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A B S T R A C T   

Older adults are highly susceptible to developing cognitive impairment(CI). Various factors 
contribute to the prevalence of CI, but the potential relationships among these factors remain 
unclear. This study aims to explore the relevant factors associated with CI in Chinese older adults 
and analyze the potential relationships between CI and these factors.We analyzed the data on 
6886 older adults aged≥60 from the China Health and Retirement Longitudinal Study (CHARLS) 
2018. Lasso regression was initially used to screening variables. Bayesian Networks(BNs) were 
used to identify the correlates of CI and potential associations between factors. After screening 
with Lasso regression, 11 variables were finally included in the BNs. The BNs, by establishing a 
complex network relationship, revealed that age, education, and indoor air pollution were the 
direct correlates affecting the occurrence of CI in older adults. It also indicated that marital status 
indirectly influenced CI through age, and residence indirectly linked to CI through two pathways: 
indoor air pollution and education.Our findings underscore the effectiveness of BNs in unveiling 
the intricate network linkages among CI and its associated factors, holding promising applica-
tions. It can serve as a reference for public health departments to address the prevention of CI in 
the elderly.   

1. Introduction 

Cognitive impairment (CI) refers to an unstable neurological condition that lies between normal aging and dementia [1]. This 
condition has the potential to stabilize, improve, or progress to dementia [2]. Moreover, CI is closely linked to adverse health out-
comes, such as poor quality of life, disability and mortality [3–5]. China is an ageing nation, with almost 200 million individuals aged 
65 and older, comprising 13.50% of the overall population. It is estimated that by 2050, this number will rise to 380 million, 
encompassing 27.9% of the total population [6]. It is widely documented that cognitive functioning generally declines with older age 
[7–9]. According to relevant studies, it is projected that China will have 48.68 million individuals with CI by 2060, with over 360,000 
new diagnoses each year [10]. Patients with CI face a significantly higher risk (5–20 times) of developing dementia when compared to 
individuals without CI [11]. Dementia is an irreversible condition, making it essential to identify and intervene during the crucial 
period of cognitive impairment. Several studies have demonstrated the effectiveness of lifestyle interventions and cognitive training in 
reducing or delaying the progression to dementia among high-risk individuals during this CI stage [12–14]. Consequently, identifying 
influencing factors and offering timely interventions are imperative to decrease the incidence of CI. 
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Previous studies have reported on various factors associated with CI, such as age, physical inactivity, diabetes, and social-economic 
status [15–19]. However, a common limitation of these studies is that they mainly utilized logistic regression based on independent 
conditions to investigate the prevalence of CI, and relied on odds ratios (ORs) to assess the strength of association. In reality, factors are 
often interdependent, and their relationships may exhibit a complex network structure. Bayesian networks (BNs) are a type of artificial 
intelligence method that does not rely on strict statistical assumptions [20]. The potential relationship between multiple factors is 
represented by constructing a directed acyclic graph, and the strength of the association is indicated by a conditional probability 
distribution table [21,22]. Furthermore, BNs can use the states (i.e., factors) of known nodes to infer the probability of unknown nodes 
(i.e., prevalence of CI or its absence), presenting a potentially more flexible approach for exploring the likelihood of CI prevalence in 
Chinese older adults. 

Certainly, there are numerous factors related to CI, but it would be inappropriate to include all of them into BNs. The complexity 
and accuracy of the networks decrease as the number of factors increases. Hence, variable screening is of great necessity. Lasso 
regression, a linear regression method that utilizes L1 regularization, is frequently employed for variable feature selection, variable 
correlation analysis, and model simplification [23–25]. 

Therefore, our aim was to use Lasso regression as an initial filter for factors that strongly correlate with CI in older Chinese adults. 
Subsequently, we employed BNs to model the factors associated with CI and to investigate their potential relationships. The study may 
offer information and recommendations for the prevention and intervention of CI, thereby reducing the likelihood of future dementia 
development. Consequently, this study holds significant public health implications. 

