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Androgen deprivation promotes neuroendocrine
differentiation and angiogenesis through CREB-
EZH2-TSP1 pathway in prostate cancers
Yan Zhang1,2, Dayong Zheng1,3, Ting Zhou 1,4, Haiping Song1,5, Mohit Hulsurkar1,14, Ning Su1,6, Ying Liu1,7,

Zheng Wang1, Long Shao8, Michael Ittmann8, Martin Gleave9, Huanxing Han10, Feng Xu 4, Wangjun Liao11,

Hongbo Wang12 & Wenliang Li 1,13,14

The incidence of aggressive neuroendocrine prostate cancers (NEPC) related to androgen-

deprivation therapy (ADT) is rising. NEPC is still poorly understood, such as its neu-

roendocrine differentiation (NED) and angiogenic phenotypes. Here we reveal that NED and

angiogenesis are molecularly connected through EZH2 (enhancer of zeste homolog 2). NED

and angiogenesis are both regulated by ADT-activated CREB (cAMP response element-

binding protein) that in turn enhances EZH2 activity. We also uncover anti-angiogenic factor

TSP1 (thrombospondin-1, THBS1) as a direct target of EZH2 epigenetic repression. TSP1 is

downregulated in advanced prostate cancer patient samples and negatively correlates with

NE markers and EZH2. Furthermore, castration activates the CREB/EZH2 axis, concordantly

affecting TSP1, angiogenesis and NE phenotypes in tumor xenografts. Notably, repressing

CREB inhibits the CREB/EZH2 axis, tumor growth, NED, and angiogenesis in vivo. Taken

together, we elucidate a new critical pathway, consisting of CREB/EZH2/TSP1, underlying

ADT-enhanced NED and angiogenesis during prostate cancer progression.
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Androgen-deprivation therapies (ADT) are the mainstay
treatment for prostate cancers. ADT is effective initially
but a majority of tumors relapse with castration-resistant

prostate cancer (CRPC), from which most patients eventually die.
CRPC is driven primarily by aberrant activation of AR in the
milieu of castrate serum levels of androgen1. On the other hand,
approximately 25% of the men who die of prostate cancer have
tumors with a neuroendocrine phenotype associated with low AR
signaling and poor prognosis2,3. With the recent introduction of
new generation potent AR pathway inhibitors, such as abirater-
one and enzalutamide, the incidence of NEPC has increased,
which is associated with a poor outcome4,5. Our knowledge of
NEPC biology is still very limited and currently there is no
effective treatment for NEPC. The mechanisms of CRPC pro-
gression, particularly pathways involved in the development of
neuroendocrine prostate cancer (NEPC), need to be better
understood for the development of future effective treatments for
NEPC3,4,6.

We and others have previously shown that ADT leads to
activation of CREB, which in turn promotes neuroendocrine
differentiation (NED) of prostate cancer cells7,8. In AR-positive
prostate cancer cells, CREB-binding protein (CBP), a histone
acetyltransferase, has been shown to act as an AR coactivator in
transcriptional activation of AR target genes9. However, it is still
largely unclear how CREB activation promotes AR-indifferent
NEPC. Elucidation of this mechanism is crucial for our under-
standing and developing treatments of CRPC/NEPC.

Another mediator potentially important for NEPC is poly-
comb repressive complex 2 (PRC2), which establishes tran-
scriptional repression by tri-methylating lysine 27 of histone
H3 (H3K27me3)10,11. The major enzyme for catalyzing this
histone mark is EZH2 (enhanced zeste homolog 2)12, which is
overexpressed in several solid tumors11,13. EZH2 expression
and its PRC2 activity are particularly high in NEPC6,14,15.
Overexpression of EZH2 in prostate cancer cells is known to
promote prostate cancer cell proliferation and migration
(review11). It remains incompletely understood whether and
how EZH2 directly contributes to NED, and what biological
processes are responsible for elevated PRC2 activity in NEPC
cells6,16.

Angiogenesis plays a crucial role in prostate cancer survival,
progression, and metastasis17. NEPC is known to be highly
vascularized18,19. Angiogenesis is a complicated process that is
dependent on switching the balance between activators and
inhibitors of angiogenesis20. VEGF and several neurosecretory
peptides, such as bombesin and gastrin, are known to promote
angiogenesis in NEPC21. However, it is unknown what endo-
genous angiogenic inhibitors are involved in angiogenesis reg-
ulation in NEPC and whether EZH2 overexpression in NEPC
cells contributes to angiogenesis. Thrombospondin 1 (TSP1 or
THBS1) was the first identified endogenous inhibitor of angio-
genesis. It potently inhibits angiogenesis directly by interfering
with endothelial cell migration and survival, and its suppression
results in increased angiogenesis22. Interestingly, TSP1 is among a
list of potential EZH2-repressed targets in gene expression pro-
files of prostate cancer cells upon EZH2 modulation23. However,
confirmation and characterization of an EZH2-TSP1 relationship
was still lacking.

Molecular links between NED and angiogenesis in NEPC have
been largely unclear. In this study, we have uncovered functional
connections among ADT, CREB activation, EZH2-mediated
epigenetic repression, NE phenotypes, TSP1 expression, and
angiogenesis in prostate cancer cells. Our results indicated that
ADT-activated CREB promotes angiogenesis and NED through
enhancing PRC2 activity of EZH2 that in turn upregulates NE
markers and downregulates TSP1.

Results
ADT-induced CREB activation is critical for neuroendocrine
phenotype. To determine whether androgen deprivation therapy
(ADT) activates CREB, we found that enzalutamide (MDV3100)
treatment leads to enhanced CREB activation (as indicated by p-
CREB-S133 level) in AR-positive LNCaP and VCaP cells, which is
reversed by androgen DHT (dihydrotestosterone) (Fig. 1a). In
line with the notion that ADT induces NEPC progression, CREB
is upregulated and activated in NEPC NCI-H660, NE1.3, and
144-13 cells, as compared to androgen-dependent prostate cancer
(ADPC) LNCaP cells (Fig. 1b). NCI-H660 was isolated from a
small cell prostate cancer, a tumor that is composed of pure
malignant NEPC cells (ATCC). NE1.3 was derived from LNCaP
cells upon long term culturing in charcoal stripped serum (CSS)
medium that deprives hormone and mimics ADT24. 144-13 cells
were derived from NEPC patient-derived xenograft (PDX) MDA
PCA-144-1325.

As expected from our previous study7, CREB overexpression
and activation induces the expression of NE markers in prostate
cancer cells (Fig. 1c). Here, we further demonstrated that
inhibitors of beta adrenergic and PKA/CREB signaling, such as
ICI-118,551 (ICI), propranolol (PRO), and PKA inhibitor (PKI),
downregulate NE markers CHGA and CHGB in NEPC NE1.3
and 144-13 cells (Fig. 1d). We next determined whether CREB
itself is essential for ADT-induced NE marker expression. LNCaP
cells expressing doxycycline (Dox)-inducible CREB shRNA
(shCREB) or a dominate negative CREB polypeptide (ACREB)
26 were treated with CSS medium or MDV3100, respectively,
without or with Dox induction. As shown in Fig. 1e, Dox-induced
shCREB reduces CREB and p-CREB levels in LNCaP cells, which
reverses NE marker induction by CSS. Similar effects were seen in
Dox-induced ACREB with 24 h or 72 h of MDV3100 treatment in
LNCaP cells (Fig. 1f). Together, these results indicate that CREB
activation is induced by ADT, which is critical for ADT-induced
NED of prostate cancer cells.

