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The antifungal caspofungin increases
fluoroquinolone activity against Staphylococcus
aureus biofilms by inhibiting N-acetylglucosamine
transferase
Wafi Siala1, Soňa Kucharı́ková2,3, Annabel Braem4, Jef Vleugels4, Paul M. Tulkens1,

Marie-Paule Mingeot-Leclercq1, Patrick Van Dijck 2,3 & Françoise Van Bambeke1

Biofilms play a major role in Staphylococcus aureus pathogenicity but respond poorly

to antibiotics. Here, we show that the antifungal caspofungin improves the activity of

fluoroquinolones (moxifloxacin, delafloxacin) against S. aureus biofilms grown in vitro (96-well

plates or catheters) and in vivo (murine model of implanted catheters). The degree of synergy

among different clinical isolates is inversely proportional to the expression level of ica operon,

the products of which synthesize poly-N-acetyl-glucosamine polymers, a major constituent of

biofilm matrix. In vitro, caspofungin inhibits the activity of IcaA, which shares homology with

b-1-3-glucan synthase (caspofungin’s pharmacological target in fungi). This inhibition

destructures the matrix, reduces the concentration and polymerization of exopolysaccharides

in biofilms, and increases fluoroquinolone penetration inside biofilms. Our study identifies a

bacterial target for caspofungin and indicates that IcaA inhibitors could potentially be useful

in the treatment of biofilm-related infections.
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S
taphylococcus aureus is one of the most prevalent human
pathogens in the Western world, being capable of causing
a wide spectrum of community- or hospital-acquired

infections. S. aureus healthcare-associated infections are related
to the capacity of this bacterium to form biofilms1. These consist
of complex communities of microorganisms encased in a
glycocalyx composed of DNA, proteins and polysaccharides.
Biofilms not only contribute to bacterial colonization of surfaces
but also represent a reservoir for continuing bacterial
dissemination within the body. Thus, staphylococcal biofilms
are considered as a main reason for persistence and/or recurrence
of infections like endocarditis, osteomyelitis or those associated
with indwelling medical devices2,3. These infections are also
prone to treatment failure4, ascribed to poor bacterial response
to immune defenses and antibiotics5–7. Unresponsiveness to
antibiotics is related to the facts that (i) biofilm matrix opposes
a barrier to the access of host defenses and antibiotics to
embedded bacteria, and (ii) bacteria within biofilms adopt a
dormant lifestyle poorly responsive to antibiotic action8.
Antibiotic combination has been considered as a valuable
strategy to act on staphylococcal biofilms9,10, but this approach
does not address the main pharmacokinetic issue posed by
biofilms, consisting in insufficient drug penetration within the
structure.

In strains of S. aureus expressing the ica operon, a major
constituent of the biofilm matrix is poly-N-acetyl-glucosamine
(PNAG) polymer, also referred to as polysaccharide intercellular
adhesin (PIA)5,11,12. The gene products of the icaADBC locus
include IcaA (transmembrane N-acetyl-glucosamine transferase
synthesizing short PNAG polymers13), IcaD (protein increasing
the biosynthetic efficiency of IcaA and playing a predominant
role in the synthesis of oligomers longer than 20 residues13), IcaB
(extracellular N-deacetylase enabling PNAG fixation at the
bacterial cell surface and biofilm formation1,14), and IcaC
(putative transmembrane protein initially considered as
involved in the polymerization of short chain polymers13 but
more recently, being recognized as a O-succinyltransferase
catalyzing the O-modification of PNAG during biosynthesis15).
Expression of icaA and subsequent PNAG production have
been associated with the capacity of S. aureus to produce
biofilm in vitro, including for clinical isolates collected from
device-related infections16–18. The expression of the icaADBC

locus in S. aureus depends on the genetic background of the strain
and is upregulated in vivo19. Moreover, PNAG-enriched
biofilms are effectively dispersed by the glycoside hydrolase
dispersin B, positioning this polysaccharide as an attractive
target for adjunctive therapy20,21. Yet, the applicability of
dispersin B itself in the clinics is limited to the field of wound
or catheter-related infections by its proteic nature22,23.

Several alternative, non-protein-based strategies have thus
been proposed to improve antibiotic activity against
staphylococcal biofilms24. Small molecules like quinolines25,
2-aminobenzimidazoles26 or norspermidine and guanidine or
biguanide biomimetics27 have proven effective in vitro but have
never been tested in vivo, so that their druggability is unknown.
Moreover, their mechanism of action is only partially elucidated,
making a successful lead optimization and development of more
potent analogues uncertain.

We set out to identify, amongst already approved drugs,
compounds that would act on extracellular matrix to increase
antibiotic activity against staphylococcal biofilms. This was
thought to facilitate the potential future clinical exploitation
of the results. On the basis of the importance of polysaccharidic
compounds in the matrix of staphylococcal biofilms,
we selected for this study caspofungin, an approved antifungal
echinochandin28, which acts on Candida and Aspergillus species
by inhibiting b-1-3-glucan synthase29. We used clinical isolates of
S. aureus previously demonstrated to be recalcitrant to the action
of antibiotics when grown as biofilms30. We compared two
fluoroquinolone antibiotics, namely, (a) moxifloxacin, considered
as the most potent anti-Gram-positive fluoroquinolone among
those available on the market31, but which is only modestly active
against biofilms32, and (b) delafloxacin, an even more potent
anti-Gram-positive fluoroquinolone currently in phase III of
clinical development33, which also showed more promising
activity than moxifloxacin against biofilms30.

We demonstrate that caspofungin markedly improves the
activity of both fluoroquinolones in in vitro and in vivo models of
biofilms. This synergy is due to the capacity of caspofungin to
inhibit the enzymatic activity of IcaA, which shares homology
with the fungal b-1-3-glucan synthase. Thus, we establish a
bacterial target for this class of antifungal compounds and
document a therapeutic potential of pharmacological inhibitors
of IcaA.

Table 1 | Activity of moxifloxacin and delafloxacin alone or combined with caspofungin against planktonic bacteria and
24- h-biofilms.