2. Materials and methods 

2.1. Study design and data sources 

This paper presents a cross-sectional study conducted using data from the China Health and Retirement Longitudinal Study 
(CHARLS) 2018 [26]. The data can be accessed through CHARLS’s official website (https://charls.pku.edu.cn/en/). The CHARLS is a 
comprehensive national survey focused on examining the aging process among individuals aged 45 and above in the country. To 
ensure sample representativeness, CHARLS employed a stratified multi-stage probability-proportional-to-size (PPS) random sampling 
strategy, considering the per capita GDP of urban districts and rural counties. The baseline survey comprised 17,708 participants, 
encompassing 450 village committees and communities across 150 districts and counties in China. The 2018 follow-up survey for 
CHARLS utilized face-to-face computer-assisted personal interviews (CAPI) to gather information on the health and socioeconomic 
status of an aging population. The implementation of CAPI significantly enhanced our ability to identify and rectify errors made by the 

Fig. 1. Inclusion exclusion flowchart.  
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interviewers in the field, thereby ensuring the authenticity and validity of survey data. During the field work, CAPI immediately alerts 
the interviewer if there are any instances of sections being improperly skipped, incomplete, or if they appear to have taken insufficient 
time. Further details about CHARLS can be found elsewhere [27]. 

After reviewing the findings of prior studies and examining the research variables accessible in the CHARLS database, we selected a 
total of 24 variables for investigation. These variables are grouped into five dimensions: general demographics, physical health, daily 
life, healthcare, and satisfaction. For clarity, the corresponding level assignment for each research variable is illustrated in appendix 
Table S1. 

2.2. Inclusion and exclusion criteria 

The inclusion criteria of this study were (1) Participants aged ≥60 years; (2) Completing the complete Mini-Mental State Exam-
ination (MMSE). Exclusive criteria were: (1) Participants are diagnosed by dementia; (2) General data are missing and incomplete. The 
CHARLS 2018 survey included a total of 19,816 observations, after applying the inclusion and exclusion criteria, 4886 participants 
were included in this study (Fig. 1). 

2.3. Measurement 

2.3.1. Cognitive impairment (CI) 
In this study, we utilized the MMSE scale to evaluate the CI of the participants. The MMSE scale’s reliability and validity have been 

extensively assessed across diverse populations [28]. Recognizing the sensitivity of the MMSE scale to the educational level of par-
ticipants [29]. we established CI criteria as MMSE scores <17 for illiterate subjects, <20 for those in primary school, and <24 for those 
with a middle high school or above. Participants with higher MMSE scale scores were categorized as having normal cognitive function. 

2.3.2. Depression 
In the present study, the Center for Epidemiologic Studies Depression Scale (CESD-10) was employed to evaluate the depression 

levels of the participants. The scale comprises 10 items, each rated on a four-point scale: "Mostly = 4″, "Sometimes = 3″, "Occasionally 
= 2″, and "Rarely = 1". Questions 5 and 8 were reverse scored. The range of depression scores is from 10 to 40, with higher scores 
indicating more greater severity of depression among older adults. Consistent with previous research, this study defined older adults 
with a scale score of >22 as having depression, while those with a score of ≤22 were considered as not having depression [30]. 

2.3.3. Indoor air pollution 
The existence or absence of indoor air pollution mainly is primarily determined by the use of solid fuels. Building on prior research, 

this study categorizes the use of solid fuels, including coal, biomass charcoal, wood, or straw, as indicative of the presence of indoor air 
pollution. Conversely, the utilization of other clean fuels, such as natural gas or electricity, is considered the absence of indoor air 
pollution [31]. 

2.4. Bayesian networks 

Bayesian networks (BNs) are a probability graph model that can show the degree of probability dependence between factors. BNs 
consist of a directed acyclic graph (DAG) and a conditional probability table (CPT) [20]. The DAG comprises nodes and directed edges, 
where each node represents a variable in the network. If variable X directs to variable Y, it indicates a direct probability dependency 
between X and Y. Moreover, if a new variable Z points to Y through X, it signifies an indirect probability dependence between Z and Y. 
The CPT provides a quantitative description of the strength of probability dependency. In BNs, the formula for calculating the joint 
probability distribution function of all nodes is as represented by equation (1). 

