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Abstract

Feature representation and discriminative learning are proven models and technologies in artificial intelligence fields; however, major
challenges for machine learning on large biological datasets are learning an effective model with mechanistical explanation on
the model determination and prediction. To satisfy such demands, we developed Vec2image, an explainable convolutional neural
network framework for characterizing the feature engineering, feature selection and classifier training that is mainly based on
the collaboration of principal component coordinate conversion, deep residual neural networks and embedded k-nearest neighbor
representation on pseudo images of high-dimensional biological data, where the pseudo images represent feature measurements
and feature associations simultaneously. Vec2image has achieved better performance compared with other popular methods and
illustrated its efficiency on feature selection in cell marker identification from tissue-specific single-cell datasets. In particular, in a
case study on type 2 diabetes (T2D) by multiple human islet scRNA-seq datasets, Vec2image first displayed robust performance on
T2D classification model building across different datasets, then a specific Vec2image model was trained to accurately recognize the
cell state and efficiently rank feature genes relevant to T2D which uncovered potential T2D cellular pathogenesis; and next the cell
activity changes, cell composition imbalances and cell–cell communication dysfunctions were associated to our finding T2D feature
genes from both population-shared and individual-specific perspectives. Collectively, Vec2image is a new and efficient explainable
artificial intelligence methodology that can be widely applied in human-readable classification and prediction on the basis of pseudo
image representation of biological deep sequencing data.

Keywords: explainable artificial intelligence, deep residual neural network, classification, feature selection, single-cell sequencing,
type 2 diabetes

Introduction

With the development of high-throughput sequencing
technology, an abundance of biological datasets is acces-
sible for exploration. Currently, there are many essential
studies and application tasks involved in the convergence
of biotechnology (BT) and information technology, which
concerns the classification and prediction of biological
samples on the basis of high-dimensional omics data
[1]. For example, to recognize single cell types, many
approaches involve unsupervised methods [2–4], which
are usually followed by manual annotation based on
previously identified marker genes [5]. However, the per-
formance of these methods is unsatisfactory, with low
sensitivity in sample/cell classification when integrating

multiple datasets for follow-up analysis, and such anno-
tation of samples/cells is also relatively subjective, which
may introduce classification bias in the downstream
analysis. Thus, an explainable computational model (e.g.
artificial intelligence [AI]) is needed to help nonexperts
correctly understand and obtain constructive inspiration
from the data-intensive biological or biomedical studies
on the basis of high-dimensional biological data (e.g.
high-throughput deep-sequencing data) [6].

On one hand, in recent biomedical fields, the well-
annotated biological sequencing datasets have become
increasingly available, and machine learning (ML)
approaches have shown great capability in prediction
and classification [7, 8], such as xGBoost [9], Adaboost
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[10] and random forest [11]. These algorithms and
well-trained models have been widely applied [8, 12–
14] and can automate the identification of sample
annotations/types and reduce the bias existing in prior-
given information [15]. In fact, most current methods
are developed for a biological data sample in the form
of a feature vector and then annotate/classify the
vector into one of the defined types/classes. However,
the features in the vector are generally selected and
considered mutually independent by both the algorithm
developer and user, so that they usually tend to ignore
any (explainable) relationships between features [14,
16, 17] which leads to the contradiction as a ‘black
box’ problem in computation. In addition, these models
would require manual parameter adjustment, which
actually aggravates the burden of the inexperienced user
in understanding the model execution and outcome.

On the other hand, convolutional neural networks
(CNNs) have recently gained wide attention due to their
high performance in the recognition/classification of
image data in the form of pixel matrices [18–21]. In
brief, CNN has shown several computational advantages,
including the feature extraction and classification via
hidden layers; the detection of nonlinear correlations
and high-order statistics of image data and the deep
layer and fewer parameters of the network structure
with weight sharing. However, the application of CNNs
in the clinical scenarios is still limited in terms of
medical images [20, 21]. This method is also difficult
to directly apply to diverse biological sequencing data,
such as genomic, transcriptomic and metabolomic
data [22]. The predictions by using CNNs or similar
neural network models are hard to interpret while
they can provide excellent performance in practice,
which are thought to lack explicit representations
and direct consequent interpretation due to the lower
meaning of a single pixel/feature, thus inevitably facing
the ‘black box’ problem. Although a few studies has
recently realized the transformation of omics data into
a well-organized image form [12, 23–25], they focused
more on the classification accuracy for algorithm
developers rather than the outcome interpretation for
inexperienced users. Thus, a model and algorithm for
applying explainable artificial intelligence (xAI) [6, 26]
in biological and biomedical studies are still lacking and
need fundamental developments.

To address these practical challenges during AI appli-
cation in biological big data, we proposed Vec2image, a
xAI model for analyzing high-throughput (vector) data
(Figure 1), whose framework is mainly based on principal
component coordinate conversion, deep residual neu-
ral network learning and embedded k-nearest neighbor
(KNN) representation. Vec2image is able to integratively
execute feature engineering, feature selection, classifier
learning and topic recommendation in the biological
context. Technically, the workflow of Vec2image includes
three steps: (i) adopting synthetic minority oversam-
pling technique (SMOTE) to address class imbalances
that occur in most biological sample imbalance or small

sample sequencing datasets (Figure 1A); (ii) constructing
a feature correlation/co-ordinate structure in a latent
feature space using alternative feature extraction meth-
ods to transform the original vector data into the pseudo
image/matrix, which contains both feature abundance
and correlation information (Figure 1B) and (iii) imple-
menting an interpretable CNN classifier for sample clas-
sification, feature/topic recommendation and insightful
sample/feature association visualization simultaneously
(Figure 1C), which is on the basis of paralleled ResNet
architecture (Figure 1D) and KNN algorithm (Figure 1E),
respectively. In these pseudo image of biological omics
data, the single pixel/feature in image should represent
the individual gene with strong expression signal and the
pixel shape in image could indicate the grouped genes
with tight expression correlation. This information can
be simultaneously extracted by CNN or similar technol-
ogy so as to provide abundant gene expression and co-
expression pattern supporting classification model with
biological interpretation. These capabilities of Vec2image
have been validated on multiple benchmark datasets,
which illustrates the accurate prediction in many biolog-
ical learning tasks.

