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Abstract

Lu and Elston have recently proposed a procedure for developing optimal receiver operating
characteristic curves that maximize the area under a receiver operating characteristic curve in the
setting of a predictive genetic test. The method requires only summary data, not individual level
genetic data. In an era of increased data sharing, we investigate the performance of this algorithm
when individual level genetic data are available and compare this approach to more standard
receiver operating characteristic curve-building methods.

Conclusion: Though the Lu-Elston method can produce an optimal area under the curve under
some assumptions, the method typically has little advantage over standard multivariable logistic
methods when data are available. Also, the standard approach easily allows comparison of nested
models via likelihood ratio tests and incorporation of covariates - the Lu-Elston approach is shown
to have some difficulties with such analyses. These conclusions are based on evaluations using the
Genetic Analysis Workshop 16 rheumatoid arthritis data set.

Background
Lu and Elston [1] present an approach to constructing
optimal area under the curve (AUC) curves, applicable to
case-control studies that does not require the availability
of a data set. The method may be based solely upon
summary information of marker-specific allele frequen-
cies in cases and controls, penetrance, and disease
prevalence. In this approach one can construct multi-
variable predictive models of disease without knowing
the joint distribution of the markers, using an

assumption of no interactions between markers. Further,
the method is optimal in the sense that the area under
the receiver operator characteristic (ROC) curve is
maximized. The authors provide a more complex
extended model involving linkage disequilibrium (LD)
correlations and haplotype frequency estimation that
allows for interactions among markers; however, evalua-
tions using this approach are not pursued in this brief
report because we would not expect our conclusions to
change qualitatively.
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Here we assess how this method performs when a case-
control data set is available and therefore many methods
are available for constructing ROC curves based on the
joint distribution of markers. In such situations we
examine the extent to which the approach remains
optimal and how it may be extended with respect to
marker selection and incorporation of covariates. These
issues are examined using a small subset of markers
drawn from the Genetic Analysis Workshop 16 (GAW16)
rheumatoid arthritis (RA) data.

Methods
The Lu-Elston approach is based on disease-specific
genotype frequencies, P g Diji

( ) , where D denotes a case,
i denotes a single-nucleotide polymorphism (SNP), and
ji denotes a genotype for that SNP, e.g., Aa. Lu-Elston
show how these can be obtained from existing publica-
tions with information about population genotype
frequencies and genotype relative risks or odds ratios.
It is important to note that this can be obtained without
individual data. Then one can produce multilocus
genotype probabilities from the individual SNP prob-
abilities by assuming independence between markers:
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where a small number of loci (e.g., n = 6) are considered.
In this case k is between 1 and K, where K is the total
number of possible genotypes. In the example of six
SNPs with unspecified inheritance mode, this could
correspond to 36 = 729 possible genotypes. The multi-
plicative independence assumption allows one to
assign this probability though no one in any data set
might ever show this particular genomic combination.
With D denoting a control participant, one forms the
likelihood ratios
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The optimal ROC curve is then obtained by sorting the
LRk from largest, LR(K) to smallest LR(1). By varying
cutoffs along the range of LR(k), one can obtain true
positive rates (TPRs) and false positive rate (FPRs) for
computing the AUC. For a fixed threshold c,
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and the AUC is computed using the trapezoidal rule as in
Lu and Elston [1].

Results
Application to GAW16
The Lu-Elston approach uses a set of markers to
categorize individuals as testing positive or testing
negative. The approach is not designed for biomarker
selection/discovery, but to construct a ROC curve with a
given set of predetermined markers. For this data set the
predetermined SNP markers studied were rs6457617,
rs2476601, rs7574865, rs1061622, rs2073838,
rs1248696, corresponding to MHC, PTPN22, STAT4,
TNFRSF1B, SLC22A4, and DLG5 genes, respectively. The
first three were chosen because they were linked to RA
[2]. The last three SNPs were chosen because 1) they
were among the SNPs selected for an RA candidate gene
study [3] and 2) among the candidate SNPs only these
three appear to be included in this Illumina data set.
Thus, all six SNPs were chosen independently from
the GAW16 data under consideration. Applying the
Lu-Elston approach by taking the genotype frequencies,
giji from the RA data set yields an ROC curve with
AUC = 0.7504. Without a data set, one could have used
estimates of prevalence, allele frequencies, and pub-
lished log-odds ratios to derive genotype frequencies for
cases and controls as described by Lu-Elston. However,
because the purpose of using these estimates is to obtain
genotype frequencies for cases and controls, it is easier to
estimate P g Diji

( ) directly from the data at hand.
Further, using the data at hand promotes comparability
between this approach and the logistic regression
approaches.