Strain* MICw (mg l� 1) Fluoroquinolone concentrations (mg l� 1) needed
to reduce bacterial viability in biofilms of 50%z

MXFw DFXw CASw MXF DFX

Alone þCASy Alone þCAS y

ATCC33591 (MRSA) 0.032 0.004 80 1.25 0.1 0.125 0.125
2011S027 (MSSA) 0.125 0.004 80 0.9 0.7 0.5 0.125
Surv2003/1083 (MSSA) 0.125 0.004 160 420|| 17 420|| 2
2009S025 (MRSA) 0.125 0.125 80 420 1.9 4 1
Surv2005/104 (MRSA) 2 0.125 160 420 18 420 2
Surv2005/179 (MRSA) 2 0.016 80 420 3.8 420 4
2009S028 (MRSA) 2 0.016 80 420 3.7 8 0.5
Surv2003/651 (MRSA) 2 0.125 160 420 420 420 8
Xen36 (MSSA) (bioluminescent strain
derived from S. aureus ATCC 49525)

1 0.016 80 420 10.4 420 1

*All clinical isolates belong to the epidemic CC5 or CC8 clonal complexes; see Siala et al.30 for origin and description; MSSA, methicillin susceptible S. aureus; MRSA, methicillin-resistant S. aureus.
wMIC, minimal inhibitory concentration; MXF, moxifloxacin; DFX, delafloxacin; CAS, caspofungin.
zCalculated using the Hill function fitted to the data of concentration–response experiments similar to those presented in Supplementary Fig. 3 for selected strains.
yUsed at 40 mg l� 1.
|| Effect not reached at 20 mg l� 1.
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Results
Caspofungin-fluoroquinolone activity on biofilms in vitro. In a
first set of experiments, we examined the activity of moxifloxacin
and delafloxacin alone or combined with caspofungin at a fixed
concentration (40 mg l� 1) against S. aureus mature biofilms
grown in 96-well plates. The laboratory strain ATCC33591 and
seven clinical strains, previously described as clinical isolates
forming biofilms in vitro30, were used in parallel (see Table 1 for
minimal inhibitory concentrations (MICs)). We first checked that
caspofungin did not affect the bacterial viability or biomass in
biofilms when used alone at the fixed concentration selected
(Supplementary Fig. 1). Figure 1 illustrates typical results for 4

biofilms exposed during 48 h to fluoroquinolones alone or
combined with caspofungin (data for the other four strains
under study are shown in Supplementary Fig. 2). In a first step,
we examined the effect of increasing concentrations of
fluoroquinolones on bacterial viability in biofilms, as assessed in
parallel by the measure of residual resorufin fluorescence
(bacterial metabolic activity; left axis) and of colony-forming
units (CFUs) (viable bacteria; right axis). Moxifloxacin alone
(Fig. 1a–d) was poorly active on these biofilms, reaching a
bactericidal effect (3 log10 decrease in CFUs) only against
ATCC33591 biofilm at the highest concentration tested (shown
in Supplementary Fig. 2). Delafloxacin alone (Fig. 1i–l) reached a
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Figure 1 | Effect of fluoroquinolones alone or combined with caspofungin on biofilms from four selected strains. Biofilms were incubated during 48 h in

the absence or in the presence of the drugs (moxifloxacin (a–h black) or delafloxacin (i–p blue) at increasing concentrations and used alone (a–d and i–l) or

combined (e–h and m–p) with 40 mg l� 1 caspofungin). The ordinate shows resorufin fluorescence (closed bars; left scale; expressed in percentage of the

value measured in control conditions (no fluoroquinolone added)) and CFU (open bars; right scale; expressed in log10 units). Data are the mean±s.d. of

four replicates. Statistical analysis: multiple t-tests comparing data for fluoroquinolone alone or combined with caspofungin in the same conditions:

***Po0.001; **Po0.01; *Po0.05.
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bactericidal effect against the ATCC33591 (Supplementary Fig. 2)
and 2011S027 but not against the other strains. In sharp contrast,
when fluoroquinolones were combined with caspofungin, a
bactericidal effect was observed against 3 out of 4 strains for
moxifloxacin (Fig. 1e–h) and against all strains for delafloxacin
(Fig. 1m–p), for which this effect was also reached at lower
concentrations (r4 mg l� 1). A similar improvement of activity
was observed when combining caspofungin with
fluoroquinolones against biofilms from the other strains under
study (Supplementary Fig. 2).

Because the same type of results was obtained when
determining residual viability based on CFU counts or resorufin
fluorescence, we used the latter technique to obtain full
concentration–response curves, which allowed us to determine
and compare the relative potencies of the drugs (that is, the
concentrations needed to reach a specified effect) against these
biofilms. We also evaluated in the same conditions the effect of
fluoroquinolones alone or combined with caspofungin on biofilm
biomass using crystal violet staining (Supplementary Fig. 3 for an
illustration for four selected strains). The Hill function fitted to
the data of these concentration–response curves was used to
calculate the concentrations of each fluoroquinolone (used alone
or combined with 40 mg l� 1 caspofungin) needed to reduce
bacterial viability of 25, 50 or 75% within biofilms compared with
control, and the corresponding potencies are shown graphically
in Fig. 2 for the eight strains investigated. Moxifloxacin (Fig. 2a)
alone only reduced viability of 25% in six strains and of 50% in
two strains. In contrast, its combination with caspofungin
(40 mg l� 1) achieved 75% reduction of viability for seven strains,
with only 2003/651 remaining unaffected by this treatment
(Fig. 2b). For delafloxacin alone (Fig. 2c), a 50 and 75% reduction
of viability was obtained for four and three strains, respectively, in
the range of concentrations investigated, and the corresponding
potencies were increased (lower values) when combined with
caspofungin (Fig. 2d). For two strains, however, a 75% reduction
in viability could not be achieved in the range of concentrations
tested even in combination with caspofungin (maximum
reduction observed: 65% for 2005/179 and 68% for 2009S028,
respectively). Considering then drug effects on biomass,
a reduction in crystal violet staining was observed (although to
a lesser extent than for viability) for all strains when caspofungin
was combined with delafloxacin but only for two of them
(2011S027 and 2005/179) when it was combined with
moxifloxacin.

Using the same experimental design, we also tested the effect
of caspofungin on the activity of three other widely used
antistaphylococal agents, namely vancomycin, daptomycin and
linezolid (Supplementary Table 1). Synergy with caspofungin was
observed with no strain when combined with vancomycin, for
only one strain when combined with daptomycin, and for only
four out of eight strains when combined with linezolid.

The activity of fluoroquinolones and caspofungin combined at
fixed concentrations (10 and 40 mg l� 1, respectively) was then
examined in a second in vitro model consisting in biofilms
formed inside polyurethane catheter pieces with the seven clinical
strains examined so far and with the bioluminescent strain Xen36
(Fig. 3). When tested alone, caspofungin and moxifloxacin were
ineffective in this model while delafloxacin significantly reduced
bacterial counts for all strains except 2003/651 (with residual
counts remaining, however, Z4.5 log10 CFUs for four strains).
When used in combination, a marked synergy between
each fluoroquinolone and caspofungin was observed. Thus,
moxifloxacin gained considerable activity against all strains
except 2003/651 and delafloxacin activity was improved against
five strains, including 2003/651. While the extent of synergy
widely differed between strains (with reduction in CFU varying

for moxifloxacin between 1.9 and 7.6 log10 for strains 2003/651
and 2011S027, respectively), it was more marked for
strains showing more adhesion to the catheters (2011S027 and
2003/1083).