P(x1, x2, ..., xn)= P(x1)P(x2|x1)⋯P(xn|x1, x2,⋯, xn− 1)

=
∏n

1
P(xi|π(xi))

(1) 

π(xi) is the set of parent nodes of xi, π(xi) ⊆ (x1,x2,⋯,xi− 1).When the value of π(xi) is known, xi is conditionally independent of other 
variables in (x1,x2,⋯,xi− 1). 

2.5. Statistical analysis 

Descriptive analysis was performed on the qualitative data using rates or composition ratios. Qualitative data were analyzed 
descriptively using rates or composition ratios. Data cleaning, matching, and categorizing were performed using SAS software (version 
9.4; SAS Institute, Cary, NC, USA). The data cleaning process involved handling missing values, removing outliers, and classifying the 
levels of the research variables. Lasso regression was employed to screen for characteristic variables in the “glmnet” package of R 
software (version 4.3.1; https://www.rproject.org). Variables with non-zero coefficients in the lasso regression model were treated as 
network nodes of the BNs. The structure of BNs was created using the MMHC () function in the “bnlearn” package, and the Great 
Likelihood estimation was used for the parameter learning. Finally, the BNs and reasoning models were visualized using Netica 
software (version 6.0.9; Norsys Sofware Corp., Vancouver, BC, Canada). 
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3. Results 

3.1. Characteristics of the study population 

A total of 4886 study participants were included in this study. Of these, 2061 (42.1%) had CI, while 2825 (57.9%) did not. Out of 
the total participants, 2936 individuals (60.1%) were aged between 60 and 69 years; 1505 individuals (30.8%) were aged between 70 
and 79 years; and 445 individuals (9.1%) were 80 years or older. The percentages of individuals with different education levels were as 
follows: illiteracy (26.6%), elementary school (46.3%), middle school (16.5%), and high school or above (10.6%). Moreover, 72.5% of 
the elderly participants lived in rural areas, and 35.5% of them were exposed to indoor air pollution in their homes. Among the elderly 
individuals with CI, 42.6%, 38.8%, 13.6%, and 5.0% were illiterate, elementary, middle, and high school or above, respectively. 
Further details can be found in Appendix Table S2. 

3.2. Screening of variables associated with CI by lasso 

A total of 24 relevant factors that could potentially impact CI were incorporated into the Lasso regression model. To determine the 
crucial parameter value (λ = 0.01966134) of the model, 10-fold cross-validation was employed. The variable screening process is 
elucidated in Figs. 2 and 3. Subsequently, the coefficients of factors that were not significantly associated with CI were reduced to 0 and 
eliminated. This yielded a final selection of 11 variables, as exhibited in Table 1. This approach aimed to identify factors strongly 
correlations with CI, consequently streamlining the structure of BNs. 

3.3. Bayesian networks model of CI 

Fig. 4 illustrates a BNs model consisting of with 12 nodes and 16 directed edges. The model’s directed edges represent the 
probabilistic dependencies between the connected nodes, with the numbers representing the prior probabilities of each node. For 
example, the prior probability of CI was 42.1%, denoted as P(CI) = 0.421. The developed BNs revealed a complex network relationship 
between CI and various related factors in the Chinese elderly. Age, education level, and indoor air pollution were identified as three 
factors influencing cognitive impairment (CI). These factors acted as the parent nodes of CI, directly influencing its occurrence. 
Moreover, CI was a parent node of independent shopping, indicating a connection between the ability to shop independently and the 
presence or absence of CI. The BNs further unveiled indirect correlations, such as marital status with CI through age and residence with 
CI through two pathways: indoor air pollution and education level. 

3.4. Conditional probabilistic reasoning of CI 

A notable advantage of BNs lies in their ability to infer the probabilities of unknown nodes based on those of known nodes. 
Consequently, the developed BNs can be utilized to predict the risk of CI in independent elderly individuals. In the established BNs, 
age, educational level, and indoor air pollution were identified as the parent nodes of the CI (Fig. 4). For instance, if an individual is 
above 80 years old(Age≥80), the probability of experiencing CI is 57.4%, that is P(CI | Age≥80) = 0.574(Fig. 5). Furthermore, If he or 
she has used solid fuels like coal, biomass charcoal, wood, or straw for an extended period in the past, the probability of developing CI 

Fig. 2. Lasso coefficient solution path diagram.  