The AUC is a global summary measure of how the FPRs
and TPRs change as the cutoff for declaring a positive test
is varied. It will be compared to the AUC obtained using
conventional logistic regression methods and the same
set of predetermined SNPs. Starting with a ROC curve
either the Lu-Elston or logistic regression method can be
used to develop a diagnostic test.

Logistic regression as an alternative to Lu-Elston
Given a case-control data set, the Lu-Elston ROC and
underlying TPRs and FPRs may be easily obtained
through conventional methods because

P giji D

P giji D

P D giji P D

P D giji P D

( )
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( ) ( )
,= (4)

and P D giji
( ) may be obtained from a univariate

logistic regression of case/control status on marker i
(i.e., treating the marker as a factor with three levels
corresponding to the AA, Aa, and aa genotypes) or from
simple observation of marker-specific disease rates. In all
equations the probabilities correspond to empirically
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observed probabilities from the data set at hand. Then
from Eqs. (1), (2), and (4) we see the empirically
observed likelihood ratio, LR(k), is a function of fitted
probabilities from six univariate logistic regression
models and a ratio of controls to cases in the data set,
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.
Given that the Lu-Elston ROC may be exactly reproduced
from a series of univariate regression analyses, this raises
the question of whether a single multivariate regression
model may produce better discrimination. It might be
expected that the fitted probabilities from six univariate
models are a special case of the fitted probabilities
available from a multivariate model so a higher AUC
could be obtained in a less restricted multivariate model.
Alternatively, Lu and Elston argue their model is optimal
in that it should have the highest AUC value. It is in fact
the case that no broad generalizations can be made–in
some cases the optimal Lu-Elston method as described
above will produce an AUC exceeding that constructed
through a simple multiple logistic regression of the same
factors, and in other situations the Lu-Elston method
will perform worse. This arises because different assump-
tions may be made regarding P(Gk|D) and the collection
of genotypes under consideration may differ.

As an example, one may perform multivariate logistic
regression of case/control status on 6 explanatory
factors–each factor corresponds to one of the markers
and each factor has three levels. With an assumption of
no interactions between markers, this corresponds to a
model with an intercept term and 12 other coefficients.
The corresponding ROC curve (composed by ordering
the predicted P(D|Gk) values from the model) is shown
in Figure 1 along with the original Lu-Elston ROC curve.

The two curves are quite close though the logistic curve
has a slightly lower computed AUC–0.7503 compared
with 0.7504. This slight decrease associated with the
logistic may not be generalized. For example, if only five
markers are used (excluding the third marker,
rs7574865) then the Lu-Elston AUC is 0.7487; the
multivariate model AUC is 0.7490. Of course, these
AUCs are identical for practical purposes; the compar-
isons show neither approach has uniformly higher
AUCs.

For the case of six markers, the Lu-Elston curve is based
on 36, or 729 possible genotypes while the logistic curve
is based on the unique 178 genotypes that are observed
as determined by the six SNPs. However, the approaches

produce similar results and this might be expected if the
relation in Eq. (1) is approximately true.

As an aside we note that given a data set with individual-
specific genotypes, the AUC can be maximized beyond
what has been shown thus far by applying the Lu-Elston
idea to the distinct genotypes observed (in this case
178), rather than those derived using the independence
assumption in Eq. (1). One may construct the ROC curve
using likelihood ratios derived not from the indepen-
dence assumption but by the observed values of
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where P(D|Gk) is the empirically observed proportion of
cases among those with genotype Gk Using Eq. (6), one
can derive an empirical ROC of 0.793. However, such an
approach likely yields an overfitted model. As an
example, a genotype with two cases and no controls
would have an infinitely large LR(K) with estimated
sensitivity of 100%–a figure that is not likely to be
reproduced in a follow-up study with more individuals
having that genotype.

Model fitting aspects
The Lu-Elston paper discusses how to choose among
optimal ROC models based on different collections
of SNPs from a common data set. They propose
calculation of.

