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Abstract: Animal coronaviruses (CoVs) have been identified to be the origin of Severe Acute Res-
piratory Syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and probably
SARS-CoV-2 that cause severe to fatal diseases in humans. Variations of zoonotic coronaviruses
pose potential threats to global human beings. To overcome this problem, we focused on the main
protease (Mpro), which is an evolutionary conserved viral protein among different coronaviruses.
The broad-spectrum anti-coronaviral drug, GC376, was repurposed to target canine coronavirus
(CCoV), which causes gastrointestinal infections in dogs. We found that GC376 can efficiently block
the protease activity of CCoV Mpro and can thermodynamically stabilize its folding. The structure
of CCoV Mpro in complex with GC376 was subsequently determined at 2.75 Å. GC376 reacts with
the catalytic residue C144 of CCoV Mpro and forms an (R)- or (S)-configuration of hemithioacetal. A
structural comparison of CCoV Mpro and other animal CoV Mpros with SARS-CoV-2 Mpro revealed
three important structural determinants in a substrate-binding pocket that dictate entry and release
of substrates. As compared with the conserved A141 of the S1 site and P188 of the S4 site in animal
coronaviral Mpros, SARS-CoV-2 Mpro contains N142 and Q189 at equivalent positions which are
considered to be more catalytically compatible. Furthermore, the conserved loop with residues
46–49 in animal coronaviral Mpros has been replaced by a stable α-helix in SARS-CoV-2 Mpro. In
addition, the species-specific dimerization interface also influences the catalytic efficiency of CoV
Mpros. Conclusively, the structural information of this study provides mechanistic insights into the
ligand binding and dimerization of CoV Mpros among different species.
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1. Introduction

Coronaviruses (CoVs) are enveloped RNA viruses that contain positive-sense single-
stranded RNA genomes of about 32 kb [1]. Human and animal CoVs generally cause respi-
ratory and enteric diseases [1]. The recent outbreak of coronavirus disease 2019 (COVID-19)
caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) showed us
that CoVs could result in fatal diseases in human and could have huge economic impacts
globally [2]. The origin of SARS-CoV-2 is still unclear, but the origin of SARS-CoV [3] and
Middle East respiratory syndrome coronavirus (MERS-CoV) [4] have both been identified
in bats. Therefore, animals are considered to be natural reservoirs or intermediate hosts for
cross-species transmission of CoVs to humans [5]. Coronaviruses belong to the Coronaviri-
dae family and can be divided into four genera, Alphacoronavirus (α-CoV), Betacoronavirus
(β-CoV), Gammacoronavirus (γ-CoV), and Deltacoronavirus (δ-CoV) [6]. The common
coronaviruses that belong to α-CoV include feline infectious peritonitis virus (FIPV) that
causes fatal infection in cats, porcine epidemic diarrhea virus (PEDV) that infects neonatal
piglets and has caused a severe outbreak in China [7], and canine coronavirus (CCoV) that
causes gastrointestinal infection in dogs [8]. The Tylonycteris bat CoV HKU4, Pipistrellus bat
CoV HKU5, and SAR-related civet coronavirus (SARSr-CiCoV), which are closely related
to SARS-CoV and MERS-CoV, all belong to β-CoV [9]. Humans can be infected by both
α-CoV (human coronavirus (HCoV) 229E and HCoV-NL63) and β-CoV (HCoV-HKU1 and
HCoV-OC43) [10]. Chickens are only infected by γ-CoV, such as the infectious bronchitis
virus (IBV) [11].