Caspofungin-fluoroquinolone activity on biofilms in vivo. In a
next step, we assessed whether fluoroquinolones, caspofungin, or
their combination could act in vivo on S. aureus biofilms present
on catheters. Biofilms were first made in vitro and the infected
catheters implanted under the skin of BALB/c mice. Biofilms were
then allowed to develop in vivo for 24 h, after which animals were
treated twice daily with either 40 mg kg� 1 of fluoroquinolone
alone or once daily with 4 mg kg� 1 of caspofungin alone or with
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Figure 2 | Relative potencies of fluoroquinolones alone or combined

with caspofungin on biofilms. Comparison of relative potencies of fluoro-

quinolones alone (a moxifloxacin; c delafloxacin) or combined with a fixed

concentration (40 mg l� 1) of caspofungin (b and d) against biofilms. The

ordinate shows the concentrations of fluoroquinolones needed to reach 25,

50 or 75% reductions in viability as assessed by measuring residual

resorufin fluorescence. Active concentrations were calculated based on the

equation of sigmoid concentration–response curves obtained for each strain

in experiments similar to those illustrated in Supplementary Fig. 3. Each

symbol corresponds to a specific strain, as indicated on the top of the

graphs. A lower active concentrations corresponds to a higher potency. The

horizontal dotted lines separate values for which calculated concentrations

were above the actual maximal fluoroquinolone concentrations tested

(20 mg l� 1).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13286

4 NATURE COMMUNICATIONS | 7:13286 | DOI: 10.1038/ncomms13286 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


their combination for 7 days. These doses and schedules were
selected as mimicking human exposure in clinical practice taking
into consideration the shorter half-life of moxifloxacin in mice
compared with humans34–37. For delafloxacin, in the absence of
published humanized pharmacokinetic data, we selected as a
starting point a dose equivalent to that of moxifloxacin, taking
also into account its short half-live and high protein binding in
mice38. In a first experiment, we followed on a daily basis mice
with Xen36-infected catheters using bioluminescence imaging
(Fig. 4a). In untreated mice, the intensity of the bioluminescence
signal increased almost linearly from day 1 to 4 and reached
thereafter a plateau (Fig. 4b,c). No difference in signal intensity
was observed between untreated mice and those treated with
caspofungin alone. Moxifloxacin alone was also ineffective over
the whole treatment duration (Fig. 4b), but delafloxacin caused a
marked decrease in bioluminescence signal as from day 1
(Fig. 4c). When moxifloxacin was combined with caspofungin,
the bioluminescence signal was significantly lower from day 4 as
compared with mice treated by moxifloxacin alone or
caspofungin alone (Fig. 4b). When delafloxacin was combined
with caspofungin, no significant difference was observed with
animals treated by delafloxacin alone if considering the mean
values for all catheters (Fig. 4c). Yet, the establishment of the
infection was slower in part of the mice and full eradication was
achieved in one of the mice treated by the combination (compare
Fig. 4e and Fig. 4d).

The experiment was extended in the same conditions to
catheters infected by two clinical isolates against which the
combinations were respectively markedly (2011S027) or margin-
ally (2003/651) more effective in vitro than for fluoroquinolones
alone (Fig. 3). CFUs remaining on catheters were counted at day
7. As shown in Fig. 5a–f, caspofungin alone was ineffective
against all biofilms. Fluoroquinolones alone caused a limited
(B1 log10 for moxifloxacin) or a marked (4.5–7 log10 for
delafloxacin) decrease in the number of CFUs recovered from the
catheters infected by 2011S027 and Xen36 but not by 2003/651.

In contrast, the number of CFUs recovered from the catheters
was significantly lower in animals treated with the combination of
moxifloxacin and caspofungin (mean reduction of 2.1, 1.6 and
0.4 log10 CFUs for strains 2011S027, Xen36 and 2003/651,
respectively (Fig. 5a–c)) or with the combination of delafloxacin
and caspofungin for strain 2003/651 (reduction of 0.5 log10 CFUs
(Fig. 5f)). Against the two other strains, combining caspofungin
with delafloxacin allowed to achieve total (2011S027) or partial
(Xen36) sterilization but the difference was not significant with
the already impressive effect reached in mice treated with
delafloxacin alone (Fig. 5d,e). To better apprehend the potential
of combining delafloxacin with caspofungin, we therefore
performed a dose–response study, using the highly responsive
strain 2011S027 (Fig. 5g). Mice were treated with delafloxacin at
increasing doses of 10, 20 or 40 mg kg� 1 twice daily alone or
combined with caspofungin 4 mg kg� 1 once daily for 7 days and
catheter-associated CFUs were determined at the end of this
treatment. Delafloxacin activity was clearly dose-dependent over
this range, and the synergy with caspofungin was best seen at the
lowest dose (10 mg kg� 1) of delafloxacin, which was suboptimal
in monotherapy.

Electron microscopy studies of in vivo biofilms. Catheters with
biofilms made by the clinical isolate 2011S027 and recovered
from mice after in vivo treatment with moxifloxacin alone,
caspofungin alone or their combination, that is, focusing on
conditions in which the effect of the combination was most
evident, were examined by scanning electron microscopy (Fig. 6).
A massive biofilm matrix with only a few visible bacterial cells
was observed on the surface of catheters extracted from control
(saline-treated) (Fig. 6a), caspofungin- (Fig. 6b) or moxifloxacin-
treated animals (Fig. 6c). Some cracks (possibly due to the drying
process) did, however, appear on caspofungin-treated biofilms.
More strikingly, catheters extracted from animals treated with the
combination of moxifloxacin and caspofungin (Fig. 6d) showed a
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Figure 3 | Effect of caspofungin fluoroquinolones used alone or in combination on biofilms grown in catheters in vitro. Biofilms grown in catheters for

clinical isolates (a–g) and the bioluminescent strain Xen36 (h) during 24 h were exposed to caspofungin (CAS; 40 mg l� 1), fluoroquinolones alone
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after 48 h of incubation in the absence (control (CTRL)) or in the presence of the drugs. Data are means±s.d. for three catheters. Statistical analysis: bars

with different letters show data that significantly different from one another (Po0.01; one- way ANOVA with Tukey post-hoc test).
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destroyed biofilm structure, with less visible matrix and an
abundance of bacterial cells in patches spread on the surface.

Caspofungin effect on fluoroquinolone penetration in biofilms.
Previous studies have documented a correlation between the
activity of antibiotics against biofilm-encased bacteria and their
capacity to penetrate the biofilm30,39,40. Taking advantage of the
intrinsic fluorescence of fluoroquinolones, we examined their

penetration within biofilms grown on glass cover slips using
confocal laser scanning microscopy. Figure 7 shows the
concentration of fluoroquinolones in the depth of biofilms
produced by four clinical isolates and exposed to 20 mg l� 1 of
antibiotics alone or combined with 40 mg l� 1 caspofungin,
together with the corresponding microscopic images. While
fluoroquinolone penetration was important for the biofilm
produced by strain 2011S027 (Fig. 7a,e), it was minimal for the
three other strains. Combination with caspofungin largely
increased fluoroquinolone penetration not only in biofilm
produced by 2011S027 but also in those produced by
2003/1083 and 2005/179 (Fig. 7a–c, e–g). It also increased
delafloxacin (Fig. 7h) but not moxifloxacin (Fig. 7d) penetration
in biofilms produced by 2003/651.