Q. Chen et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e27069

5

increases to 67.8%，that is P (CI | Age≥80, Indoor air pollution exist) = 0.678 (Fig. 6). Moreover, assuming that this elderly individual 
is also illiterate, the likelihood of developing CI becomes substantially higher at 79.8%, that is, P(CI | Age≥80, Indoor air pollution 
exist, Illiterate) = 0.798(Fig. 7). Similarly, the probability of an older adult experiencing difficulty shopping independently rises from 

Fig. 3. Penalty coefficient λ-error diagram.  

Table 1 
Selected variables and their regression coefficients.  

Variable Coefficient Variable Coefficient 

Age(x1) 0.11164736 Shop independently(x17) − 0.63515953 
Residence(x2) − 0.48939254 Played Ma-jong(x18) − 0.11541769 
Education level(x3) − 0.38918838 Drinking(x19) − 0.10100419 
Marital status(x4) 0.15956759 Indoor air pollution(x21) − 0.08674442 
Marital satisfaction(x8) 0.02474950 Depression(x24) 0.23178432 
Air quality satisfaction(x10) − 0.07623228    

Fig. 4. CI Bayesian networks and prior probability using MMHC algorithm.  
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Fig. 5. Bayesian networks with known node probabilities I.  

Fig. 6. Bayesian networks with known node probabilities II.  
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Fig. 7. Bayesian networks with known node probabilities III.  

Fig. 8. Bayesian networks with known node probabilities IV.  
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5.4% to 9.09% if the person suffers from CI (Fig. 8). 

4. Discussion 

4.1. CI prevalence rate 

The rising detection and prevalence rates of CI have made it an essential public health concern [10,32]. The findings of this study 
revealed that 42.1% of the elderly population aged 60 years or above experienced CI, surpassing the reported prevalence of CI among 
the elderly in Qingdao City, Shandong Province (20.11%) [33]. Additionally, it exceeded the international prevalence of CI reported in 
Italy (39.6%) [34]. These results indicate the importance of addressing the overall prevalence of among the elderly in China for 
relevant health authorities. Internationally reported indicate a range of prevalence rates for CI, varying from 20% to 41% [35–37]. The 
detection percentages of CI vary significantly across different studies, possibly because of variations in the assessment tools employed 
for measuring CI. Currently, assessment measurement tools for measuring CI include scales like MoCA, MMSE, and AD8 [38–40]. 
Notably, the MMSE scale is widely adopted, yet diverse criteria are applied to define CI scores. The majority of studies associate MMSE 
scale scores with education level to achieve a comprehensive diagnosis of CI [29,41,42]. 

4.2. Relevant factors 

This study utilized BNs based on the MMHC algorithm to investigate the correlates of cognitive impairment (CI). This approach 
successfully identified both direct and indirect correlates of CI, while also enabling the estimation of the probability of CI prevalence. 
The findings of the BNs model indicated that age, education level, and indoor air pollution directly influenced the occurrence of CI 
among the elderly. Marital status had an indirect impact on CI through age, while residence was associated with CI through indoor air 
pollution and education. Furthermore, the BNs can describe the relationship between other factors, such as indoor air pollution, 
depression status, drinking and shop independently, as shown in Fig. 4. Additionally, the BNs could indicate the degree to which a 
specific risk factor raises the risk of developing CI. Figs. 5–7 illustrated the probabilistic relationship between CI and the three parent 
nodes: age, education level, and indoor air pollution. For instance, an individual who is illiterate, over 80 years old, and exposed to 
indoor air pollution is 79.8% more likely to develop CI (P (CI | Age≥80, Illiterate, Indoor air pollution) = 0.798). 