EZH2 is activated in NEPC. Consistent with the literature27,28,
treating LNCaP cells with MDV3100 or culturing another AR-
positive prostate cancer cell line 22Rv1 in CSS medium has
resulted in induction of H3K27me3 and NE markers (Fig. 2a),
which suggests that ADT activates EZH2’s PRC2 activity. EZH2
activity is known to be elevated in NEPC patient samples and
genetically engineered mouse (GEM) models6,14. As expected, we
found that H3K27me3 levels are higher in NEPC NE1.3, NCI-
H660, and 144-13 cells than in ADPC LNCaP cells, as well as
higher in NEPC patient-derived xenograft (PDX) MDA-PCA-
144-13 tumor than in adenocarcinoma PDX MDA PCA-133
tumor29,30 (Fig. 2b). To confirm an increase in EZH2’s function
in NEPC cells, we performed RT–qPCR analysis for several
known EZH2-repressed targets, including SLIT2, ADRB2, and
DAB2IP23,31–33. Indeed, their expression is lower in NEPC NE1.3
and NCI-H660 cells than in LNCaP cells (Fig. 2c). Their
expression is also lower in NEPC PDX MDA PCA-144-13 tumor
than in adenocarcinoma PDX tumor MDA PCA-133 tumor
(Fig. 2d). These results confirm that EZH2 activity is higher in
NEPC cells and elevated by ADT.

ADT activates EZH2 through PKA/CREB signaling. Our pre-
ceding results are consistent with the literature that has separately
indicated an elevation of CREB and EZH2 activity in NEPC cells.
However, these two proteins have not been directly linked in
NEPC and prostate cancer progression. We hypothesized that
ADT and CREB activation enhances EZH2 epigenetic activity. To
test this hypothesis, we employed pharmacological and genetic
perturbations for CREB activity, followed by examination of
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EZH2 activity, as assessed by H3K27me3 level and EZH2 target
gene expression. As showed in Fig. 3a, MDV3100 increases
p-CREB and H3K27me3 levels in LNCaP cells, which is reversed
by Dox-induced shCREB expression and CREB silencing. Con-
versely, overexpressing either wild type or constitutively active
CREB cDNA induces H3K27me3 level in PC3 cells (Fig. 3b).
Similarly, CREB activation by treatment with forskolin (FSK) or

isoproterenol (ISO) also leads to an increase in H3K27me3 level
(Fig. 3c left panel, and Supplementary Fig. 1a). On the other
hand, inhibition of CREB signaling through inhibitor treatments
reduces H3K27me3 level in NEPC NE1.3 and 144-13 cells (Fig. 3c
right panel, and Supplementary Fig. 1b). Accordingly, CREB
signaling activator ISO or FSK represses, while CREB pathway
inhibitor PRO or ICI induces, expression of EZH2-repressed

a

1.0 1.0 1.0 1.0

2.5

1.8
1.6

2.4

CREB CHGA CHGB ENO2

F
ol

d 
ch

an
ge

s
F

ol
d 

ch
an

ge
s

F
ol

d 
ch

an
ge

s

PC3
Control

CREB-WT Control

CREB-WT

2.9

5.3

2.6

CREB CHGA CHGB ENO2

LNCaPc

b

d

fe

CREB

Actin

FBS
CSS
DOX

LNCaP-Dox-shCREB LNCaP-Dox-ACREB

+ – –
– + +
– – +

+ – –
– + +
– – +

+ – –
– + +
– – +

+ – –
– + +
– – +

+ – –
– + +
– – +

VCaPLNCaP

p-CREB

TUBB3

Actin

CREB

ENO2

TUBB3

DMSO
MDV3100
DHT

Actin

CREB

p-CREB

p-CREB

LN
CaP

14
4–

13

H66
0

LN
Cap

NE1.
3

p-CREB

24 h 72 h

DMSO
MDV3100
DOX

CHGA

GAPDH

CREB

ENO2

kDa

47

47

ENO2
50

42

kDa

47

47

42

kDa

47

47

50

50

42

kDa

47

47

50

75

37

1.0
1.0

0.3

0.4
0.3

0.7

0.5 0.6

CHGA CHGB

144–13
Untreated
ICI

PRO
PKI

Untreated

ICI

PRO
PKI

0

1

2

3

1.0 1.0 1.0 1.0

1.8

0

2

4

6

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
ol

d 
ch

an
ge

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.0 1.0

0.2

0.8

0.0
0.2

0.0 0.1

CHGA CHGB

NE1.3
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targets DAB2IP and ADRB2 (Fig. 3d, e). Moreover, the induction
of H3K27me3 by ADT (via MDV3100 treatment) is abrogated by
androgen (DHT) or CREB signaling antagonist PRO in LNCaP
cells (Fig. 3f) and in 22Rv1 cells (Supplementary Fig. 2a). Similar
results were obtained when using CSS medium as an approach for
ADT in LNCaP cells (Supplementary Fig. 2b). These results
indicate that ADT activates EZH2 through PKA/CREB signaling.

To further characterize the link between CREB and EZH2
activation in patient samples, we measured the levels of
H3K27me3 and CREB activation (by pS133-CREB) in a tissue
microarray (TM) with 78 cases of human prostate cancer and
normal samples. The p-CREB level was found to positively
correlate with the level of H3K27me3 (X2= 16.4, P= 0.003)
(Fig. 3g and Supplementary Table 1). These results indicate that
the CREB/EZH2 axis may be active in human prostate tissues.
Overall, these results support our hypothesis that CREB
activation promotes EZH2’s PRC2 functions.

EZH2 is critical for CREB induction of NE phenotypes. We
next determined whether EZH2 is critical for NE phenotypes