Caspofungin effects on biofilm matrix properties. Because
poly-b(1-6)-N-acetylglucosamine is a major matrix component11,
we examined whether the enhancement of fluoroquinolone
penetration and the destructuration of biofilm matrix
induced by caspofungin could be related to a modification
in the concentration or polymerization degree of this
exopolysaccharide. To this effect, the abundance of poly-b(1-6)-
N-acetylglucosamine in biofilms was compared in control
conditions and after incubation with caspofungin, for the same
four clinical isolates and the reference strain ATCC33591, using
an anti-PNAG antiserum (Fig. 8a). Caspofungin markedly
decreased the signal for all strains, except 2003/651, suggesting
it could interfere with the metabolism of this polysaccharide.

A critical property of poly-b(1-6)-N-acetylglucosamine
as a matrix constituent is its degree of polymerization, since
hydrolysis of polymers leads to biofilm dispersal20. The influence
of caspofungin on the degree of PNAG polymerization was
therefore evaluated in biofilms from the same strains after 24 h
of culture in the absence or in the presence of 40 mg l� 1

caspofungin. To this effect, PNAG were purified from these
biofilms and submitted to a treatment by dispersin B to
release N-acetylglucosamine monomers and allow for their
quantification20 (Fig. 8b). In control conditions, more
monomers were generated by dispersin B for 2005/179 and
2003/651 than for the other strains, suggesting a higher degree
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of PNAG polymerization in the corresponding biofilms.
In caspofungin-treated biofilms, the concentration of monomers
was reduced to 50–60% in all strains except 2003/651, which
remained unaffected. This strongly suggests that caspofungin
impairs N-acetylglucosamine polymerization in biofilms formed
from strains that are susceptible to its effects.

Biofilm matrix also contains other constituents like extra-
cellular DNA and proteins. Their concentration was therefore
also evaluated in biofilms that were incubated during 48 h with
40 mg l� 1 caspofungin versus controls, but no effect was
observed, indicating that the action of caspofungin was not
unspecific (Supplementary Fig. 4).

Inhibition of N-acetylglucosamine transferase by caspofungin.
Poly-b(1-6)-N-acetylglucosamine is synthesized by enzymes
encoded by the ica operon comprising four genes (icaA, icaD icaB
and icaC). Among them, icaA encodes a membrane-located
N-acetylglucosamine transferase that catalyzes the addition of
new N-acetylglucosamine monomers to the growing polymer
(Fig. 9a)13. The mode of action of caspofungin as antifungal agent
is to prevent the incorporation of uridine diphosphate (UDP)-
glucose into b-1-3-glucan by inhibiting the fungal b-1-3-glucan
synthase29. A BLAST and clustalW analysis revealed conserved
regions between the sequence of S. aureus icaA and that of the
genes encoding b-1-3-glucan synthase from diverse fungal species
(Supplementary Fig. 5). Interestingly, these regions correspond to
conserved amino acids described as catalytic residues (Asp134;
Asp227; Arg276) in IcaA13. On the basis of the data presented in
Fig. 8, which strongly suggest an effect of caspofungin on
N-acetylglucosamine incorporation in growing PNAG polymers,
we investigated whether caspofungin could inhibit IcaA activity.
We first compared the enzymatic activity in protein extracts
prepared from strain ATCC33591 or its DicaA mutant (Fig. 9b)
and found that the enzymatic activity of the extract from the
wild-type strain was 5.62 IU mg� 1 against only 0.02 IU mg� 1

for the mutant extract. Notably, the enzymatic activity of the
wild-type extract was markedly inhibited in the presence of
40 mg l� 1 caspofungin (residual activity: 0.10 IU mg� 1). This
led us to conclude that caspofungin can inhibit bacterial
N-acetylglucosamine transferase activity.

We therefore examined the effect of increasing concentrations
of caspofungin on UDP release by extracts from ATCC33591 and
2003/651. These two strains were selected because they express
icaA, respectively, to the lowest and the highest level among the
studied strains (see Supplementary Table 2; this table also shows
the expression levels of the other genes of the ica operon).
In parallel, we also sequenced icaA in ATCC33591 and 2003/651,
looking for potential mutations that could explain differences in
caspofungin inhibition towards IcaA activity from these two
strains. As illustrated in Supplementary Fig. 6, only six silent
mutations were found in 2003/651, which did not alter the amino
acid sequence but could contribute to explain the high expression
level of icaA in this strain by an exchange in the used codon.
It has indeed been observed in several species that gene
expression levels tend to correlate with the codon usage41 and
that rare codons increase 4 to 20-fold gene expression levels42,43

possibly by making easier ribosome trafficking throughout the
coding sequence44.

As illustrated in Fig. 9c, a clear concentration-effect for the
inhibition of IcaA activity by caspofungin was obtained for
both strains, with, however, a major difference in EC50 values
(1.6 versus 9 mg l� 1, respectively). Considering then the eight
strains under investigation, we looked for a possible correlation
between (a) the concentrations of fluoroquinolones needed to
achieve a specific reduction in viability within biofilms when
combined with caspofungin and (b) the level of icaA expression.
We selected as target effect a reduction in viability of 25% for
moxifloxacin and of 50% for delafloxacin, because the latter was
more active than the former when used alone. A highly significant
correlation (Pearson’s correlation coefficient 40.84) between
these two parameters was observed (Fig. 9d,e).

Discussion
Because of the difficulties of eradicating bacterial infections
with current antibiotic treatments once biofilms are formed,
discovering innovative strategies that specifically enhance
antibiotic efficacy in this setting contributes to fill a therapeutic
gap and therefore answers a clear unmet medical need24,45,46.
Our work contributes to this effort by demonstrating the adjuvant
properties of caspofungin towards fluoroquinolone activity
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against S. aureus biofilms. This synergy is observed not only in
two in vitro models (biofilms growing in 96-well plates or on
catheters), but also in vivo, using a series of clinical isolates that
were previously demonstrated as poorly susceptible to these and
to other antibiotics when growing as biofilms in vitro30.