Although divergent coronaviruses have evolved to date, the central replication ma-
chinery of them is similar. The genomes of coronaviruses usually encode a long polypeptide
which must be cleaved by main protease (alternatively named 3-chymotrypsin-like pro-
tease, 3CLpro) for maturation of several critical components of viral replication machinery.
The coronaviral Mpro utilizes a catalytic dyad of conserved cysteine and histidine to cleave
the peptide bond at the C-terminal side of glutamine residue. The highly conserved cat-
alytic mechanism of coronaviral Mpro makes it an attractive therapeutic target for antiviral
drug design. In fact, the di-peptidyl bisulfite adduct, GC376, has been successfully applied
to treat feline infectious peritonitis in cats [12,13]. Encouraged by this success, GC376 has
been widely tested for its in vitro and in vivo efficacy against various coronaviruses, includ-
ing TGEV (transmissible gastroenteritis virus) [14], FIPV [12], PEDV [15], SARS-CoV [16],
MERS-CoV [17], and SARS-CoV-2 [16,18]. In our previous study, we structurally character-
ized the direct binding of GC376 by SARS-CoV-2 Mpro, supporting its development as a
broad-spectrum antiviral drug [19].

As the closest animals to humans, dogs and cats have the largest potential to be the
intermediate hosts to transmit animal or SARS-CoV-related coronaviruses to humans [20].
It has been reported that SARS-CoV-2 RNA was detected in dogs from households of
COVID-19 patients in Hong Kong and Italy [21]. Moreover, the SARS-CoV-2 Omicron
variant (B.1.1.529) has recently been detected in cats and dogs living with COVID-19
patients in Spain [22]. Another concern is the potential threats of animal CoV variations
which may cause the next global pandemic. The novel CCoV strain, which harbors sequence
variations in the spike gene, was identified in eight hospitalized patients with pneumonia
in Malaysia [23]. Thus, surveillance of domestic animals living with humans is important
for public health.

To better understand the similarities and differences between human and animal
CoVs, we resolved the crystal structure of CCoV Mpro in complex with the broad-spectrum
anti-coronaviral drug, GC376. The structural comparison between the CCoV Mpro_GC376
and SARS-CoV-2 Mpro_GC376 complexes revealed several distinct structural features that
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differentiated both of them. The structural information provided here should be very
helpful for anti-coronaviral drug design to prevent or treat coronavirus-causing diseases
in dogs.

2. Results
2.1. GC376 Is a Potential Lead Compound against CCoV Mpro

The Medical Subject Headings (MeSH) entry term for GC376 is “sodium (2S)-2-((S)-2-
(((benzyloxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-(2-oxopyrrolidin-3-
yl) propane-1-sulfonate”. GC376 contains γ-lactam glutamine surrogate at the P1 po-
sition, leucine at the P2 position, a protecting benzyloxycarbonyl group at the P3 position,
and a bisulfite adduct, proposed to be converted into aldehyde form by leaving the sodium
bisulfite [14] (Figure 1A). Since there is little information regarding the inhibitory effect
of GC376 against CCoV Mpro, biophysical and biochemical assays were conducted. The
results showed that GC376 could effectively block the protease activity of CCoV Mpro in
FRET-based assay in vitro (Figure 1B). The binding of GC376 thermodynamically stabilized
the conformation of CCoV Mpro by increasing the melting temperature (Tm) by about
7.8 ◦C at a concentration of 30 µM (Figure 1C). Together, these data suggest that GC376
stabilizes the dimer formation of CCoV Mpro by binding to the substrate-binding site and
inactivating the catalytic cysteine residue by a covalent inhibition mechanism, similar to
previously reported.
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Figure 1. Functional characterization of the effects of GC376 on CCoV Mpro: (A) The chemical
structure of GC376 (left) and its aldehyde form (right); (B) in vitro enzyme activity assay of CCoV
Mpro in the absence or presence of GC376; (C) dose-dependent stabilization effects of GC376 (0, 7.5,
15, and 30 µM) on the thermal stability of CCoV Mpro.
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2.2. Overall Structure of CCoV Mpro in Complex with GC376