promoted by ADT and CREB activation. EZH2 has been shown
to be overexpressed and/or activated in NEPC6,14. However,
direct evidence of EZH2 in promoting NE phenotypes is scarce.
We first showed that EZH2 indeed enhances NE marker
expression. Overexpressing EZH2 increases H3K27me3 level and
NE markers CHGA and CHGB in PC3 and LNCaP cells (Fig. 4a).
On the other hand, inhibiting EZH2 by its inhibitor GSK126 or
DZNEP decreases H3K27me3 level and NE marker expression in
NEPC NE1.3 cells (Fig. 4b). Reduction of NE marker expression
could also be achieved by expressing a validated
EZH2 shRNA34,35 in NE1.3 cells (Fig. 4c). Reduction of NE
markers by shEZH2 was also observed in PC3 cells, which is
rescued by overexpressing EZH2 cDNA (Fig. 4d). In determining
whether EZH2 is critical for CREB-induced NE phenotypes, we
found that CREB signaling activator FSK could no longer induce
NE markers when the cells were co-treated with EZH2 inhibitor
GSK126 or shEZH2 (Fig. 4e, f and Supplementary Fig. 2c). As
expected, GSK126 alone reduces NE marker CHGA (Supple-
mentary Fig. 2c).Together, these results indicate that EZH2 plays
a critical role in promoting NE phenotypes and in mediating the
process of CREB activation-mediated NE transition.
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TSP1 is a novel EZH2 target in prostate cancer cells. Previously
we reported that CREB activation promote angiogenesis in part
through reducing potent anti-angiogenic protein TSP1 expression
in cancer cells36. NEPC is known to be highly angiogenic21. So far
we have shown that the CREB/EZH2 axis is important for neu-
roendocrine phenotypes of prostate cancer cells. We next tested
whether the effects of CREB activation in promoting NE phe-
notypes and angiogenesis are connected through EZH2. EZH2 is
induced by VEGF in endothelial cells, which contributes to
angiogenesis37. It was unclear whether EZH2 expression in cancer

cells is critical for angiogenesis. Interestingly, TSP1 was among a
list of genes identified as potential EZH2 repressed targets in
prostate cancer cells, with no further validation23. We postulated
that NE phenotype and angiogenesis are connected in NEPC cells
through the CREB/EZH2/TSP1 pathway.

We first examined whether TSP1 is indeed an EZH2 target in
prostate cancer cells. In several prostate cancer cell lines,
overexpressing EZH2 represses TSP1, while suppressing EZH2
with inhibitors or shRNA induces TSP1 (Fig. 5a–c). Chromatin
Immunoprecipitation (ChIP) with H3K27me3 Ab, followed by
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PCR of TSP1 promoter sequence revealed that TSP1 promoter is
occupied with H3K27me3 mark, which is reduced by EZH2
inhibitor DZNEP (Fig. 5d). Using a TSP1 promoter luciferase
construct38, we further demonstrated that transcriptional activity
of TSP1 promoter is increased upon treatment of EZH2 inhibitor
DZNEP (Fig. 5e). Moreover, upregulation of TSP1 by siEZH2 can
be rescued by expressing a siRNA-resistant EZH2 cDNA (Fig. 5f).
Collectively, these data establish that TSP1 is an EZH2 repressed
target in prostate cancer cells.

TSP1 expression negatively correlates with EZH2 and NE
markers. Further supporting the existing of an EZH2/TSP1 axis
in human prostate cancers, we found that TSP1 and EZH2 are
expressed significantly lower and higher, respectively, in meta-
static CRPC than in localized prostate cancers (Grass-
o_mCRPC39) (Fig. 6a). Similarly, in the Beltran_NEPC dataset6,
TSP1 expression is lower, while EZH2 expression is higher, in
NEPC than in CRPC-adenocarcinoma (Fig. 6b). As expected, NE
markers are upregulated in metastatic tumors vs localized tumors,
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and are also expressed higher in NEPC than in CRPC-
adenocarcinoma (Fig. 6a, b, and Supplementary Fig. 3a,3b).
Consistently, mRNA expressions of EZH2 and TSP1 negatively
correlate with each other in human prostate cancers, such as in
Grasso_mCRPC (Spearman Correlation Rho=−0.55, P ≤ 1E-6)
and in Beltran_NEPC (Rho=−0.53, P ≤ 8E-5) (Fig. 6c). Fur-
thermore, expression of NE markers CHGA and ENO2 is nega-
tively and positively correlated with that of TSP1 and EZH2,
respectively (Fig. 6d and Supplementary Fig. 3c). Similar corre-
lations between NE markers, TSP1 and EZH2 are observed in
other prostate cancer datasets, such as TCGA, SU2C40, FHCRC41

prostate cancer datasets (Fig. 6d and Supplementary Fig. 4).
Interestingly, TSP1 expression is negatively correlated with that of
EZH2 in the CCLE dataset for 1000 human cancer cell lines of
many cancer types42 (Fig. 6e, Spearman Correlation Rho=
−0.51, P ≤ 9.96E-57), which suggests that the EZH2/TSP1 axis
exist broadly in human cancer cells. Supporting this broader

implication, EZH2 and TSP1 expression negatively correlates
with each other in several large TCGA solid tumor datasets, such
as breast, stomach, and colorectal cancers, as well as lung squa-
mous carcinoma (Fig. 6e and Supplementary Fig. 3d).

Consistent with TSP1’s downregulation in human mCRPCs
(especially NEPCs), TSP1 protein and mRNA are downregulated
by ADT (via MDV3100 treatment) in LNCaP cells, which is
rescued by androgen DHT (Fig. 7a, b). As expected, TSP1 is
expressed at lower levels in NEPC NE1.3 and 144-13 cells than in
LNCaP cells (Fig. 7c). Mining gene expression profiles in an
independent study, we also found that TSP1 is downregulated,
while NE markers are upregulated, when LNCaP cells were
cultured long term in CSS media in vitro43 (Fig. 7d). Notably, we
observed same expression trends in a LNCaP xenograft tumor
dataset44, where LNCaP cell-derived xenografts relapsed from
treatment with second generation androgen receptor targeted
therapy, enzalutamide, and became NEPC (Fig. 7e). Furthermore,
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when castration sensitive PDX tumor LTL331 became NEPC
PDX tumor LTL331R after relapse from castration45, we found
that TSP1 is downregulated, while EZH2 and NE markers are
upregulated (Fig. 7f). Additional supporting evidences came from
a published dataset for prostate cancer GEM models46, where
TSP1 is expressed at significantly lower level in prostate tumors
from TRAMP mice (a classic NEPC GEM model) than in prostate
tumors from NP mice (a classic prostate adenocarcinoma GEM
model) (GSE53202, P= 1.36E-07). Together, all these results

indicate that TSP1 is repressed in CRPC, especially in NEPC, and
its expression is negatively correlated with those of NE markers
and EZH2. They also support that the EZH2/TSP1 axis may
contribute to the progression of human prostate cancers.

ADT and CREB activation repress TSP1 through EZH2. We
next asked whether TSP1 repression by ADT and CREB activa-
tion is mediated by EZH2. We first confirmed the downregulation
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of TSP1 by MDV3100 in another AR-positive prostate cancer cell
line 22Rv1 (Fig. 8a), similar to Fig. 7a for LNCaP cells. We next
examined the role of CREB in repressing TSP1. Downregulation
of TSP1 by CSS in LNCaP cells is reversed by PKI (Fig. 8b).
Similarly, downregulation of TSP1 and induction of NE markers
by MDV3100 is rescued by Dox-induced ACREB that represses
CREB (Fig. 8c). On the other hand, overexpressing either wild
type or constitutive active CREB cDNA represses TSP1 expres-
sion (Fig. 8d), which is rescued by simultaneous silence of EZH2
(Fig. 8e). Concordantly, CREB activation by PKA/CREB activa-
tors FSK can no longer effectively repress TSP1 expression when
EZH2 is inhibited by GSK126 (Fig. 8f). Similar result was
observed for another CREB signaling activator ISO when EZH2
was silenced (Fig. 8g).