Caspofungin is described as an antifungal agent with no
intrinsic antibacterial activity. We present here three pieces of
convergent experimental evidence that caspofungin increases the
activity of fluoroquinolone by destructuring S. aureus biofilm
matrix through an inhibition of the bacterial N-acetylglucosamine
transferase (IcaA). First, caspofungin inhibits in vitro the

enzymatic activity of IcaA in the range of concentrations at
which it also increases fluoroquinolone activity on biofilms.
Second, caspofungin decreases the concentration and the degree
of polymerization of poly-b(1-6)-N-acetylglucosamine in bio-
films. Third, while the degree of synergy between caspofungin
and fluoroquinolones markedly differs among the two antibiotics
tested as well as among strains, it correlates with the respective
level of expression of icaA in these strains. Although unexpected,
inhibition of bacterial IcaA by caspofungin can be rationalized by
the fact that it is a homologue of b-1-3-glucan synthase, the
fungal target of caspofungin. While caspofungin proved effective
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Figure 7 | Effect of caspofungin on fluoroquinolone penetration within biofilms. (a–d) Moxifloxacin (MXF); (e–h) delafloxacin (DFX). The graphs

compare the concentration of fluoroquinolone in biofilms incubated with 20 mg l� 1 of fluoroquinolone alone (MXF or DFX) or combined with
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The tridimensional images were obtained using confocal laser scanning microscopy for the corresponding biofilms stained either with 0.5 mM of

5-cyano-2,3-ditolyl tetrazolium chloride (red signal: MXF experiment) or with LIVE/DEAD (green signal: living bacteria; red: dead bacteria). The

moxifloxacin fluorescence signal appears as green (preventing us from using LIVE/DEAD staining of the corresponding biofilm) and the delafloxacin signal,

in blue. Scale bars, 20mm.
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to inhibit poly-b(1-6)-N-acetylglucosamine polymerization in
bacterial membrane extracts and to disperse it within biofilms,
it only exerted modest effects on the biomass or on the three-
dimensional structure of biofilms in the absence of moxifloxacin.
This suggests that bacterial killing (by an antibiotic) is required to
observe an effective disruption of the biofilm. This hypothesis is
coherent with the observation that bacterial death within biofilms
is associated with a facilitation of biofilm dispersal, related to the
creation of voids within the matrix47,48. The main role of
caspofungin, therefore, would be to increase the ability of
fluoroquinolones to penetrate more deeply into the biofilm by
decreasing the amount and/or the degree of polymerization of
N-acetyl-glucosamine polymer present in the matrix network. We
previously demonstrated that the bacterial killing exerted by
delafloxacin towards bacteria present in biofilms formed by the
same strains is strictly dependent on its capacity to penetrate the
matrix30. We complement this observation here by showing that
its killing activity is much lower against those strains that express
icaA to high levels, in close correlation with its decreased
penetration in the biofilm. We also extend this observation to
another fluoroquinolone, moxifloxacin. This is coherent with
the fact that, beside their contribution in bacterial adhesion
and aggregation, exopolysaccharides are also critical for the
maintenance of the biofilm architecture and viscoelastic

properties49,50, playing, therefore, a key role in limiting
antibiotic penetration. Supporting this specific role for
exopolysaccharides, planktonic cultures of S. aureus that
spontaneously form aggregates because of a production of these
polymers have been also shown to be refractory to antibiotic
activity, but to regain susceptibility on disruption of the
aggregates by sonication51. Thus, caspofungin can be
considered as a dispersal agent capable of improving antibiotic
activity against biofilms in a similar way as enzymes such as
dispersin B, proteinase K or DNase I22,52,53. However, we show
here that its association with a fluoroquinolone antibiotic is
essential for maximal efficacy. The key advantage of combining a
dispersal agent and a bactericidal antibiotic is, indeed, that the
latter also acts on planktonic bacteria, which may avoid the
spreading of bacterial clumps released from the matrix on
dispersal and the subsequent reestablishment of a biofilm
elsewhere.

Our work has two main limitations. First, synergy was mainly
demonstrated for fluoroquinolones and was not observed or
only in a limited fashion for two other well established
anti-staphylococcal antibiotics. For vancomycin and daptomycin,
this may partly be due to their large molecular mass (1,449
and 1,620 g mol� 1, respectively) versus fluoroquinolones
(B400 g mol� 1), that may hamper their ability to diffuse into
the biofilm30 even if disrupted by caspofungin. For linezolid, for
which the molecular mass (337 g mol� 1) is lower than that of
fluoroquinolones, this could be due to its bacteriostatic effect
against S. aureus, thus limiting its overall activity. Beside
antibiotic properties, we cannot exclude that other matrix
properties can contribute to prevent antibiotic action. Yet, we
did not find any relationship between antibiotic loss of activity
and the biofilm content in other major constituents like proteins
or extracellular DNA. Likewise, we did not observe significant
differences among strains in the expression levels of icaC, which
encodes an O-succinyltransferase that is thought to influence
biofilm accumulation15. A second limitation of our study is that
we only examined biofilms formed from S. aureus, whereas those
formed by related species such as Staphylococcus epidermidis are
also clinically relevant. Interestingly, this organism also expresses
the ica locus and produces a poly-b(1-6)-N-acetylglucosamine-
rich matrix54,55.

In spite of these limitations, and although remaining focused
on in vitro and animal demonstrations, our finding may have
important clinical implications. First, the synergistic effects
observed in vivo were obtained while using caspofungin and
fluoroquinolones at doses that are clinically relevant, suggesting
they could be also observed in humans. Second, S. aureus strains
expressing the ica locus are highly prevalent in biofilm-related
infections. A recent study showed that 85.6% of strains collected
from human or bovine infections expressed ica genes, among
which 95.4% were biofilm producers18. Likewise, in a collection of
strains causing catheter-related urinary infections, 88.6% were
biofilm-producers and all of them expressed the ica locus16. In
this context, an Argentinian study showed that 35% of strains
collected in nasal swabs from hospitalized patients or from staff
are ica-positive and that all were slime producers56. Conversely,
ica-negative strains producing slime have been rarely described in
S. aureus infection57, underlining the interest of detecting icaA
expression in clinical isolates prior using inhibitors of IcaA as
adjuvant therapy. Third, we document the promising activity
of delafloxacin, a fluoroquinolone in clinical development,
against staphylococcal biofilms, especially when combined with
caspofungin against strains expressing icaA to high levels. Fourth,
and perhaps more importantly, no usable pharmacological
inhibitor of IcaA has been described so far, and we have
identified here an agent that is already approved for clinical use in
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triplicates. Statistical analysis (two-way ANOVA; Tukey post-hoc test):

groups with different letters (caps: control; small letters: þCAS) are

significantly different from one another (Po0.05); *** (Po0.001):

comparison of control to CAS for each individual strain.
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fungal infections. Although caspofungin is a low-affinity inhibitor
of IcaA, our results warrant further studies to validate such
inhibitors as potential adjuvants for antibiofilm antibiotherapy.

We fully realize that administering caspofungin to patients who
are not infected by fungi could affect the fungal flora. We hope
that our work will stimulate research for development of more
potent IcaA inhibitors acting specifically on the staphylococcal
enzyme and devoid of antifungal activity.