To further validate the inhibitory effect of GC376 on CCoV Mpro at the atomic level, we
determined the complex structure of CCoV Mpro_GC376 to be a 2.75 Å resolution structure
in the C2 space group (Table 1). The asymmetric unit (A.U.) contains eight protomers of
CCoV Mpro, which assemble into four functional dimers (Figure S1A). Dimerization is criti-
cal for Mpro’s protease activity, because the N-terminal residue Ser1 of one protomer is part
of the substrate-binding pocket of the other protomer (Fiugre 2A). Similar to other coron-
aviral Mpro, CCoV Mpro can be divided into three domains: domain I (residues 11–100), do-
main II (residues 101–198), and domain III (residues 199–299) (Fiugre 2B). Domains I and II
adopt conserved chymotrypsin-like folds, in which the GC376 binds into the cleft between
them (Fiugre 2B). Domain III is an alpha-helical domain, which mainly mediates the dimer-
ization (Fiugre 2A,B). The root mean square deviations of the eight protomers of CCoV
Mpro range from 0.321 to ~0.474 Å for 231~268 Cα atom pairs, showing nearly identical
conformations among them (Fiugres 2C and S1A). However, the GC376 bound to each pro-
tomer shows obvious structural variations, especially the P3 protecting group (Figure 2D),
suggesting that the malleability of the substrate-binding pocket of CCoV Mpro enables
antiviral drug design.

Table 1. X-ray data collection and refinement statistics of GC376 bound CCoV Mpro.

GC376 Bound CCoV Mpro

PDB Code 7XJW

Data collection
Diffraction source TPS 05A, 3 GeV TPS, NSRRC
Wavelength (Å) 0.99984
Detector MX300-HS
Crystal-detector distance (mm) 300
Space group C2
a, b, c (Å) 156.975, 125.749, 160.418
α, β, γ (◦) 90, 97.467, 90
Resolution range (Å) 30.0–2.75 (2.85–2.75)
Total no. of reflections 295,387 (28,408)
No. of unique reflections 79,392 (7891)
Completeness (%) 99.3 (99.7)
Multiplicity 3.7 (3.6)
〈I/σ(I)〉 20.39 (3.39)
Rmerge 0.062 (0.386)
Rp.i.m. 0.036 (0.234)
CC1/2 (0.914)
Refinement
Resolution range (Å) 27.83–2.75 (2.82–2.75)
Final Rwork (%) 21.0 (27.2)
Final Rfree (%) 25.7 (28.0)
No. of non-H atoms 18,564
No. of atoms
Protein 18,224
Ligand 232
Water 108
B factors (Å2) 54.4
Protein 54.6
Ligand 48.6
Water 31.9
R.m.s. deviations
Bonds (Å) 0.015
Angles (◦) 1.72
Ramachandran plot
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Table 1. Cont.

GC376 Bound CCoV Mpro

PDB Code 7XJW

Data collection
Most favoured (%) 92.44
Allowed (%) 7.22
Outliers (%) 0.34

Values in parentheses are for the highest resolution shell.
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2 Mpro complexed with G376, which formed both (R)- and (S)-configurations in the same 

Figure 2. Overall structure of the CCoV Mpro in complex with GC376: (A) Dimeric assembly of CCoV
Mpro (red and purple), the catalytic dyad (H41/C144) are shown as green spheres, the N-finger of one
protomer extends into the substrate-binding pocket of the other protomer; the N- and C-terminus of
each protomer are indicated; (B) domain organization of CCoV Mpro: N-finger (residues 1–10 (blue)),
domain I (residues 11–100 (marine)), domain II (residues 101–198 (green)), and domain III (residues
199–299 (red)), GC376 is shown as yellow sticks; (C) superimposition of the Cα backbone of the
eight different protomers of CCoV Mpro in the same asymmetric unit; (D) comparison of the GC376
covalently linked to the C144 of eight different protomers of CCoV Mpro in the same asymmetric unit.

