, and found that, when the parameters
are chosen properly, higher correlation can be attained
while retaining a large number of probes for further anal-
ysis. We also examined the deviation from the original
data when new expression values are calculated after
probe filtering. In general, we recommend the minimum
overlapping length of 18 ~ 20 bp and that at least 10 ~
20% of probes in a probe set be present in the filtering
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step for a comparative analysis between U95Av2 and
U133A.

Combining data across multiple platforms remains a for-
midable challenge. As a first step, we have studied the
issues associated with combining data from multiple gen-
erations of a single platform and proposed one method.
From our analysis, it is clear that technological issues can
have significant effect and that one should be aware of the
potential pitfalls in studies involving more than a single
array type. In principle, the approach of selecting probes
with sequence overlaps can be applied to other array types
as well as to different versions of oligonucleotide arrays.
For example, to study expression profiles of conserved
regions across species using a different array for each spe-
cies, more accurate results may be obtained by using only
a subset of probes with sequence similarity. In each case,
appropriate criteria for the length of overlap and the
number of probes needed for a robust estimate of a probe
set value need to be investigated for different contexts, but
the results we provide in this work can serve as a guide.

Methods
Microarray data
Muscle tissue samples of 14 patients with inflammatory
myopathies were collected. Among the 14 patients, 5 had
dermatomyositis (DM) and 9 had other inflammatory
myopathies including necrotizing myopathy, inclusion
body myositis, granulomatous myositis, and
polymyositis. Because the molecular profile of DM is suf-
ficiently different from those of the rest, we can think of
the DMs as one group and the rest as the other group in a
two-group comparison [26]. Total RNA was extracted
from muscle biopsy tissues and labeled. A portion was
hybridized to HG-U95Av2 arrays; the remaining supply
was frozen and then later hybridized to HG-U133A arrays
at the same facility.

Matching probe sets between U95Av2 and U133A
Although they belong to the same oligonucleotide array
platform, the changes from the older version (U95Av2) to
the newer one (U133A) were substantial: 1) Main source
of probe selection region is different (UniGene Build 95
and 133; for the U133 set, other sequence databases such
as dbEST were extensively used for choosing the probe
selection region); 2) The number of probe pairs was
reduced from 16 to 11 for a single gene; and 3) Probe
selection method was improved [25]. The annotation for
each probe set in U95Av2 and U133A was obtained from
NetAffx Analysis Center (NetAffx annotation files (anno-
tation date: 12/10/2003)) [27]. According to the annota-
tion information, U95Av2 has 12,625 probe sets, which
are annotated by 9,091 UniGene and 8,672 LocusLink
identifiers. The newer version U133A consists of 22,283
probe sets annotated by 13,624 UniGene and 12,769

LocusLink identifiers. Here, the UniGene identifier was
assigned by matching the representative sequence of each
probe set to the UniGene database at the time of
annotation. The LocusLink identifier was derived from the
matched UniGene record (Annotation Methodology,
Affymetrix web site).

For considering variations in the probe sets for the same
transcript between different array versions, Affymetrix
provides the probe set matching tables for comparative
analysis. These matching tables were constructed based on
the sequence information of probe sets as follows [21].
First, all possible probe set pairs between two array gener-
ations were checked by their similarity in the representa-
tive sequence for selection. Among the selected probe set
pairs, "Good Match" pairs were chosen by the following
criteria: 1) Percent identity between the representative
sequences >90%; 2) Length of the representative sequence
>100 base pairs (bp); 3) At least one perfect match (PM)
probe of one array generation should be perfectly aligned
to the probe selection region of the other array generation.
In addition, "Best Match" is a subset of Good Match
selected by more stringent criteria on the similarity of
probe set pairs [21]. Best Match is used in the rest of the
paper as it performs better than Good Match in all
instances. When there is more than one probe set
matching on either or both arrays, we take the average of
the measurements.

BLAT for the alignment of probes
For improving compatibility between U95Av2 and
U133A, those probes whose sequence overlapped with
any of the probes for the same gene on the other platform
were selected. The extent of overlap necessary is described
in the Results section. First, all the perfect match (PM)
probes were aligned to the coding regions of the genome.
Of commonly used short sequence alignment tools such
as SIM4 [28], SPIDEY [29], and BLAT [30], we used BLAT
(build version 26, available at http://www.soe.ucsc.edu/
~kent/exe/ as a stand-alone program) because it appears
to be more accurate and faster than others for matching
short sequences with high sequence identity (more than
90%). BLAT has been used previously for annotating the
probe sets of HG-U95Av2 in GeneAnnot system from
Weizmann Institute of Science [31]. The alignment was
done on the human chromosome sequence Build 34 (July
2003 freeze), available at UCSC Genome Bioinformatics
(ftp://hgdownload.cse.ucsc.edu/goldenPath/hg16/chro
mosomes/[32]). We ran BLAT with its default options (-
tileSize = 11 -minMatch = 2 -minScore = 30, -minIdentity
= 90 -maxGap = 2), without the overused tile file to avoid
missing any matches. From the BLAT search result, only
the 25-mer perfect alignments were considered for further
analysis. All probes aligned to more than two regions in
genomic DNA were discarded because of the possibility of
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cross hybridization. In each matched probe set pair, the
overlapping lengths between all the possible PM probe
pairings (16 × 11) were calculated.

Filtering probes by overlapping length
The length of the overlap between probe sequences (1 bp
~ 25 bp) was used as a criterion for choosing probes for
comparative analysis. The expression values were recom-
puted each time using only the selected probes by mask-
ing out the other probes from the raw (.cel) files. The
values were calculated by the Statistical Expression
Analysis Algorithm using Microarray Suite version 5.0
(MAS 5.0) (Affymetrix, Santa Clara, CA) without linear
scaling to target intensity. MAS 5.0 is a robust estimator of
expression index based on one-step biweight estimation
algorithm, considering both perfect match (PM) and mis-
match (MM) probes. This algorithm alleviates the prob-
lem of unstable expression values to some extent when a
fraction of the probes is eliminated in our analysis.
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