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Abstract: Interfacial interaction is one of the most important factors in the construction of high-
performance graphene-based elastomer composites. In this paper, graphene/poly (styrene-b-isoprene-
b-styrene) (SIS) composites were prepared with solution mixing followed by an evaporation-induced
self-assembly process. Various techniques such as scanning electron microscopy, UV-vis absorption
spectra, tensile testing, Shore A hardness, surface resistance, thermal conductivity, and thermogravi-
metric analysis were conducted to characterize the microstructure and properties of the obtained
composites. The results showed that the π–π stacking interfacial interaction between phenyl groups of
SIS and graphene play an important role in the properties’ improvement, and the effect of interfacial
interaction on the properties was revealed.

Keywords: interfacial interaction; graphene; polymer composite; properties

1. Introduction

Polymer composites based on nanofillers such as fullerene, carbon nanotubes, nano-
diamond, and layered silicates have attracted much attention in recent years, because
of their prominent properties and numerous applications [1–3]. Nowadays, graphene, a
multifunctional nanofiller, has been revealed to be a promising reinforcing component for
the construction of polymer composites [4–6]. To maximize the reinforcing efficiency of
graphene in polymer composites, the issues of dispersion state and interfacial interaction
between graphene and polymer matrix should be addressed [7–9]. Many methods were
developed for the fabrication of graphene-based polymer composites, such as solution
mixing, melt blending, and in situ polymerization. Among these methods, solution mixing
has been demonstrated to be an effective way to obtain satisfactory dispersion [10–12].

The other important factor that influence the properties of graphene-based polymer
composites is the interfacial interaction, which determines the stress dispersion and trans-
port performance of the obtained nanocomposites [10–14]. As reported by the group of
Wang [15], the interfacial orientation of the polystyrene phenyl groups in contact with
graphene was revealed by sum frequency generation vibration spectroscopy. The phenyl
groups prefer to recline to more favorably interact with graphene via a face-to-face configu-
ration (π–π stacking) at a low concentration; this provides important knowledge for the
design and optimization of graphene-based aromatic polymer nanocomposites. Guo et al.
reported the rational design of covalent interfaces for graphene/styrene butadiene rub-
ber nanocomposites [16]; the strong interfacial interaction (π–π stacking, hydrogen bond,
covalent crosslinking) provides synergetic improvement in the mechanical properties (dras-
tically decreased energy loss). Zhong et al. reported the influences of reduced graphene
oxide (RGO) on the interfacial interaction and electrical conductivity of polycarbonate
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(PC) [17]; the nanosized effect, good conductivity of RGO, and strong interfacial inter-
action (π–π stacking) between RGO and PC resulted in a low conductive threshold of
0.36 wt%. Wang et al. reported the effect of RGO on the thermal conductivity of poly (vinyl
alcohol) (PVA) composites [18]; the thermal conductivity of the composites was closely
associated with interfacial interaction: the stronger the interfacial interaction, the larger
the thermal resistance and the lower of thermal conductivity. Hofmann et al. reported
that for thermoplasctic SEBS nanocomposites reinforced with functionalized graphene [19],
enhanced gas barrier resistance was attributed to the labyrinth effect (drastically increasing
the diffusion pathway) and strong interfacial interaction (π–π stacking) between graphene
and SEBS. Though the interfacial interaction plays an important role in the construction of
graphene-based polymer composites, there are few systematic reports about the effect of
the interfacial interaction on different properties for specific polymer composites [20].

Styrene-based block copolymers are basically thermoplastic elastomers, with good
performance for a wide range of applications, such as toys, packaging, adhesive, and
medicinal materials [21]. Poly (styrene-b-isoprene-b-styrene) (SIS) is a triblock copolymer
belonging to the family of thermoplastic elastomers. The SIS composites with carbon
nanotube or graphene have applications in photomechanical actuation [22,23]; however,
there are few reports about the effect of interfacial interaction on different properties of SIS
composites. In the present work, the SIS doped with different loadings of graphene were
prepared with solution mixing followed by an evaporation-induced self-assembly process,
enhanced properties were obtained through a π–π stacking interfacial interaction, and the
effect of interfacial interaction on the properties was revealed.

2. Materials and Methods
2.1. Materials

Graphene was purchased from Suzhou TanFeng Graphene Tech Co., Ltd. (Suzhou, China).
Poly (styrene-b-isoprene-b-styrene) (Melt flow rate = 23 g/10 min) was purchased from
Xingzhi New Materials Co. Ltd. (Guangzhou, China). Chloroform was obtained from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) without purification.

2.2. Preparation of Graphene/SIS Composites

Graphene/SIS nanocomposites with different graphene concentrations (0~2.0 wt%)
were prepared by a solution mixing method. In a typical procedure, the graphene was
dispersed into 10 mL chloroform using a bath sonicator for 1 h. Then, 4 g of SIS was
added into the dispersion with vigorous stirring for 2 h, and the mixture was sonicated
for 1 h. Finally, the obtained mixture was poured into a polytetrafluoroethylene mold, the
graphene/SIS films were obtained with an evaporation-induced self-assembly process, and
the obtained films were dried at 60 ◦C to a constant weight.