2.3. GC376 Covalently Linked to Catalytic Cys144 of CCoV Mpro, Forming an (R)- or
(S)-Hemithioacetal

As shown in Figure 1A, the aldehyde warhead of GC376 can react with the thiol group
of the catalytic cysteine of Mpro in two different ways, forming hemithioacetal in an (R)- or
(S)-configuration (Figure 3A). In a previous study [19], we resolved the SARS-CoV-2 Mpro

complexed with G376, which formed both (R)- and (S)-configurations in the same substrate-
binding pocket (Figure 3B). By contrast, the current available structures demonstrated that
GC376 formed only a (S)-configuration with animal coronaviral Mpro, including PEDV
Mpro [15] and TGEV Mpro [14] (Figure 3C). Interestingly, the CCoV Mpro_GC376 complex
structure resolved in this study showed five GC376s in the (R)-configuration and three
GC376s in the (S)-configuration in the active sites of CCoV Mpro (Figures 3D,E and S1B–G).
Similar to other Mpro-GC376 structures, the hydroxyl group of the (R)-hemithioacetal of
GC376 forms a hydrogen bond with the imidazole ring of H41 of CCoV Mpro (Figure 3D).
However, the hydroxyl group of (S)-hemithioacetal of GC376 forms weak H-bonds with the
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backbone amide of G142 and C144 (3.9 Å and 4.0 Å, respectively) of CCoV Mpro (Figure 3E).
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2.4. Three Conserved Structural Features Dictate the Substrate-Binding Pocket of CoV Mpros

To gain more insights into the similarities and differences between SARS-CoV-2 Mpro

and animal CoV Mpros, structural and bioinformatic analyses of representatives of CoV
Mpros were conducted (Figures 4A–D, S2 and S3). Next, we discuss the structure–activity
relationship (SAR), sequence conservation, and evolutionary relationship between them.
First, the nearly invariant specificity towards the glutamine residue at the P1 position of
the Mpro’s peptide substrates can be seen by the highly conserved residues constituting
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the S1 subsite. Four identical residues, i.e., F140, H163, E166, and H172 in SARS-CoV-2
Mpro are shared among all the aligned CoV Mpros (Figure S2). L141 in SARS-CoV-2 Mpro

can be replaced by Ile in some CoV Mpros (Figure S2). The significant difference lies in
the N142 residue in SARS-CoV-2 Mpro, which is substituted for Cys in Mpro from MERS-
CoV, bat CoV, HCoV-HKU1, and HCoV-OC43, and for Ala in Mpro from IBV, FIPV, TGEV,
and CCoV (Figure S2). Consistently, complex structures of Mpro_GC376 show that the
P1-γ lactam ring of GC376 forms three H-bonds with conserved F139/H162/E165 among
Mpro from TGEV, PEDV, CCoV, and F140/H163/E166 in SARS-CoV-2 Mpro (Figure 3B–E).
The sidechain of N142 protrudes into the substrate-binding pocket of SARS-CoV-2 Mpro

and makes additional contacts with P1-γ lactam ring and P3 protecting group of GC376
(Figure 4D) in contrast with the fewer contacts by A141 in CCoV Mpro and TGEV Mpro

(Figure 4D). Second, H41, M49, Y54, M165, and D187 consist of the hydrophobic S2 subsite
of SARS-CoV-2 Mpro. H41 and D187 are invariant among all CoV Mpros (Figure S2). Y54
can be replaced by Trp in IBV Mpro, while M165 can be substituted for Leu in PEDV Mpro

and HCoV-NL63 Mpro (Figure S2). A striking difference that distinguishes Mpros from
alpha- and beta-coronaviruses was identified: the conserved M49/L49 in β-CoV Mpro