To determine whether CREB activation has a direct impact on
the H3K27me3 marks on the TSP1 promoter, PC3 and LNCaP
cells were treated with beta adrenergic agonist ISO with or
without beta adrenergic antagonist PRO, followed by ChIP with
H3K27me3 Ab and PCR of TSP1 promoter sequence. As shown
in Fig. 8h, the abundance of H3K27me3 marks on TSP1 promoter
is increased by ISO treatment, which is reversed by additional
treatment with PRO. The elevation of H3K27me3 mark on TSP1
promoter by ISO is more pronounced in LNCaP cells than in PC3
cells, which is consistent with the extent of TSP1 mRNA
reduction in these two cell lines (Fig. 8i). Moreover, in line with

enhanced EZH2 activity and elevated H3K27me3 level by ADT
MDV3100 as shown above, MDV3100 treatment represses TSP1,
which is rescued by EZH2 inhibitor GSK126 (Fig. 8j). These
results indicate that ADT and CREB activation downregulates
TSP1 expression through EZH2-mediated epigenetic repression.

CREB activation induces angiogenesis, depending on the
EZH2/TSP1 axis. Given the well-established role of TSP1 in
blocking angiogenesis, we next investigated whether activation of
beta-adrenergic signaling increases tumor angiogenesis through
the CREB/EZH2/TSP1 pathway. Indeed, ISO treatment in pros-
tate cancer cells induces angiogenesis tube formation of SVEC4-
10 endothelial cells, which is reversed either by treating prostate
cancer cells with EZH2 inhibitor GSK126 or EPZ6438, or by
adding TSP1 peptide to the conditioned medium of cancer cells
(Fig. 9a). We next directly assessed the contribution of EZH2
expression in cancer cells to angiogenesis. Silencing EZH2
expression by shRNA in prostate cancer cells abrogates ISO-
induced tube formation of SVEC4-10 endothelial cells (Fig. 9b).
Treatment of NEPC NE1.3 cells with EZH2 inhibitor GSK126 or
EPZ6438 also inhibits angiogenesis tube formation of SVEC-40
endothelial cells (Fig. 9c). Moreover, we evaluated the effects of
prostate cancer cells on endothelial cell migration, another
in vitro assay for angiogenesis, and found that conditioned media
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from NEPC NE1.3 cells induced more migration of SVEC4-10
endothelial cells than the conditioned medium from ADPC
LNCaP cells (Fig. 9d). We further determined whether TSP1
induction in prostate cancer cells is critical for angiogenesis
inhibition upon blockade of CREB signaling. Interestingly,
effective TSP1 silencing by two independent shRNAs induces NE
markers in PC3 cells (Fig. 9e). As expected, conditioned medium
from PC3 expressing an effective shTSP1 attracts more

endothelial cell migration than that from PC3-scramble cells.
Consistent with above results from angiogenesis tube formation
assays, condition medium from PC3 cells treated with CREB
signaling inhibitors PRO and ICI attracts fewer migrated SVEC4-
10 cells than condition medium from untreated PC3 cells
(Fig. 9f). However, PRO treatment in PC3-shTSP1 cells could no
longer inhibit SVEC4-10 migration, which suggests that TSP1 is
critical for angiogenesis inhibition by PRO treatment of PC3 cells
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(Fig. 9f). Taken together, these results support our hypothesis that
beta adrenergic signaling induces angiogenesis and NE phenotype
through the CREB/EZH2/TSP1 pathway.

CREB repression blocks castration-activated EZH2/TSP1/NE
pathway and angiogenesis. We have previously shown that
treatment with beta adrenergic agonist, ISO, promotes tumor
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Fig. 9 CREB activation induces angiogenesis in vitro, depending on the EZH2/TSP1 axis. a Serum starved PC3 cells were treated with 10 μM ISO with or without
5 μM EZH2 inhibitor GSK126 or EPZ6438. Conditioned media (CM) from the PC3 cells were then used to culture serum starved SVEC-40 endothelial cells
seeded on growth factor reduced Matrigel for angiogenesis tube formation assay. TSP1 peptides were added to 10 μM of final concentration to the SVEC-40
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5 μM EZH2 inhibitor EPZ6438 or GSK126 were used in SVEC-40 tube formation assay. d Conditioned medium from serum starved LNCaP and NE1.3 cells was
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growth and angiogenesis of LNCaP cell-derived xenografts
(CDXs)36. We next compared ADPC LNCaP and NEPC NE1.3
cell growth in vivo and also determined the effects of blocking
PKA/CREB signaling in controlling NE1.3 cell growth and
angiogenesis. NOD/SCID mice were implanted with two million
LNCaP or NE1.3 cells that were previously labelled with lucifer-
ase, which were then treated twice daily with either saline for
mice with LNCaP or NE1.3 CDXs, or 2 mg kg−1 of propranolol
(PRO) for mice with NE1.3 CDXs. The tumor growth rate in
these mice was monitored by bioluminescence imaging. At day 25
of CDX growth, as compared to day 1 after cell implantation,
LNCaP CDX tumors grow by 4.6 folds in NOD/SCID mice, while
NE1.3 CDX tumors grow by 44.3 folds (P= 0.020), which is
consistent with the notion that NEPC cells represent more
aggressive prostate cancer cells24. Notably, NE1.3 CDXs treated
with PRO only grow by 10.6 folds (Fig. 10a and Supplementary
Fig. 5a), indicating that PRO significantly blocks NEPC CDX
growth (P= 0.024).

Next, we examined the connections among CREB activation,
H3K27 trimethylation, NE phenotype, TSP1 expression, and
angiogenesis in mouse xenograft tumors. Firstly, IHC staining of
xenograft tumors showed that the levels of p-CREB and
H3K27me3 are both increased by ISO in LNCaP CDXs and
both reduced by PRO in NE1.3 CDXs (Fig. 10b), which is
consistent with their positive correlation in human patient
samples (Fig. 3g). Secondly, western blotting results confirm the
IHC results on p-CREB and H3K27me3, and further show the
expected TSP1 changes in xenograft tumors (Fig. 10c). Thirdly,
we found that microvessel density (MVD), a common readout of
angiogenesis in vivo, is induced by ISO treatment in LNCaP
CDXs and reduced by PRO treatment in NE1.3 CDXs (Fig. 10d,
Supplementary Fig. 5b and 5c). Lastly, castration of NOD/SCID
mice carrying ADPC LNCaP xenografts activates the CREB/
EZH2 axis, increases H3K27me3 levels, represses TSP1 expres-
sion, as well as induces NE marker CHGA and angiogenesis
marker CD31. Importantly, Doxycycline-induction of ACREB (a
CREB inhibiting polypeptide) in vivo inhibits these effects of
castration and xenograft growth (Fig. 10e, f). Together, these
results indicate that the CREB/EZH2/TSP1 pathway is responsive
to ADT-induced CREB activation in mouse xenografts of prostate
cancer cells, and CREB signaling is critical for castration-induced
EZH2 activation, angiogenesis, and NE phenotypes in vivo.