Figure 1
Lu-Elston and multivariate logistic ROCs for six
SNPs. Lu-Elston ROC = 0.7504, logistic ROC = 0.7503.
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where Var(A2 - A1) = Var(A2)+ Var(A1) - 2Cov(A2, A1), A2

and A1 represent the different optimal AUCs corresponding
to the two collections of SNPs, and the variance term in the
denominator would be estimated by a bootstrap approach.
They propose comparing the resulting Z-statistic to a
standard normal distribution to assess whether one
collection represents a significant improvement over the
other. However, in the context of nested collections when
one collection properly contains all the SNPs in the other
collection, such a comparison likely produces p-values that
are incorrect. This follows because if the second collection
properly contains the first, then the optimality theorem of
Lu-Elston dictates that A2 (the AUC associated with the
second collection) must exceed A1 and Z in Eq. (7) is
necessarily positive. Therefore, the evaluation of Z by a
standard normal distribution is not appropriate.

As a conventional alternative, a likelihood-ratio test may
be used with the multivariate logistic regression
approach to determine whether an additional marker
would improve the model.

To evaluate which of the methods (bootstrap or multi-
variable logistic likelihood-ratio test) had appropriate
type I error behavior when adding an unrelated SNP, we
sampled 1445 markers drawn from those chromosomes
that hold none of the original six markers and were
spaced at roughly equidistant intervals for a given
chromosome. Originally, 2000 such markers were
drawn but only 1445 met quality control and minor
allele frequency conditions to ensure that bootstrap
samples would generate all three genotypes. Our
assumption is that few, if any, of these markers are
strongly related to arthritis.

As expected, the bootstrap approach did not perform
well because a standard normal distribution centered
about 0 is ill-suited for evaluating a test statistic that is
necessarily non-negative (i.e., A2 ≥ A1). The Kolmogorov-
Smirnov p-value for testing if the 1445 test statistics
followed a standard normal distribution was p < 10-15.
On the other hand, the likelihood ratio test performed
appropriately for the multivariate logistic regression
approach. The p-value for testing whether the 1445 test
statistics followed a c2 distribution with two degrees of
freedom was p = 0.55. The likelihood ratio test
incorporates a genomic control correction [4] for
population stratification that is achieved by dividing
all the 1445 log-likelihood ratio test statistics by the ratio
of the median test statistic value and the median value of
a c2 distribution with two degrees of freedom. The
inclusion of this genomic control procedure is not likely

to account for the difference in the two approaches
because the basic problem with the bootstrap approach
concerns using a standard normal distribution centered
about 0 to model a non-negative random variable.

We explored the possibility of using a permutation
rather than a bootstrap approach to determine whether
the addition of another SNP leads to significant
improvement in AUC within the Lu-Elston approach.
Here, the case-control labels for the additional SNP (one
of the 1445) are permuted and an associated A2 - A1

difference is computed. One thousand permutations
produce an A2 - A1 permutation distribution which is
compared to the observed A2 - A1 in the original data set.
If the original A2 - A1 exceeds, say, 95% of the empirical
A2 - A1 distribution, this may be taken as evidence of
significant AUC improvement. The approach appears
promising but was complicated by the indication of
population stratification-the empirical p-value distribu-
tion was similar to that of the likelihood-ratio test before
the stratification adjustment. While the Devlin-Roeder
approach to account for stratification may work for a
likelihood-ratio test, it is unclear how to proceed for a
permutation test. Further, the permutation of labels for
just the additional SNP will remove LD with nearby
SNPs, which could affect performance.

Incorporating covariates
Logistic regression easily includes covariate information as
additional regressors-the covariates may be discrete or
continuous. The Lu-Elston approach toward incorporation
of covariates is to first categorize the covariate as a factor
(even though it may be continuous in nature). Next, the
same multiplicative approach is used to determine the
probabilities of observing each combination of covariates
and genotypes for cases and controls. From these
probabilities the likelihood ratios and ROC curves are
constructed as before. In the event the covariates are
continuous in nature, such a data transformation entails a
loss of information and efficiency.

Conclusion
The Lu-Elston approach is valuable for developing
classification models in the absence of individual-level
data. We have applied Lu and Elston’s approach for
constructing ROC curves and compared it to conven-
tional logistic regression methods. When the assumption
of multiplicative effects without interactions among
markers is in force there should be little difference
between the Lu-Elston and conventional logistic
method. The advantages of this conventional approach
are the ability to use standard approaches toward model
selection based upon log-likelihood differences and a
simple way to incorporate covariates via regression.
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