is absent in all α-CoV Mpros and is replaced by a conserved sequence motif (45-SXTT-48)
(Figure S2). The resolved CoV Mpro structures show that the sequence motif forms loop
conformations in TGEV Mpro, PEDV Mpro, FIPV Mpro, and CCoV Mpro, in contrast with the
α-helix formed in SARS-CoV-2 Mpro (Figure 4A,B). This loop (residues 45–48) is relatively
flexible as revealed by PEDV Mpro, which moves away from the substrate-binding pocket
(Figure 4B). The conserved T47 in α-CoV Mpro could mediate indirect H bonding in water
molecules to interact with GC376 (Figure 3C). By contrast, the structurally equivalent
M49 in SARS-CoV-2 Mpro makes more hydrophobic interactions with the P2-Leu residue
of GC376 (Figures 4B,D and 5A). Third, the L167 and Q192 residues that participate in
the formation of the S4 subsite of SARS-CoV-2 Mpro are invariant among all CoV Mpros
(Figure S2). F185 can be replaced by Tyr in some CoV Mpros (Figure S2). The second
evolutionary conserved feature identified in this region is the Q189 in β-CoV Mpros, which
is replaced by P188 in α-CoV Mpros (Figures 4B,D, S2 and S3). As revealed by the GC376
bound Mpro structures, Q189 of SARS-CoV-2 can directly make one or two H-bonds with
the backbone of GC376, instead of indirect hydrogen bonding by T47 from TGEV Mpro

(Figure 3B,C). In summary, three distinct sequences and structural features in the S1, S2,
and S4 subsites, together differentiate their interactions with substrates among different
species of CoV Mpros. Furthermore, the three unique features in SARS-CoV-2 Mpro (M49,
N142, and Q189) narrow the entrance of the substrate-binding pockets (7.1 Å, Figure 5A)
as compared with the entrance of PEDV Mpro (10.4 Å, Figure 5B), TGEV Mpro (14.0 Å,
Figure 5C), and that of CCoV Mpro (13.3 Å, Figure 5D), which probably affect the substrate
entry and the catalytic efficiency of CoV Mpros.

2.5. Species-Specific Dimerization of CoV Mpros

In addition to the substrate-binding residues, dimerization is another critical determi-
nant for Mpro’s activity. It has been reported that devoid of domain III, SARS-CoV Mpro

forms only a monomeric form and is nearly inactive [24]. Therefore, targeting dimerization
of CoV Mpro could be an effective approach for anti-coronaviral drug design. Indeed, a
recent study identified several lead compounds that targeted two allosteric sites other
than the substrate-binding pocket of SARS-CoV-2 Mpro, which blocked viral replication
of SARS-CoV-2 in a cell-based assay [25]. Here, we structurally compare the important
residues constituting the dimerization interface of both CCoV Mpro and SARS-CoV-2 Mpro.
SARS-CoV-2 Mpro forms a tight dimer [26] with a buried interface area of about 1400 Å2,
but the dimerization interface of CCoV Mpro resolved in this study were calculated to be
~1200 Å2 among the four non-crystallographic dimers in the asymmetric unit (Figure S1A).
Two important factors contribute to the dimerization interface of CoV Mpro: the N-finger of
one protomer squeezing between domain II and III of the other protomer and the dimer-
ization between domain III. We found that there was a large gap between domain III of
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the two protomers of CCoV Mpro (distance between the Cα atoms of G281 was 7.3 Å,
Figure 6A). By contrast, the two protomers of SARS-CoV-2 Mpro were relatively closer
to each other (distance between the Cα atoms of A285 was 5.3 Å, Figure 6B). The three
residues, i.e., S284, A285, and L286, of each protomer of SARS-CoV-2 Mpro together form a
hydrophobic core at the interface, while the equivalent residues are separated by a long
distance in the CCoV Mpro dimer (Figure 6A,B). Tight dimer packing against domain III
of each protomer is positively correlated with better catalytic efficiency as revealed by the
3.6-fold enhancement of protease activity of SARS-CoV Mpro carrying S284-T285-I286/A
mutations [27]. Furthermore, two salt bridges (R4-E290) formed between domain III of
the two protomers of SARS-CoV-2 Mpro, which could strengthen dimerization, are absent
in CCoV Mpro dimers (Figure 6A,B). Instead, the equivalent R4 residues in CCoV Mpro

form hydrogen bond interactions with the main chain of G126 (Figure 6A,B). In conclusion,
the decreasing protomer–protomer interactions mediated by domain III of CCoV Mpro,
as compared with SARS-CoV-2 Mpro, probably decrease its catalytic activity, suggesting
different adaptions of CoV Mpros in different species under evolutionary pressure.
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3. Discussion