In summary, the results in our study illuminate that: (1) CREB
activation enhances EZH2’s PRC2 activity; (2) ADT activates the
CREB/EZH2 axis to promote NED and angiogenesis; (3) NED
links to angiogenesis and tumor progression in prostate cancer
cells through EZH2-mediated epigenetic repression of TSP1; (4)
This pathway is activated by castration in prostate tumor
xenografts, which is reversed by repression of CREB signaling;
(5) The components on this pathway are accordantly expressed in
cancer patient samples. Taken together, our data propose a new
model of prostate cancer progression, where ADT and beta
adrenergic signaling concordantly regulate PKA/CREB activation,
EZH2 activity, TSP1 expression, angiogenesis, NED, and NEPC
progression (Fig. 10g).

Discussion
The transition from castration-resistant prostate adenocarcinoma
(CRPC) to NEPC has emerged as an important mechanism of
treatment resistance in prostate cancer. Through in vitro and
in vivo studies, we investigated the still poorly understood
mechanisms of NEPC progression, from which we identified a
critical signaling axis, consisting of CREB/EZH2, for NED. We
also studied the underlying mechanisms of heightened angio-
genesis in NEPC, where we elucidated a role of the CREB/EZH2

axis in repressing anti-angiogenic factor TSP1. Our study con-
nects a NE regulatory pathway to angiogenesis and provides
critical new insights into the mechanisms of NEPC progression.

This work illuminates a previously unappreciated relationship
between CREB activation and EZH2-mediated epigenetic reg-
ulation. Although these two biological processes are both critical
for CRPC and NEPC development8,26,47 and hence are expected
to be coordinated, this has not been previously demonstrated. On
the other hand, CREB is generally considered to function as an
epigenetic activator because its activation recruits a histone
acetyltransferase, CBP, to acetylate histones and activate tran-
scription48. Therefore, it was previously unexpected that CREB
activation would lead to an increase in epigenetic repression via
EZH2. We have found that activation of CREB, through ADT or
beta adrenergic-PKA signaling, robustly increases H3K27me3
levels and NE marker expression in vitro and in vivo, which can
be reduced by CREB repression, EZH2 specific shRNA and
inhibitors (Figs. 3, 4, and 10). Furthermore, CREB-induced NE
phenotypes, TSP1 repression and angiogenesis are dependent on
EZH2 (Figs. 4, 8, and 9). These results indicate that CREB and
EZH2 are indeed coordinated in CPRC progression, and CREB
activation enhances EZH2’s epigenetic repression function. We
are actively investigating the molecular mechanism of EZH2
activation by CREB signaling. One possible mechanism is
through enhancing HDAC2 expression/activity by CREB activa-
tion, as we previously demonstrated in the context of chronic bio-
behavioral stress36. HDAC2 and HDAC1 are known to cooperate
with EZH2 in epigenetic repression49,50. Supporting this potential
mechanism, our preliminary study showed that TSA, a HDAC
inhibitor, reverses ADT (MDV3100) induction of H3K27me3
level and NE markers, and rescues MDV3100-repressed TSP1
expression (Supplementary Fig. 2d).

Using several AR-positive ADPC cell lines, such as LNCaP,
VCaP, and 22Rv1, we have demonstrated that ADT in vitro, by
treatment with enzalutamide (MDV3100) or CSS medium, acti-
vates the CREB/EZH2 axis to induce NE makers and repress
TSP1. These ADT effects are reversed by addition of androgen
(DHT) or repression of the CREB/EZH2 axis. Notably, similar
results were found in LNCaP xenograft tumors, using castration
to mimic ADT and inducible CREB repression to inhibit the axis
(Fig. 10e, f). These results suggest that the CREB/EZH2 axis may
play an important role in mediating the effect of ADT to promote
angiogenesis and NEPC progression. Several other proteins have
been identified as important regulators of NEPC progression,
such as RB1, TP53, EZH2, N-MYC, AURKA, SRRM4, REST,
DEK, BRN2, PEG10, and SOX244,45,51–55. It would be interesting
to determine to what extent our pathway is linked to these known
NEPC regulators.

NEPC is highly angiogenic18,19. It was unknown how angio-
genesis and neuroendocrine phenotype are connected and what
endogenous angiogenic inhibitors are involved in angiogenesis
regulation in NEPC. Our work elucidates that NE phenotype and
angiogenesis are connected through CREB activation of EZH2
that in turn represses anti-angiogenic factor TSP1, induces neu-
roendocrine markers and angiogenesis. It is still unclear how
EZH2 induces NE marker expression, which is under investiga-
tion in our lab.

EZH2 has been shown to play a role in angiogenesis in
endothelial cells. Lu et al.37 reported that VEGF induces EZH2
expression in endothelial cells that in turn represses VASH1.
Kottakis et al.56 identified another pathway in endothelial cells
consisting FGF2-activated NDY1-miR-101-EZH2. It was still
unclear whether and how EZH2 overexpression in cancer cells
contributes to angiogenesis. We have demonstrated that silencing
EZH2 or treatment of EZH2 inhibitors in cancer cells inhibit
in vitro angiogenesis of endothelial cells, which provides direct
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Fig. 10 CREB repression inhibits growth of NEPC xenografts, and blocks castration-activated EZH2 axis and angiogenesis in vivo. a NOD/SCID mice were
injected with luciferase-labelled LNCaP or NE1.3 cells, which were then treated daily with saline or 2 mg kg−1 propranolol for 25 days, as indicated (6 mice
in each group, 2 tumors in each mouse, n= 12). The tumor growth was monitored by bioluminescent imaging (BLI) with IVIS instrument. Presented on Y-
axis are average fold changes of BLI signals for each tumor at day 25, relative to BLI signals at day 1 of treatments. b Left 4 panels: representative images of
IHC staining for pCREB-S133 and H3K27me3 in LNCaP-derived xenografts treated daily for 25 days with saline or 10mg kg−1 of ISO (tumors from our
previous study36). Right 4 panels: representative images of IHC staining for pCREB-S133 and H3K27me3 in NE1.3-derived xenografts treated daily with
saline or 2 mg kg−1 of PRO. c Western blots of xenograft tumors from LNCaP with or without ISO treatments (left) or from NE1.3 with or without PRO
treatment (right) for the CREB/EZH2/TSP1 pathway proteins as indicated. d Top two panels: representative IHC staining images of angiogenesis marker
CD31 in LNCaP CDX treated with saline or ISO. Bottom 2 panels: representative IHC staining images of CD31 in NE1.3 CDX treated with saline or PRO. The
arrows indicated typical CD31+microvessels. e Left panel: dot plots of tumor weights in the three indicated experimental groups that are collected at the
end of the experiment. Right panel: photographic picture of LNCaP xenograft tumors in the three groups at sacrifice. f Western blotting of the proteins on
the CREB/EZH2/TSP1/NE pathway in the indicated three groups of LNCaP xenograft tumors. g A summary model of the key findings in this study. ADT
activates CREB, in part through PKA, which in turn enhances the PRC2 activity of EZH2. EZH2 is critical for ADT/CREB-induced neuroendocrine
differentiation and angiogenesis of prostate cancer cells. EZH2 enhances angiogenesis through epigenetically repressing anti-angiogenic factor TSP1.
Additional data related to this Figure are in Supplementary Fig. 5. Statistical significance was determined by using unpaired two-sided Student’s t test and
shown as mean with s.d. *P < 0.05. Scale bar= 100 µm
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evidences supporting a role of EZH2 in cancer cells contributing
to angiogenesis. We have further found that anti-angiogenic
protein TSP1 is downregulated in NEPC as a target of EZH2
epigenetic repression. Intriguingly, we also found that silencing
TSP1 induces NE marker expression in PC3 cells (Fig. 9e), which
further supports an intimate connection between angiogenesis
and neuroendocrine phenotype.