Methods
Materials. Microbiological standards or solutions for injection were obtained from
the following sources: moxifloxacin HCl (powder potency: 90.9%, from Bayer
HealthCare; Leverkusen, Germany; a solution for injection was prepared in NaCl
0.9%); B.5.delafloxacin (powder potency: 95.7%) and its intravenous formulation,
from Melinta Therapeutics (New Haven, CT, USA); caspofungin diacetate (powder
potency: 90.1%), from Sigma-Aldrich (St Louis, MO, USA) and Cancidas, from

MSD (Brussels, Belgium). The other antibiotics were used as powder or solution for
injection approved for human use in Belgium and complying with the provisions of
the European Pharmacopoeia (vancomycin as Vancomycine Mylan, Mylan Inc,
Canonsburg, PA, USA; linezolid as Zyvoxid, Pfizer Inc. (New York, NY, USA);
daptomycin as Cubicin, Novartis (Horsham, UK)). Media for bacterial culture were
from Becton Dickinson Company (Franklin Lakes, NJ, USA).

Bacterial strains. The S. aureus ATCC33591 (methicillin-resistant) strain was
used as reference strain. Seven clinical strains isolated from various human
anatomical sites but all belonging to the pandemic clonal complexes CC5 or CC8 of
S. aureus were selected from the collection of the Belgian Reference Centre for
S. aureus (Hôpital Erasme, Université libre de Bruxelles, Brussels) (Table 1).
The bioluminescent strain Xen36 (Caliper Life Sciences, Hopkinton, MA, USA)
was originally derived from S. aureus ATCC49525 and expresses a stable copy
of a modified Photorhabdus luminescens luxABCDE operon58,59. MICs were
determined by microdilution assay according to the recommendations of the
Clinical & Laboratory Standards Institute60 (Table 1).
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Figure 9 | Ica A (N-acetylglucosamine transferase) activity and its inhibition by caspofungin. (a) Reaction catalyzed by IcaA. (b) Activity of IcaA in

membrane protein extracts from strain ATCC33591 and its DicaA mutant; increasing concentrations of extracts (1.25–80mgml� 1) were incubated with

40 mM UDP-GlcNAc and 400 mM N-acetylglucosamine without (ATCC33591 and DicaA) or with 40 mg l� 1 caspofungin (ATCC33591þCAS) during

120 min; activity was evaluated by the amount of UDP liberated in the reaction medium; all data are means±s.d. of triplicates. (c) Inhibition of IcaA activity

in membrane protein extracts from strain ATCC33591 or the clinical isolate 2003/651 (both at 80 mg ml� 1) exposed to increasing concentrations of

caspofungin (CAS) during 120 min; all data are means±s.d. of triplicates; (d,e): correlation between the icaA relative expression and the relative potency of

the fluoroquinolone–caspofungin combinations against biofilms. Each symbol corresponds to a specific strain. Fluoroquinolone potency is expressed as the

concentration needed to reduce of 25% (C25; for moxifloxacin (d)) or of 50% (C50; for delafloxacin (e)) the bacterial viability within biofilms exposed to

the fluoroquinolone combined with 40 mg l� 1 caspofungin (data from Fig. 2). The graph shows the actual data (symbols; bivariate fit) surrounded by the

bivariate normal ellipse for 95% confidence interval (r is the Pearson’s correlation coefficient).
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In vitro biofilm model. Mature biofilms were obtained by growing bacterial strains
for 24 h in 96-well tissue culture plates (VWR (Radnor, PA, USA); European cat.
number 734-2327) in Trypticase Soy Broth supplemented with 2% NaCl and 1%
glucose, with a starting inoculum adjusted to an optical density at 620 nm
(OD620nm) of 0.005 in a volume of 200 ml, as previously described32. Biofilms were
then exposed for 48 h to antibiotics (concentration range: 0.125–20 mg l� 1) alone
or in combination with caspofungin (40 mg l� 1). Bacterial viability in the biofilm
was measured using the redox indicator resazurin, as previously described30,32, or
by CFU counting. To this effect, biofilms were washed twice with phosphate buffer
saline (PBS), sonicated (Branson 5510 Ultrasonics bath) for 10 min in 1 ml PBS and
diluted aliquots were plated on tryptic soy agar (TSA) plates to allow CFU counting
after overnight incubation. Biofilm biomass was determined using crystal violet
staining, following a published procedure30,32. In brief, at the end of the incubation
period, the medium was removed and wells were washed with PBS, fixed at 60 �C
for 1 h and stained by a 2.3% crystal violet solution prepared in ethanol 20%
(Sigma-Aldrich). After elimination of the dye in excess under running water,
crystal violet fixed to the biofilm was resolubilized by addition of 33% glacial acetic
acid and incubation at room temperature for 1 h. Absorbance was read at 570 nm.

Biofilm grown on catheters in vitro. Biofilms were studied inside triple-lumen
polyurethane central venous catheters (Certofix duo/trio; B. Braun Melsungen AG,
Melsungen, Germany) as described earlier61. Briefly, 1 cm long catheters were
incubated overnight in 100% fetal bovine serum (Sigma-Aldrich). Catheters were
incubated 90 min at 37 �C in trypticase soy broth supplemented with 2% NaCl and
1% glucose with bacterial strains at an initial density of 0.005 to allow adhesion,
then transferred to new medium and incubated during 24 h. Biofilms were then
exposed to 10 mg l� 1 fluoroquinolone, 40 mg l� 1 caspofungin or their
combination for 48 h. Catheter pieces were washed with PBS, sonicated and diluted
before plating on TSA and CFU counting, as described in the previous paragraph.

Murine subcutaneous biofilm model. Female pathogen-free 20 g 8-week old
BALB/c mice (Janvier Labs, Saint Berthevin, France) were kept individually in
ventilated cages and provided with food and water ad libitum. All animal experi-
ments were performed in accordance with the regulations and approval of the
Ethical Committee of KULeuven (project number P125/2011). Animals were
immunosuppressed by adding 0.4 mg l� 1 dexamethasone (Organon Laboratories
Limited, Cambridge, UK) in their drinking water 24 h before the catheter implant
and during the whole experiment. Biofilms were studied using clinical isolates
(2011S027 or 2003/651) or the bioluminescent strain (Xen36). Serum-coated
catheters were incubated with the bacteria during the period of adhesion (90 min at
37 �C) as described above. Afterwards, catheters were washed twice with PBS and
subsequently implanted subcutaneously in the back of mice as described hereunder.
First, general anaesthesia was achieved by intraperitoneal injection of a mixture of
45 mg kg� 1 ketamine (Ketamine1000; Pfizer, Puurs, Belgium) and 0.6 mg kg� 1

medetomidine (Domitor; Pfizer) and local anaesthesia by application of a 2%
xylocaine (AstraZeneca BV, Zoetermeer, Netherlands) on the skin. The lower back
of the mice was then shaved and disinfected with 0.5% chlorhexidine in 70%
alcohol. A 10 mm incision was made longitudinally and five catheter fragments
were implanted per mouse. Biofilms were allowed to mature in vivo for 24 h before
treatment. Fluoroquinolones and caspofungin were administered intraperitoneally.
Whereas caspofungin was administered once daily (4 mg kg� 1 of body weight),
fluoroquinolones (up to 40 mg kg� 1 of body weight) were injected twice daily for
7 days. A control group of animals was injected twice daily with saline only. After
7 days of treatment, animals were killed by cervical dislocation and catheters were
removed, washed twice with PBS (to remove non-device associated bacteria) and
sonicated. The number of viable bacteria recovered from the biofilms was then
quantified by CFU counting after plating and overnight growth at 37 �C.