In this study, we resolved the first crystal structure of GC376 bound CCoV Mpro and
structurally compared it with other GC376_Mpro structures. We identified three structural
features that distinguish SARS-CoV-2 Mpro as a stronger ligand binder than TGEV Mpro,
PDEV Mpro, and CCoV Mpro. Interestingly, these three critical residues M49, N142, and
Q189 have previously been proposed to be gate-regulated switches for regulation of sub-
strate binding by SARS-CoV Mpro [28], indicating their importance in ligand recognition.
Through extensive bioinformatic analysis, we found amazing correlations among evolution-
ary relationships of CoV Mpros and two of the three structural features (Figures S2 and S3).
First, the β-CoV Mpros contain M or L residue within the S2 subsite, while α-CoV Mpros
contain T residue at an equivalent position (Figures S2 and S3). Second, β-CoV Mpros con-
tain conserved Q residue within the S4 subsite, while α-CoV Mpros contain P residue at an
equivalent position. A more divergent IBV Mpro from γ-CoV contains a negatively charged
E residue in the same position (Figures S2 and S3). The structural, functional and evolu-
tionary relationships among different CoVs and CoV Mpros may reflect their adaptions
to different host species. For example, it has been found that γ-CoVs only infected avian
species, while α-CoVs and β-CoVs mainly infected mammals. However, the recombination
of coronaviruses may blur the boundaries and cause cross-species transmission.

The structural flexibility and plasticity of the substrate-binding pocket of SARS-CoV-2
have been widely investigated [29–31]. By contrast, these characteristics have seldom
been explored in animal CoV Mpros due to a lack of structural information. Here, we
resolved the structures of eight different protomers of CCoV Mpro in one asymmetric unit.
Although the structural variations among them are small, the eight GC376s bound in the
substrate-binding pockets exhibit different conformations, suggesting that the malleability
of substrate-binding pocket of CCoV Mpro could accommodate a certain degree of variations
in substrates or drugs. Thus, the complex structures of CCoV Mpro_GC376 resolved in
this study provide the first example of the plasticity of the substrate-binding pocket of
animal CoV Mpro and could serve as a good starting point for further structure-guided
drug design.

Dimerization of Mpro/3CLpro mediated by domain III is unique to viruses from the
Coronaviridae family, but absent in viral 3Cpro or 3CLpro in the Picornaviridae and Caliciviridae
families, which are made up of only domain I and II [14]. Dimerization is important for the
catalytic activity of CoV Mpro by stabilizing the conformation of the oxyanion loop [32]. To
gain more insights into the mechanism underlying the formation of dimeric CoV Mpros,
we analyzed several published structures of CoV Mpros and found that most of them
form an extensive dimerization interface of ~1300–1400 Å2. Some SARS-CoV Mpro and
FIPV Mpro (PDB: 4ZRO) showed reduced dimerization interface which was similar with
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that of CCoV Mpro. Dimerization interfaces can be influenced by many factors, such as
extra residues at N-terminus, structural flexibility, crystallization conditions, and different
bound ligands. In addition, we found that SARS-CoV-2 Mpro harbored the largest number
of H-bonds and an additional ionic pair (R4-E290) at the dimerization interface, which
could partially account for its high catalytic efficiency. The R4 residues are replaced by
V4 residues in HCoV-HKU1 Mpro, HCoV-OC43 Mpro, MERS-CoV Mpro, and bat CoV
HKU4 Mpro (Figure S2). The R4 residues of other CoV Mpros, such as PEDV Mpro (PDB:
6L70), HCoV-229E Mpro (PDB: 2ZU2), and HCoV-NL63 Mpro (PDB: 3LTO), form H-bond
interactions with the main chain of G126 similar to that of CCoV Mpro. In summary, the
structure–activity relationships of these evolutionary conserved structural features of CoV
Mpros deserve to be further explored in future studies. Altogether, the species-specific
differences in three sites of substrate-binding pocket and two sites of dimerization interface
could be important structural epitopes for specific monoclonal antibody development or
specific antiviral drug design.