2.3. Characterization

Scanning electron microscopy (SEM, VEGA 3SBH, Tescan Orsay Holding, Brno, Czech Re-
public) was used to examine the morphology of the graphene sheets. UV-Vis absorp-
tion spectra were conducted with a S 3100 spectrophotometer (Mapada Instruments Co.
Ltd., Shanghai, China). The tensile properties of graphene/SIS composites were mea-
sured by a universal testing machine (Shimadzu AG-IC, Zhujin Analytic Instruments
Co. Ltd., Shanghai, China); at least five samples were tested to obtain average values.
Measurements of Shore A hardness consisted of vertical immersion of the indenter into
the composite surface with a Shore hardness tester (LX-A, Shenzhen Haoxinda Instru-
ment Co., Ltd., Shenzhen, China). The surface resistance of the obtained composites
was measured with an ultra-high resistance micro-current tester (ST2643, Suzhou Jingge
Electronic Co., Ltd., Suzhou, China). The thermal conductivity of the composites was
measured using thermal conductivity test equipment (DRE-2C, Xiangtan Instrument Co.,
Ltd., Xiangtan, China). Thermogravimeter (TG) analysis was performed with a TG-209-F3
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(PerkinElmer, Waltham, MA, USA) under the nitrogen atmosphere at a heating rate of
10 ◦C/min from 30 to 650 ◦C.

3. Results
3.1. Morphology of Graphene

Scanning electron microscopy (SEM) of the graphene powder is given in Figure 1,
which appears to be a rigid layered structure and very large in size. The edges of the
graphene nanosheets are well defined with sharp corners, which is consistent with the
results in the literature [11,23]. The large size of graphene sheets can provide sufficient
surface area for the adhesion of polymer. Furthermore, strong interfacial interaction
(π–π stacking) can be formed between graphene and aromatic polymer nanocomposites,
resulting in improved properties.
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Figure 1. SEM images of graphene with (a) low resolution and (b) high resolution.

3.2. π–π Stacking Interaction between Graphene and SIS

Solution mixing has been found to be an effective method for the preparation of
graphene-based polymer composites, as the polymer can be absorbed on the surface of
graphene through interfacial interaction, resulting in a good dispersion state [11,12]. The
dried graphene/SIS composite was redissolved into chloroform, and UV-vis absorption
spectroscopy was carried out to confirm the interfacial interaction between graphene and
SIS in the composites. As shown in Figure 2a, the spectrum of pristine graphene exhibits a
broad absorption peak at 270 nm and a shoulder peak at 236 nm. The spectrum of pure SIS
exhibits a sharp absorption peak at 238 nm, originating from the polystyrene block in this
block copolymer, whereas that of 0.5 wt% graphene/SIS composite exhibits a sharp peak at
243 nm. The peak of composite shifts to a higher field by 5 nm compared to that of pure SIS,
originating from the effect of ring currents in graphene and polystyrene block π-systems;
this can be ascribed to the formation of nocovalent π–π stacking between phenyl groups
of SIS chains and basal planes of graphene (Figure 2b) [24,25]. These results demonstrate
that a π–π stacking interaction can be formed in the slow self-assembly process; thus, the
solution mixing followed by evaporation-induced self-assembly process is an effective
method to obtain strong interfacial interaction [24,25]. These strong interfaces can facilitate
stress dispersion and transport performance [10–14], which has an important effect on the
properties of the graphene/SIS composites.
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Figure 2. (a) UV absorption spectra and (b) π–π stacking interactions between graphene and SIS.

3.3. Mechanical Properties of Graphene/SIS Composites

Tensile testing was used to evaluate the mechanical properties of pure SIS and the
graphene/SIS composites. The stress–strain behavior of all samples is presented in
Figure 3a. It can be seen that with the incorporation of graphene, the tensile strength
of the obtained composites improved significantly, compared to the pure SIS. The tensile
strength and elongation at break are also plotted against graphene content in Figure 3b.
Compared with pure SIS, the tensile strength of the composites increased at a low content
of graphene: the tensile strength of the 0.5 wt% graphene/SIS composites increases by
26.4% from 1.4 to 1.77 MPa. Then, the tensile strength consistently decreases when the
graphene content exceeds 0.5 wt%, but it remains higher than that of pure SIS [26]. This
may be ascribed to the different dispersed state and interfacial interaction of graphene
in SIS matrix. Graphene was fully exfoliated at low content and exhibited strong a π–π
stacking interaction with the SIS chain, and the π–π stacking interaction can serve as a
sacrificial bond to dissipate energy, leading to the effective dissipation of stress. On the
contrary, the aggregation of graphene at relatively high contents exhibits weak interfacial
interaction, leading to a poor dissipation of stress [27,28]. The elongation at break declines
significantly with the increasing of graphene content, and a similar phenomenon was
also observed not only for thermoplastic elastomer composites, but also for most polymer
composites where agglomerated fillers act as failure points during elongation [19,29,30].
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3.4. Shore A Hardness of Graphene/SIS Composites