In vivo bioluminescent imaging. Biofilms made with the bioluminescent strain
Xen36 were prepared and animal treated exactly as described above. Mice were
imaged every day using an In Vivo Imaging System (IVIS Spectrum, Perkin-Elmer,
Waltham, MA, USA). During the imaging, mice were anaesthetized using a gas
mixture of isoflurane in oxygen (1.5–2%) and placed by groups of four animals in
the apparatus. Frames were acquired with a field of view of 23 cm. Consecutive
scans with acquisition time of 5 min (binning 2) were acquired until maximal
signal intensity was reached. The signal was quantified by using Living Image
software (version 4.0, Perkin-Elmer) and reported as photon flux per second
(p s� 1) for a rectangular region of interest placed over each five catheters)62.

Scanning electron microscopy. Mounted samples were sputter-coated with
Au–Pd and viewed using a scanning electron microscope operated at standard high
vacuum settings at a 10-mm working distance and 10-keV accelerating voltage
(FEI XL30-FEG microscope, Philips Nederland B.V., Eindhoven, the Netherlands).

Confocal laser scanning microscopy for visualization of biofilms. Biofilm
samples were imaged using a Cell Observer s.d. confocal fluorescent microscope
(Carl Zeiss AG, Oberkochen, Germany) using spinning disc technology (Yokogawa
Electric Corporation, Tokyo, Japan) and controlled by the AxioVision software

(AxioVs40 V 4.8.2.0; Zeiss). Optimal confocal settings (camera exposure time,
CSU disk speed) were determined in preliminary experiments. Image stacks of each
sample were acquired at a resolution of 700� 500 pixels and recorded using
Z-Stack module for acquisition of image series from different focus planes and used
to construct three-dimensional images with AxioVision software.

Fluoroquinolone penetration within biofilms. Twenty-four hour biofilms were
grown on cover slips and incubated for 1 h with 20 mg l� 1 fluoroquinolone alone
or in combination with 40 mg l� 1 caspofungin. Biofilms were washed twice with
1 ml PBS and stained for 30 min in the dark with LIVE/DEAD bacterial viability
kit (L-7007; Thermo Fisher Scientific, Waltham, MA, USA) or with 0.5 mM
5-cyano-2,3-ditolyl tetrazolium chloride (CTC) (RedoxSensor vitality kit;
Invitrogen, Carlsbad, CA, USA), as described previously30. CTC is a colourless,
non-fluorescent and membrane permeable compound, which is readily reduced
via electron transport activity to fluorescent, insoluble CTC-formazan that
accumulates inside bacteria63. Stained biofilms were then washed with 1 ml PBS
buffer. Excitation/emission wavelengths were set as follows: 415 nm/500–550 nm
for moxifloxacin; 395 nm/450 nm for delafloxacin, 488 nm/570–620 nm for
CTC-formazan signal, 488 nm/500–550 nm for Syto 9 and 561 nm/570–620 nm for
propidium iodide (LIVE/DEAD staining). Fluoroquinolone concentrations within
biofilms were then calculated using calibration curves built using fluoroquinolone
solutions (concentrations ranging from 5 to 50 mg l� 1) examined in the
microscope using the same settings as for samples30.

PNAG purification and immunoblot analysis. PNAG was extracted as previously
described64. Briefly, biofilms were resuspended in PBS, centrifuged and
resuspended in 0.5 M EDTA, and incubated at 100 �C for 5 min and at 85 �C for
30 min. After a new centrifugation, the supernatant was first dialyzed against
deionized water for 18 h and then against a buffer (50 mM Tris–HCl pH 8; 20 mM
MgCl2) for 18 h (cut-off of dialysis membrane: 2 kDa). The crude polysaccharide
preparation was treated with 100mg ml� 1 a-amylase, 500 mg ml� 1 lysozyme,
250 mg ml� 1 DNase I and 100 mg ml� 1 RNase A at 37 �C for 2 h, then by
2 mg ml� 1 proteinase K for 16 h at 55 �C in the presence of 1 mM CaCl2 and 0.5%
sodium dodecyl sulfate. The samples were then incubated at 85 �C for 1 h to
inactivate proteinase K and dialyzed against deionized water for 18 h.
Polysaccharide preparations were then lyophilized and dissolved in 200 ml PBS.
A 20ml aliquot was spotted onto a PVDF membrane, which was air-dried and
blocked with 0.5% milk in TBS buffer (150 mM NaCl and 10 mM Tris–HCl
(pH 7.4)) overnight at 4 �C. The membrane was then incubated overnight at 4 �C
with PNAG antiserum (1:4,000)65 (kindly provided Dr Gerald B. Pier; Brigham and
Women’s Hospital, Boston, MA, USA), washed and probed with 1:5,000 goat
anti-rabbit HRP for 2 h. Spots were visualized with the SuperSignal West Pico
Chemiluminescent Substrate kit (Thermo Fisher Scientific) and analyzed using the
FUSION-CAP Software (Analis, Belgium).

GlcNAc determination by Morgan–Elson assay with fluorimetric detection.
Purified PNAG (125 ml) was incubated with 0.1% dispersin B (Symbiose, Belgium)
for 1 h at 37 �C to cleave them in N-acetylglucosamine (GlcNAc) monomers
(note that the dialysis steps performed during the purification procedure
allowed to eliminate the pre-formed monomeric forms). These were quantified
by the Morgan–Elson reaction66. The sample was added by 25ml of tetraborate
reagent (K2B4O7 � 4H2O 0.8 M; 3 min at 100 �C), then by 0.75 ml of
p-dimethylaminobenzaldehyde reagent (prepared as described67; 10 min
incubation at 37 �C). The released reducing terminal GlcNAc in the supernatant
were quantified in the supernate (recovered after 30 s centrifugation at 8,000g)
by fluorimetry (lexc: 545 nm; lem: 604 nm)68 based on a calibration curve
constructed using GlcNAc standards (Sigma-Aldrich).