4. Materials and Methods
4.1. Cloning, Expression, and Purification of CCoV Mpro

The gene fragment of full-length main protease from canine coronavirus (CCoV Mpro,
UniProtKB: P0C6F7.1, a.a. 3299–3604) was E. coli codon optimized, chemically synthesized,
and then subcloned into pSol SUMO vector for generation of N-terminal His6-SUMO tagged
CCoV Mpro. The constructed plasmid was transformed into E. coli BL21(DE3) competent
cells and cultured overnight in an LB agar plate containing 50 µg/mL kanamycin. The
colony containing the desired plasmid was confirmed by sequencing. For large-scale
expression, the overnight bacterial cultures carrying the plasmid pSol SUMO_CCoV Mpro

was diluted 1:100 with fresh LB medium and cultivated continuously at 37 ◦C with shaking
at 200 rpm until the OD600 reached 0.6–0.8. The induction of protein expression was carried
out by the addition of a final concentration of 0.2% L-rhamnose and continued incubation
at 20 ◦C for 24 h. The bacterial cultures were harvested by centrifugation at 4 ◦C, 6000 rpm
for 30 min. The cell pellets were resuspended in lysis buffer containing 20 mM Tris 8.0,
500 mM NaCl, 10% glycerol, 5 mM TCEP, and 5 mM imidazole and lysed by sonication
on ice. The supernatant containing His6-SUMO tagged CCoV Mpro was separated from
cell debris by centrifugation at 4 ◦C, 18,000 rpm for 30 min, and then loaded into a 5 mL
HisTrap™ HP column (Cytiva, Marlborough, MA, USA) for affinity purification by an
ÄKTA go protein purification system (Cytiva, Marlborough, MA, USA). The target proteins
were eluted by lysis buffer containing a stepwise gradient of imidazole (20, 40, 100, and
200 mM), and then pooled together for further TEV cleavage to remove the His6-SUMO tag.
After TEV cleavage, the CCoV Mpro containing an additional Gly residue at the N-terminus
was separated from His6-SUMO tag again using an HisTrap™ HP column. The purified
CCoV Mpro was further applied to size-exclusion chromatography using a Superdex 200
10/300 GL column (Cytiva, Marlborough, MA, USA). The fractions containing active
dimeric CCoV Mpro were concentrated using an Amicon Ultra-15 centrifugal filter unit
(Merck Millipore, Burlington, MA, USA) to the final concentration of 33.2 mg/mL in storage
buffer (20 mM Tris 8.0, 200 mM NaCl, 5% glycerol, and 1 mM TCEP). The purified proteins
were stored at −80 ◦C until use.