Many national and international studies have confirmed that older individuals are more susceptible to CI compared to younger 
individuals, indicating a significant age difference in CI prevalence [43,44]. In our investigation, we elucidated that advanced age 
serves as a risk factor influencing the occurrence of CI, employing the conditional probabilistic reasoning process (Fig. 6). The aging 
process of the brain, accompanied by atrophy, declining hormone levels, and the overexpression of Tau protein, collectively contribute 
to the development of CI [45–47]. Therefore, regular health checkups for the elderly are necessary, particularly to monitor for the early 
signs of CI. Additionally, research findings have consistently shown that individuals with higher education levels or longer periods of 
education have a lower risk of developing CI as they age, while individuals with lower education levels are at higher risk [48,49]. This 
aligns with the findings of our current study, possibly attributable to the heightened cognitive engagement of better-educated seniors. 
Consequently, it is advisable to encourage the elderly to actively engage in lifelong learning and cognitive activities such as studying, 
reading newspapers, and playing mahjong. By Consciously strengthening memory and intelligence through these activities, the elderly 
can significantly reduce the risk of CI. 

The impact of marital status on the occurrence of CI has consistently emerged as a focal point in prior research [50–52]. Unmarried 
or widowed individuals may encounter financial and emotional distress, directly influencing cognitive function [53]. Remarkably, this 
study reveals a novel perspective, demonstrating marital status indirectly influences CI through its association with age. This novel 
insight contributes to the existing body of knowledge in the field. Specifically, the findings suggest that unmarried and widowed 
individuals face heightened cognitive health disadvantages in late life. Therefore, it is crucial for relevant public health departments to 
enhance humanistic care for older adults and those who have lost a spouse. 

The occurrence of CI in older individuals is also influenced by indoor air pollution, as supported by previous epidemiologic studies 
[54,55]. Older adults have been found to be highly are susceptible to the detrimental effects of indoor air pollution [56]. Aging may 
render individuals’ brains more vulnerable to indoor air pollution or result in accumulated longer periods exposure, possibly 
contributing to the age-related differences in CI. 

In general, older individuals residing in rural residences tend to have a lower level of education, use solid fuels more commonly, 
and are more likely to be exposed to indoor air pollution [57]. In this study, more than 80% of the elderly individuals living in rural 
areas had an education level below elementary school, with an illiteracy rate of 31.77%. Additionally, 45.88% of the individuals were 
exposed to indoor air pollution. On the contrary, the illiteracy rate among elderly individuals residing in urban areas was 13.11%, with 
an indoor air pollution rate was 8.12% (Tables S3–S4). These findings clearly demonstrate of the indirect influence of residence on CI 
through the two pathways: indoor air pollution and education level. On the contrary, older adults with higher levels of education are 
less likely to live in surroundings where air pollution exists [58]. It is possible that older individuals with greater education have a 
heightened awareness of health risks due to their extensive knowledge. Consequently, they may take preventive measures, such as 
installing air purifiers, to protect against the potential harm of indoor air pollution. This could explain the disparity in CI on education 
level. 

This primary strength of this study resides in the utilization of BNs to effectively identify related factors associated with CI in elderly 
Chinese population. Furthermore, it reveals potential relationships between CI and its related factors. While traditional logistic 
regression, a model assuming independence of each related factor, can explore factors contributing to CI in older Chinese adults, it fails 
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short in elucidating the specific the role a risk factor plays in the development of CI. 
However, this study has some limitations. Firstly, it is a cross-sectional study, and the directed edges in the BNs graph only 

represent conditional dependencies between nodes, not causal relationships. To fully explore the deeper relationship between CI and 
its related factors, future longitudinal studies could employ dynamic BNs and multilevel temporal BNs. Secondly, while missing data 
may be inevitable in a large national study, excluding samples with incomplete information from our analyses may introduce selection 
bias. Thirdly, in addition to the variables included in this study, more comprehensive exploration of the factors associated with CI 
should include additional variables. In the future, we aim to further involve of laboratory indicators (e.g., complete blood count, blood 
electrolytes, blood glucose, etc.) and imaging indicators (e.g., head MRI, PET, SPET, etc.) to fully explore the correlates of CI. 

5. Conclusions 

Applying the BNs, we have identified age, education level, and indoor air pollution as direct correlates influencing the occurrence 
of CI in the elderly, Additionally, marital status and residence were found to be indirect correlates. BNs can effectively reveal the 
complex network connections between CI and its related factors. This finding can serve as a reference for public health departments 
aiming to target the prevention of CI in the elderly. Additionally, the conditional probabilistic reasoning of BNs enables the possibility 
of predicting the risk of CI, providing valuable assistance in clinical practice and potential applications. 
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