Assay of proteins and DNA in biofilms. Biofilms were grown in 6-wells plates
during 24 h after which they were incubated during 48 h in the presence of
40 mg l� 1 caspofungin or in control conditions. Extracellular DNA (eDNA) was
quantified as previously described69. In brief, biofilms were washed twice and
chilled at 4 �C for 1 h, after which 500ml of 0.5 M EDTA was added to each well.
After centrifugation (5 min, 12,000g), supernatants were discarded, and biofilms
were resuspended in eDNA extraction solution (50 mM Tris �HCl, 10 mM EDTA,
500 mM NaCl, pH 8) and transferred into chilled tubes. After centrifugation
(5 min; 4 �C; 18,000g), 100ml of supernatant was transferred to a tube containing
300 ml of TE buffer (10 mM Tris �HCl, 1 mM EDTA, pH 8), and extracted once
with an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) and once
with chloroform/isoamyl alcohol (24:1). The aqueous phase of each sample was
then mixed with three volumes of ice-cold 100% (vol/vol) ethanol and 1/10 volume
of 3 M sodium acetate (pH 5.2) and stored at � 20 �C. The next day, the ethanol-
precipitated DNA was collected by centrifugation (20 min; 4 �C; 18,000 g), washed
with ice-cold 70% (vol/vol) ethanol, air-dried and dissolved in 20 ml TE buffer.
DNA concentration was then determined with NanoDrop Ultraviolet–vis
spectrophotometer (Thermo Fisher Scientific). Total proteins were quantified
following a described procedure70. Biofilm cells were pelleted by centrifugation at
5,500g for 10 min. Proteins present in the supernatant were precipitated by
trichloroacetic acid (TCA). Biofilm cells were gently resuspended in 5 ml PBS
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(pH 10) containing complete Protease Inhibitor Cocktail (Roche Life Science,
Penzberg, Germany) (according to manufacturer’s instruction). Cells were
incubated at 4 �C with gentle rotation for 1 h and debris pelleted by centrifugation
at 5,500g for 10 min. Proteins for biofilms supernatants and biofilms cells were then
assayed using Bradford method.

Determination of the N-acetylglucosamine transferase activity in vitro.
Protein extracts from membranes of ATCC33591 and of its DicaA mutant (a kind
gift from Prof. Friedrich Götz, Universität Tübingen, Germany) were prepared as
follows. Fifty ml of overnight cultures were collected by centrifugation, and cell
pellets were resuspended in 500ml of buffer A (50 mM Tris–HCl, pH 7.5, 10 mM
MgCl2, 4 mM dithiothreitol). Cells were disrupted by 3� 1 min vortexing in Corex
tubes with glass beads (Sigma-Aldrich) (diameter of 0.3–0.60 mm; two times the
weight of the cell pellet). DNase I (20 mg ml� 1) was added before breaking the cells.
Unbroken cells and glass beads were sedimented (10 min, 2,000g), and the
supernatant was saved. The procedure was repeated twice and all supernatants
were combined. Membranes were sedimented from the crude extract by
centrifugation (40 min, 20,000g), resuspended in buffer A, extracted with 2% (w/v)
Triton X-100 (in buffer A) for 2 h with gentle shaking, sedimented again, washed
once with buffer A and resuspended in 1 ml of buffer A. Protein concentrations
were determined by the Lowry’s method.

To determine N-acetylglucosamine transferase activity, increasing
concentrations (1.25–80 mg ml� 1) of membrane extracts were incubated for 2 h at
37 �C in 250 mM MES-NaOH buffer pH 6.25 containing 40 mM UDP-GlcNAc,
20 mM MnCl2, 400 mM N-acetylglucosamine, 1% (w/v) Triton X-100, in a total
volume of 50 ml. The reaction was stopped by addition of 50 ml of Milli-Q water and
boiling for 2 min. The mixture was then centrifuged at 20,000g for 5 min to remove
denatured proteins and then supernatant was collected. The N-acetylglucosamine
transferase activity was evaluated by measuring the amount of UDP liberated in the
reaction using the Transcreener UDP2 FP Kit (BellBrook Labs, Madison,
WI, USA), according to the manufacturer’s recommendations. Fluorescence
polarization was measured using a Perkin-Elmer LS55 fluorimeter (Perkin-Elmer).
UDP concentration was then calculated based on a titration curve established as
described in Supplementary Fig. 7.

RNA isolation from biofilms and quantitative real-time PCR. RNAs were
isolated from 24 h-old biofilms. Biofilms formed in 6-well polystyrene plates were
washed thrice with sterile distilled water. Bacterial cells were detached by rapid
scraping and resuspended in cold sterile distilled water. Suspensions were
immediately incubated with 1 ml of RNA protect (Qiagen GmbH, Hilden,
Germany), vortexed for 5 s and incubated for 5 min at room temperature, and
pelleted by centrifugation at 10,000g for 10 min. Cell pellets were resuspended in
100ml of 4 �C sterile RNase-free distilled water (Qiagen). Total RNA was isolated
using RNeasy mini kit (Qiagen). The RNA quality and quantity was checked by
agarose gel electrophoresis and by measuring the absorbance at 260 and 280 nm
using a NanoDropM spectrophotometer. Purified RNA was immediately converted
to cDNA using transcription first strand cDNA synthesis kit (Roche Applied Sci-
ence) with random hexamer primers according to the manufacturer’s instructions.
Quantitative PCR reactions were performed in triplicates in 96-well plates using
2 ml of cDNA, 10ml of SYBR Green Master Mix, 0.5 ml of 100 mM of each primer,
and 7 ml of sterile RNase-free water. The following primers were used: icaA gene
forward (50-CGAGAAAAAGAATATGGCTG-30) and reverse (50-ACCATGTTGC
GTAACCACCT-30); 16s rRNA gene forward (50-CGAAGGCGACTTTCTGG
TCT-30) reverse (50-TACTCCCCAGGCGGAGTGCT-30). The reaction was started
with an initial denaturation at 95 �C for 5 min, followed by 40 amplification
cycles of 95 �C for 20 s, 60 �C for 20 s and 72 �C for 20 s. The X-fold change of
transcription level was calculated using a relative standard curve method as
described previously71.

Sequencing icaA gene. cDNA from the ATCC33591 strain and from the
2003/651 isolate were amplified via PCR using Phusion High-Fidelity DNA
Polymerase following manufacturer’s protocol (Thermo Fischer Scientific). The
primers used for DNA amplification were icaAfwd:50-GTTATCAATAATCTTATC
CTT-30 and icaArev: 50-AGTTTCAAATATATCTAAAAT-30 . The PCR product
(1611pb) was sequenced at Beckman Coulter Genomics facilities (Beckman Coulter
Genomics, Takeley, Essex, UK) following Sanger protocol. The primers used for
DNA sequencing were icaAfwd; icaArev and seqicaAREV: 50-CCAATGTTTCT
GGAACCAACA-30 .

Data analyses and statistical analyses. Curve-fitting analyses of concentration-
effect relationships were made with GraphPad Prism version 4.03 or version 7.01
(GraphPad Software, San Diego, CA, USA) and correlations with JMP Pro version
12.1.0 (SAS Institute, Marlow, Buckinghamshire, UK). Statistical analyses were
made with GraphPad Instat version 3.06 (GraphPad Software) or GraphPad
version 7.01.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files.
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