No effective treatment is currently available for NEPC. Con-
sistent with others’ reports6,14, our study indicates a critical role
of EZH2 in NEPC, which suggests that EZH2 may be a valuable
target for NEPC. EZH2 inhibitor EPZ6438 is currently under
several clinical trials for multiple types of lymphoma, solid
tumors and synovial sarcoma, such as clinical trials
NCT03010982 and NCT01897571. It is conceivable that EPZ6438
or other EZH2 inhibitors may have some efficacy in treating
NEPC, which should be formally investigated in additional pre-
clinical and clinical studies.

Notably, we found that treatment with beta adrenergic
antagonist propranolol (a beta blocker) significantly reduced the
growth of NEPC cell-derived xenografts in NOD/SCID mice. This
result is consistent with a critical role of CREB signaling in NE
phenotype and angiogenesis, as demonstrated by us and
others7,8,36,47. Epidemiology studies have demonstrated that
usage of beta blockers, especially PRO, for cardiovascular diseases
in some cancer patients are associated with better clinical out-
comes in multiple cancer types, such as melanoma, prostate, lung,
and breast cancers57–59. These retrospective studies in cancer
patients are in line with mounting evidences supporting an anti-
tumor effect of PRO in cancer cell culture and in mouse xeno-
grafts60–62. Given that beta blockers have been safely used for
decades for hypertension and heart diseases, our result suggests
that beta blockers may become new therapies for NEPC, likely
through combinations with other cancer therapeutics. According
to clinicaltrials.gov, beta blocker PRO is being tested in several
clinical trials for solid tumors. A main obstacle is the lack of clear
understandings of PRO’s mechanism of action in vivo as well as a
shortage of biomarkers for patient selection and efficacy
monitoring58,63. Our study suggests that PRO may exert its
activity, at least in part, through regulating the CREB/EZH2/TSP1
pathway. The activity of this pathway may also become bio-
markers for patient selection and efficacy monitoring, which
warrants further studies in the future.

Lineage plasticity promotes conversion of a cancer cell that is
dependent on a therapeutic target to another cell that is indif-
ferent to the function of that target. Similar to conversion from
AR-dependent adenocarcinomas to AR-indifferent NEPCs, some
EGFR-mutant and initially EGFR-dependent lung adenocarci-
nomas relapse with the appearance of histologically distinct
variants that lack EGFR and RB1 expression, but express neu-
roendocrine lineage markers64. Future studies are warranted to
investigate the contributions of the CREB/EZH2/TSP1 pathway
shown here in prostate cancer cells to the lineage plasticity of lung
cancer cells.

Methods
Cell culture. 22Rv1, RWPE, LNCaP, and NCI-H660 cells were purchased from
ATCC. The PC3 prostate cancer cells used in this study represent a poorly
metastatic PC3 variant that was kindly provided by Fidler65 and was matched to
PC3 cells from ATCC by DNA STR fingerprinting (Biosynthesis Inc). LNCaP,
VCaP, 22Rv1, and PC3 cells were maintained in RPMI 1640 media (Mediatech),
supplemented with 10% FBS (Gibco) and 1% penicillin-streptomycin. NEPC NE1.3
cells were derived from LNCaP cells after long term culturing in charcoal striped
serum (CSS) medium24 and cultured in phenol red-free RPMI 1640 medium
supplemented with 5% CSS (Gibco) and 1% penicillin and streptomycin. The
LNCaP and NE1.3 lines were matched to ATCC LNCaP profile by DNA STR
fingerprinting (Biosynthesis Inc), confirming that the NE1.3 line was derived from
LNCaP cells. Neuroendocrine small cell prostate carcinoma cells NCI-H660 and
immortalized non-tumorigenic prostate epithelial cells RWPE-1 were obtained

from ATCC and cultured according to ATCC guidance. NEPC/SCPC cell line 144-
13 were kindly provided by Maity and cultured as described25. 293T cells and
mouse endothelial cells SVEC4-10, originally ordered from ATCC, were cultured in
DMEM media (Mediatech), supplemented with 10% FBS and 1% penicillin-
streptomycin. LNCaP cells carrying Doxycycline-inducible shCREB and ACREB
were kindly provided by Hu and cultured as described26. Cultures were grown in a
37 °C incubator with 5% CO2. All cell lines were routinely confirmed to be
mycoplasma-free using the Lonza MycoAlert Detection kit (LT07-218).

In vitro treatments with activators and inhibitors. The activators and inhibitors
used in this study were obtained from the following sources: ISO (Sigma), For-
skolin (FSK, LC Laborartoy), IBMX (Adipogen), ICI (Tocris), PKI (Tocris), PRO
(Tci America), GSK126 (Selleck), DZNEP (Cayman Chemical), EPZ6438 (Selleck),
TSP1 peptide (Athens Research and Technology), MDV3100 (Apexbio) and
Doxycycline (Enzo), TSA (Cayman). The doses and duration of their treatments
were as indicated.

cDNA/shRNA transduction and transfection. All shRNA constructs are in
pLKO.1 vector66 and were purchased from Sigma-Aldrich (St. Louis, MO). For
stable knockdown of EZH2, LNCaP, PC3, and RWPE cells were transduced with
lentiviral particles of a validated EZH2 shRNA:
CGGAAATCTTAAACCAAGAAT34,35. shTSP1-1: TATCATCTGGTA-
TACCATTGC and shTSP1-2:CTCTCAAGAAATGGTGTTCTT. shScramble
control, shRNAs against TSP1 or EZH2 were packaged into viral particles using
293T cells according to previously described method66. Briefly, 293T cells were
seeded in 6-well plates at 1.5-million cells/well. Lentiviral vector carrying either
scramble control, shTSP1, or shEZH2 shRNA was transfected, together with
packaging plasmids VSVG and Delta 8.9, into 293T cells by TransIT-LT1, followed
by centrifugation at 1100×g for 30 min. After initial medium change around 16 h
post-transfection, the virus supernatant was collected 48 and 72 h after transfec-
tion, aliquoted and stored at −80 °C for subsequent experiments. Cells were
infected with the lentivirus supernatant in the presence of 8 μg ml−1 polybrene and
subsequently selected with 1 μg ml−1 of puromycin. For overexpression of EZH2,
cells were infected with retrovirus for human EZH2 cDNA or pBABE-puro vector
control67, and subsequently selected with 1 μg ml−1 of puromycin. EZH2 over-
expression was also achieved through introduction of doxycycline-inducible EZH2
cDNA in pInducer lentiviral vector (selection with 400 μg ml−1 of G418). siEZH2-
resistant EZH2 cDNA construct was kindly provided by Xu35 and the corre-
sponding siEZH2 was ordered from Dharmacon. PC3 cells were transfected with a
mammalian expression vector pcDNA3.1 (EV, empty vector), Flag-pcDNA3.1-
CREB cDNA (WT, wild type), Flag-pcDNA3.1-CREB-Y134F (YF, constitutively
active68), kindly provided by Berdeaux, using TransIT-LT1 transfection reagent
(Mirus) and selection with 400 μg ml−1 of G418.