The investigation of Shore A hardness of SIS and corresponding graphene nanocom-
posites as a function of filler content are shown in Figure 4. It is clear that the hardness
value of the graphene/SIS nanocomposites shows an increasing trend with increase in
graphene content in the polymer matrix. The maximum hardness value recorded is about
44 for the composite with 2 wt% of graphene, which corresponds to an improvement of
25.7% compared to that of unreinforced SIS. This phenomenon arises from the addition of
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rigid graphene nanosheet, which is denser and harder than SIS matrix. It is also observed
that the increase in hardness value is smaller when the content of graphene exceeds 1 wt%,
which indicates that the surface of the nanocomposites becomes more homogeneous and
harder [19,30,31].
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3.5. Surface Resistivity of Graphene/SIS Composites

According to the electrical percolation theory, graphene sheets provide percolated
pathways for electron transfer, which imparts electric conductivity to the nanocomposites.
However, the improvement efficiency of graphene sheets dramatically depends on the
degree of sheets’ dispersion and interfacial interaction [32,33]. The electrical properties of
graphene/SIS composites obtained with different contents of graphene were investigated
in detail. The dependence of electrical property on graphene sheet loading is present in
Figure 5. The surface resistivity decreased slowly when the content of graphene was below
0.5 wt%, which can be ascribed to the good dispersal of graphene sheets and the fact that
the conductive network was not formed. The surface resistivity decreased sharply when the
content of graphene exceeded 0.5 wt%, and the surface resistivity of 2.0 wt% graphene/SIS
composite decreased by four orders of magnitude. This is due to the formation of a
conductive network and the π–π stacking between graphene and SIS [33,34].
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3.6. Thermal Conductivity of Graphene/SIS Composites

Thermally conductive polymer composites are attracting considerable attention, es-
pecially in recent years because increasingly more powerful electronics are being devel-
oped [35]. The thermal conductivity of SIS and SIS composites are summarized in Figure 6.
The unfilled SIS has the lowest value of 0.089 W/mK. The thermal conductivity of the
graphene/SIS composites increased with the increase in graphene content, the highest
increase with respect to the unfilled SIS was for the 2.0 wt% graphene/SIS composite, and
was 42%, which can be ascribed to the high thermal conductivity of graphene [35–37].
The interfacial interaction between nanofiller and polymer has an important effect on
the thermal conductivity, which dominates the delivery of phonons between matrix and
nanofillers [38,39]. When the content of graphene was below 0.5 wt%, the thermal conduc-
tivity of the graphene/SIS composites deviates from linear growth, which is due to the
π–π stacking interaction between graphene and SIS. At low content, the graphene presents
a well exfoliated state; the high specific surface area and interfacial interaction provide
more sites, which can scatter phonons and damp the vibrational amplitude at the inter-
face, inducing a higher thermal resistance. As the content of graphene sheet is increased,
the graphene agglomerates and the interfacial interaction-induced thermal resistance is
limited [18,39].
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3.7. Thermal Stability of Graphene/SIS Composites

Increased thermal stability is typical of polymer-layered nanocomposites, usually
attributed to heat and mass barrier effects of layered nanocompounds, which delay heat
and pyrolysis products’ diffusion. The thermal stability of graphene/SIS composites is
presented in Figure 7. The pure SIS shows a slow thermal degradation at a temperature
range of 30–350 ◦C, which becomes more dramatic after 350 ◦C, before being almost
completely decomposed at 450 ◦C [23]. It is found that all the composites present similar
degradation behavior to pristine SIS, and the composites have an obvious improved thermal
stability in comparison to pure SIS, especially in the range of 30–350 ◦C. This improvement
in thermal stability could be attributed to the tortuous path effect, which formed between
graphene and SIS through π–π stacking [10,40]. The decreased degradation rate with
increase in graphene content can be ascribed to the effective obstruction of low molecules
from degraded SIS, and the shield function of the heat [32].
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proved thermal stability in comparison to pure SIS. 
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4. Conclusions
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benefits from the formation of a conductive network; the surface resistivity of 2.0 wt%
graphene/SIS composite decreased by four orders of magnitude. The high specific surface
area and π–π stacking interaction provide more sites that can scatter phonons and damp
the vibrational amplitude at the interface, inducing a higher thermal resistance. The π–π
stacking interaction is benefits for the effective obstruction of low molecules from the
degraded SIS and the shield function of the heat; thus, the obtained composites exhibit
improved thermal stability in comparison to pure SIS.
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