4.2. Fluorescence Resonance Energy Transfer (FRET)-Based Assay

The inhibitory effect of GC376 on CCoV Mpro was rapidly determined using a FRET-
based assay [19]. Briefly, 9.4 µM CCoV Mpro was incubated with 120 µM GC376 in the assay
buffer containing 20 mM Tris 7.8 and 80 mM NaCl, at room temperature for 30 min. Then,
the fluorescent substrate (final concentration of 20 µM) was added to start the proteolytic
reaction. The change in fluorescence (Ex/Em = 434 nm/474 nm) was monitored using a
Synergy H1 microplate reader (BioTek, Winooski, VT, USA) for one hour at room tempera-
ture. The data points from the first 900 s were used to calculate the initial velocity (V0) and
normalized to a DMSO control. The experiments were performed in three replicates.
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4.3. Protein Thermal Shift Assay

The thermal stability of CCoV Mpro was accessed by a previously established method [33].
Briefly, 7.5 µM CCoV Mpro was incubated with 7.5, 15, 30, 60, or 120 µM GC376 in the
assay buffer containing 25 mM Tris pH 8.0, 150 mM NaCl, and 5X SYPRO Orange dye
(Sigma-Aldrich, Burlington, MA, USA), at room temperature for 30 min. Then, the thermal
shift assay was conducted on a CFX96 RT-PCR instrument (Bio-Rad, Hercules, CA, USA)
with a temperature gradient from 25 to 85 ◦C in 0.3 ◦C increments of 12 s intervals.

4.4. Crystallization and Structural Determination of CCoV Mpro in Complex with GC376

First, the optimal protein concentration of CCoV Mpro for crystallization was deter-
mined using a pre-crystallization test (Hampton Research, Aliso Viejo, CA, USA). Two-fold
molar excess of GC376 was incubated with purified CCoV Mpro at 4 ◦C for 1 h, and then
subjected to crystallization condition screening. The initial crystallization hit was identified
in a mother liquid containing 0.2 M sodium citrate, 0.1 M Bis Tris propane 7.5, and 20%
w/v polyethylene glycol (PEG) 3350 at 20 ◦C. Manual adjustment of the crystallization
condition was applied to improve the quality of protein crystal and the best condition was
obtained with a mother liquid containing 0.2 M sodium citrate, 0.1 M Bis Tris propane 7.0,
and 25% w/v PEG 3350 at 20 ◦C. The mother liquid containing additional 20–25% glycerol
was used for cryoprotection under liquid nitrogen. The X-ray diffraction data of the native
CCoV Mpro_GC376 complex were collected, indexed, integrated, and scaled using the
HKL2000 software [34] from the beamline TPS 05A at the National Synchrotron Radiation
Research Center (NSRRC) in Taiwan. Then, the phase problem was solved by the molecular
replacement (MR) method using the Molrep program [35]. The MTZ files were obtained by
using the Scalepack2mtz program embedded in the CCP4 interface (version 7.1.015) [36].
The solvent content analysis was conducting using the Matthews_coef program in the
CCP4 interface [37]. Subsequent refinement was carried out by using the Refmac5 pro-
gram [38]. A detailed structural adjustment was performed using the “real space refine
zone” function of the COOT software (version 0.9.4) [39]. Water molecules were added
to the models using the “find waters” function of COOT with the density between a 1.0
and 2.0 sigma cutoff. Potential ligand binding sites were identified by using the “find
unmodelled blobs of density” function. The structural models of ligands were generated
using the eLBOW program in the Phenix software (version 1.13-2998) [40]. The quality of
the data was checked using the validation server of RCSB PDB (https://www.rcsb.org/
accessed on 18 April 2022).

4.5. Bioinformatic Analysis

Multiple sequence alignment was performed using Clustal Omega [41]. The phyloge-
netic tree analysis was performed using W-IQ-TREE [42].

5. Conclusions

The broad-spectrum anti-coronaviral drug GC376 can bind to the substrate-binding
pocket of CCoV Mpro and can inhibit its protease activity by covalently linking to the
catalytic residue C144, forming hemithioacetals in an (R)- or (S)-configuration. The dif-
ferences in shape and the entrance of the substrate-binding pockets of CoV Mpros are
mainly determined by three distinct structural features: (1) N or A residue in the S1 subsite,
(2) α-helix/M residue or loop/T residue near the S2 subsite, (3) Q or P residue near the
S4 subsite.

https://www.rcsb.org/
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