Reverse transcription and quantitative PCR (RT-qPCR). Total RNA was
extracted from the indicated cells by using TRIzol Reagent (Life Technology). The
RNA concentration and purity were measured by NanoDrop 2000 UV-Vis Spec-
trophotometer (Thermo Scientific). 2–3 μg of total RNA was used to generate
cDNA using the iScript R Transcription Supermix (Bio-Rad). Real time qPCR was
performed using SsoFast EvaGreen Supermix in CFX96 Thermal Cycler (Bio-Rad).
PCR-based amplification was performed using the following primers:

EZH2 F: 5′-ccgctgaggatgtggatac-3′; EZH2 R: 5′-cagtgtgcagcccacaac-3′; ADRB2
F: 5′-ttcttgctggcacccaata-3′; ADRB2 R: 5′-gccaggacgatgagagacat-3′; SLIT2 F: 5′-
cggagcagcaagctaaagaa-3′; SLIT2 R: 5′-gcgacagggacagcatct-3′; TSP1 F: 5′-
gtcatacaacactcccacgc-3′; TSP1 R: 5′-ccagggcataggtagaagct-3′; CREB F: 5′-
ggagcttgtaccaccggtaa-3′; CREB R: 5′-gcatctccactctgctggtt-3′; CHGA F: 5′-
tacaaggagatccggaaagg-3′; CHGA R: 5′-ccatctcctcctcctcctct-3′; CHGB F: 5′-
cacgccattctgagaagagc-3′; CHGB R: 5′-tctcctggctcttcaaggtg-3′; ENO2 F: 5′-
ctgtggtggagcaagagaaa-3′; ENO2 R: 5′-acacccaggatggcattg-3′; GAPDH F: 5′-
agccacatcgctcagacac-3′; GAPDH R: 5′-gcccaatacgaccaaatcc-3′; Beta Actin F: 5′-
ccaaccgcgagaagatga-3′; Beta Actin R: 5′-ccagaggcgtacagggatag-3′. GAPDH or beta
actin was used to normalize RNA input with similar results. The expression levels
were calculated according to the comparative CT method (ΔΔCT).

Western blotting analysis. Cells were washed in ice-cold PBS and lysed in lysis
buffer (30 mM Tris, 200 mM NaCl, 1.5 mM MgCl2, 0.4 mM EDTA, 20% Glycerol,
1% NP-40, 1 mM DTT) with complete mini protease inhibitor cocktail and
PhosSTOP phosphatase inhibitor cocktail (Roche Applied Science). Protein con-
centrations were determined using Pierce BCA protein assay kit (Thermo Scien-
tific). The samples were then separated by SDS-PAGE and transferred to PVDF
membrane (Bio-Rad). The membrane was blocked with 5% skimmed milk in TBST
for 1 h at room temperature, followed by incubation of a primary antibody over-
night at 4 °C. The dilutions and catalog numbers of primary antibodies used are
listed in Supplementary Table 2. After washes, the membrane was incubated with
HRP-conjugated secondary antibodies for 2 h at room temperature. The blots were
then detected by Pierce ECL Western Blotting Substrate (Thermo Scientific) on
Blue Basic Autoradiography Films (Bioexpress). The uncropped scans of the most
important Western blots and RT-PCR DNA gel pictures are presented in Sup-
plementary Fig. 6 and Supplementary Fig. 7.
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Chromatin Immunoprecipitation (ChIP). DNA binding proteins in cells were
cross-linked to DNA by 1% formaldehyde for 10 min at room temperature, which
was quenched with glycine. Cells were then lysed in SDS Lysis Buffer (1% SDS, 10
mM EDTA, 50 mM Tris-HCl, pH 8.1 and freshly added protease/phosphatase
inhibitors) and sonicated to shear DNA to 300–500 bp fragments using Branson
Low Power Ultrasonic Systems 2000 LPt/LPe sonicator (Fisher Scientific). Fifty
microliters of supernatant was diluted in 450 µl dilution buffer (1% Triton X-100, 2
mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl supplemented with 0.1%
NP40, protease and phosphatase inhibitors). Samples were pre-cleared with protein
A/G agrose beads for 2 h. Twenty microliters of the post-cleared supernatant was
kept as input. The remaining supernatants were incubated overnight with 2 µg
anti-H3K27me3 (Millipore) or anti-IgG antibody, followed by 1 h incubation with
protein A/G agrose beads at 4 °C. The immunoprecipitates were subjected to
multiple washes for 5 min each at 4 °C in low salt buffer with 150 mM NaCl, high
salt buffer with 500 mM NaCl, LiCl buffer with 250 mM LiCl and finally the TE
buffer. DNA was recovered after reversion of the protein-DNA cross-links with 0.2
M NaCl and proteinase K. Subsequently, DNA was extracted with phenol-
chloroform and precipitated with ethanol. Five microliters of DNA was subjected
to real time PCR. Primers used to measure the enrichment of TSP1 promoter DNA
sequence containing H3K27me3 marks are: F (5′-tggctgtttgcagcagtcggg-3′), and R
(5′-ggatctcagcacgggcaggg-3′). The enrichment of ChIP DNA was calculated as
percentage of input. The PCR products were resolved electrophoretically on a 2%
agarose gel and visualized by ethidium bromide staining.

Luciferase assay. TSP1 promoter firefly luciferase construct that contains TSP1
promoter sequence from −2033 to +750 off the transcription starting site was
generously provided by Xiao38. Prostate cancer cells were co-transfected with the
TSP1 promoter luciferase construct and a TK-renilla luciferase construct that is the
internal control to normalize for transfection efficiency. Twenty-four hours later,
the cells were treated with either DMSO or EZH2 inhibitor DZNEP at 2.5 μM or 5
μM for another 24 h. The luciferase activities (firefly and renilla luciferase) were
determined using the Dual-Luciferase Reporter Assay System (Promega).

Endothelial cell tube formation assay. PC3 and NE1.3 cells were treated as
indicated overnight in RPMI1640 with 0% FBS. SVEC4-10 mouse endothelial cells
were grown till 70% confluence, serum starved overnight, trypsinized and resus-
pended in the conditioned media collected from PC3 and NE1.3 cells. Growth
Factor Reduced Matrigel (Corning) was thawed at 4 °C and 50 μl were quickly
added to each well of a 96-well plate and allowed to solidify for 30 min at 37 °C.
The wells were then incubated at 37 °C with SVEC4-10 cells in conditioned
medium (20,000 cells per well) and monitored regularly to observe the tube for-
mation. Pictures were taken under 4× and 10× magnification and the number of
branches were quantified.

Endothelial cell migration assay. LNCaP and NE1.3 cells were grown till 70%
confluence and starved in 0% FBS RPMI1640 medium overnight. PC3 cells
expressing shScramble or shTSP1 were either untreated or treated with PRO for 48
h, followed by serum starvation overnight. SVEC4-10 cells were grown till 70%
confluence, starved in 0% FBS DMEM medium overnight, trypsinized and re-
suspended in 0% FBS DMEM. 50,000 SVEC4-10 cells were seeded on top of each
Boyden chamber insert (8 μm, BD Biosciences). Conditioned media collected from
starved prostate cancer cells (treated or not) were added to the wells underneath
the inserts as an attractant. SVEC4-10 endothelial cells were allowed to migrate for
4 h and the inserts were fixed and stained with crystal violet dye to observe
migrated cells. Cell migration was analyzed qualitatively by counting the numbers
of migrated cells within each high power fields.

Animal experiments. All animal studies followed protocols approved by the
Animal Welfare Committee at the University of Texas Health Science Center at
Houston. We have complied with all relevant ethical regulations. LNCaP and
NE1.3 cells were transfected to express luciferase. Male 6–7 week old NOD/SCID
mice (Charles River Laboratories) were implanted subcutaneously with two
million of LNCaP or NE1.3 cells in 100 µl 1:1 of PBS and matrigel in both sides
of each mouse. The mice were then randomly divided and treated twice daily
with either saline for mice with LNCaP or NE1.3 xenograft tumors (8 mice, n=
16 tumors in either group), or 2 mg kg−1 propranolol (PRO) for mice with
NE1.3 xenograft tumors (8 mice, n= 16 tumors). The tumor growth rate in these
mice was monitored by bioluminescence imaging. Mice were anaesthetized using
isoflurane and injected intraperitoneally with 150 mg kg−1 luciferin (Caliper Life
Sciences), and tumors were imaged using an IVIS Lumina II platform (Caliper
Life Sciences) and analyzed with Live Image software (Caliper Life Sciences).

For the castration and CREB in vivo repression experiment, two million of
LNCaP-Dox-inducible-ACREB cells were implanted subcutaneously in both flanks
of 15 male 6–7 week old NOD/SCID mice (Envigo). When the majority of LNCaP
xenograft tumors were palpable, the 15 mice were randomly divided into three
groups (5 mice in each group, n= 10): first group uncastrated and fed with regular
chow, second group castrated and then fed with regular chow, third group

castrated and then fed with chow containing 200 mg kg−1 Doxycycline (Bio-Serv).
According to power calculation and common practice in the fields, xenograft
tumor’s sample size of 10 is sufficient to detect statistically significant differences
among different groups. When the tumors in uncastrated group reached the end
point, all mice in the three groups were sacrificed. Xenograft tumors were weighted,
photographed and then fixed with formalin and/or snap-frozen. All xenograft
tumors were included to compare the differences in mean tumor weights. No
visible tumors were excluded.

IHC staining of human prostate tissue microarray. TMA containing 78 cases of
formalin fixed and paraffin embedded normal or cancer prostate samples were
obtained through clinical protocols approved by the Institutional Review Board of
Baylor College of Medicine. We have complied with all relevant ethical regulations.
The TMAs were dewaxed in 60 °C oven for 2 h and deparaffinized, and rehydrated
through incubating in xylene and alcohol series. Tissue sections were subjected to
antigen retrieval in 10 mM sodium citrate buffer (pH 6.0) in a food steamer for 45
min. The Universal Elite ABC kit (Vector Laboratories) was used for immuno-
histochemistry (IHC) staining, according to the manufacturer’s instruction. After
suppressing endogenous peroxidase activity, the sections were incubated in normal
horse serum to prevent nonspecific immunoglobulin binding, then incubated with
primary antibody overnight at 4 °C. Primary antibodies used were anti-p-CREB
and anti-H3K27me3 from Cell Signaling Technology. A streptavidin-HRP detec-
tion system was used to reveal specific binding. The stained slides were scored by
two investigators who reached consensus, as following: staining intensity −/+,
<25% positive cells (weak, score 1); staining intensity ++, 25–50% positive cells
(intermediate, score 2); and staining intensity +++, >50% positive cells (strong,
score 3).

IHC staining of xenograft tumors. For immunohistochemical staining of xeno-
graft tumors, 5-μm serial sections were deparaffinized, rehydrated and subjected to
antigen retrieval with 10 mM sodium citrate (pH 6.0) for 45 min. Before staining,
non-specific binding was blocked by incubation with hydrogen peroxide as per-
oxidase suppressor (Thermo Scientific) and normal horse serum (Vector Labora-
tories) as blocking buffers, followed by incubating with 1:100 anti-CD31 (Abcam)
antibodies in antibody diluent (Biogenex) at 4 °C overnight. All sections were
briefly washed with phosphate-buffered saline and incubated at room temperature
with horseradish peroxidase-conjugated secondary anti-rabbit antibody. Color was
then developed by incubation with a DAB substrate kit (Vector Laboratories).
Nuclei were counterstained blue with hematoxylin (Sigma Aldrich) and mounted
in VectaMount Permanent mounting medium (Vector Laboratories). Isotype IgG
controls were used as negative controls for the staining.

Microvessel density. MVD of tumor tissues was assessed through immunohis-
tochemical analysis of the endothelial marker CD31 and determined according to
the method previously described69. The immunostained sections were initially
screened at low magnification (×50) to identify hot spots of the neovascularization.
Any yellow-brown stained endothelial cell or endothelial cell cluster clearly sepa-
rate from the adjacent microvessels, tumor cells and other connective tissue ele-
ments was considered a single, countable microvessel. Within the hot spot area, the
average vessel count in three hot spots with a 200-fold magnification in each tumor
section was considered the value of MVD. The stained slides were scored by two
investigators whose consensus was reported.

Microarray data mining. All non-TCGA and TCGA datasets indicated genes were
downloaded from cBioPortal70 and the GEO database (http://www.ncbi.nlm.nih.
gov/gds). The transformed and normalized gene expression values from these
sources were used in our analysis and statistical calculation.

Statistical analyses. Statistical analyses were performed using GraphPad software
and/or online statistics tools. P values were obtained through Student t-test with
two tails and unequal variance, unless otherwise indicated. Spearman correlation
coefficient and associated P values for gene expression were calculated using
GraphPad or a statistics tool at http://vassarstats.net/corr_rank.html and confirmed
by another online tool: http://www.socscistatistics.com/tests/spearman/default2.
aspx. Chi-square test was used to assess the correlation of p-CREB and H3K27me3
IHC staining on human samples. P values < 0.05 are considered significant. All
error bars are defined as s.d. All central values are defined as mean.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its supplementary information files, or are available upon rea-
sonable requests to the authors.
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