In particular, Vec2image has been applied to make
a deep case study on type 2 diabetes (T2D) by multi-
ple human islet Single-cell RNA sequencing (scRNA-
seq) datasets at cross-domain level e.g. using single-
cell sequencing data from separate cells (individual
domain) and additional bulk sequencing data from
whole tissues (population domain). In this case study,
Vec2image achieved satisfactory performances in binary
classification, multiclass classification, imbalance clas-
sification and cross-platform (transfer) classification
on different kinds of high-throughput bulk and single-
cell T2D sequencing datasets. As a candidate xAI
model, Vec2image helped to identify cell-type-enriched
and disease-related genes, which identified previously
unknown diabetes-related genes enriched for alpha or
beta cells. These findings of Vec2image provided deeper
insights into the cell activity changes, cell composition
imbalances and cell–cell communication dysfunctions
that occur in pancreatic cells involved in diabetes. In
summary, Vec2image indeed provides a comprehensive
and widely applicable xAI model for analyzing diverse
high-dimensional biological data.

Material and methods
Sample balance of Vec2image by oversampling
Vec2image combines SMOTE sampling, providing an effi-
cient method for improving classification performance
when trained on imbalanced data [27]. New sample data
D are sampled from the given training data (Figure 1A),
whose processing algorithm is as follows:
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Figure 1. Overview of the Vec2image framework. (A) Preprocessing of input sample data with balance sampling in the first stage of Vec2image. (B)
Transformation from original vector sample data to pseudo image sample data in the second stage of Vec2image, where the color of each dot represents
the normalized expression value of each feature of one sample. (C) Schematic of the internal neural network structure of the classification model in the
third stage of Vec2image, where sample classification and features/genes prioritization can be carried out via paralleled ResNet architecture combining
with embedded KNN algorithm. (D) Parallel Resnet architecture, which consists of two parallel CNN architectures where each consists of six Resnet
blocks. (E) Feature prioritization based on KNN.

SMOTE generates synthetic minority samples to over-
sample the minority class. For every xi

raw in the minority
class, we calculate its K (which is set to 5 by default)
nearest neighbors from the whole training set, and then
xi

rand is randomly selected from them. After that, we can
calculate a new synthetic sample xi

new along the line
between the minority example and its selected nearest
neighbors. Therefore, the new balanced training data
D = (

x1, y1
)
, . . . ,

(
xn, yn

)
are generated, where (xi, yi)

represents a sample and its feature vector is xi and its
class variable is yi.

Pseudo image generation of Vec2image by
dimensionality reduction
Sequencing data of biological samples, which are inher-
ently in numerical form, were transformed to an image
form for them to be compatible with CNN architectures.
First, the nonlinear dimensionality reduction methods



4 | Tang et al.

(t-distributed stochastic neighbor embedding [t-SNE] [28]
as the default algorithm) are used to transform the fea-
ture points from the observed data space to the latent
data space, and meanwhile obtain the visualizable fea-
ture points in latent space with dimension as 2. Con-
sidering a training set D, the general sample points of
D consist of n samples and m features, which can be
defined as X = (

x1, x2, . . . , xn
)

and xi (i = 1, 2, . . . , n)
is a vector with values of m entries/features; in con-
trast, the feature points of D can be represented as
G = {

g1, g2, . . . , gm
}
, where gj (j = 1, 2, . . . , m) is a vec-

tor with values of n entries/samples. Obviously, in the
matrix form, G is just a transpose matrix of X. And
here, the feature point matrix G is processed by t-SNE
to get a 2D coordinates

{(
a1, b1

)
,
(
a2, b2

)
, . . . ,

(
am, bm

)}
of

features and the coordinates
(
aj, bj

)
in the 2D plane define

the location of features/genes gj in latent space. These
nonlinear dimensionality reduction algorithms keep the
high-dimensional topology of features to a 2D plane
and preserve the local relationships among features in
accordance with the similarity among features in high-
dimensional space; therefore, the association structure
of features in 2D plane can be determined. To avoid
potential overfitting, the test of new datasets will directly
use the feature locations (i.e. association structure of
features) obtained from the training set in this work.
Of note, the other data projections (e.g. Kernel Principal
Component Analysis (KPCA), Uniform Manifold Approx-
imation and Projection (UMAP)) [29, 30] were also imple-
mented as additional pseudo image generators. The dif-
ferent dimensionality reduction techniques would affect
downstream analysis although they might have com-
parable performances (Supplementary Figure S1), thus
these projections (i.e. tSNE, KPCA, UMAP) are currently
all available for custom selection during model training
according to corresponding applications.

Next, a rotation is performed by a convex hull algo-
rithm to frame the pseudo image (i.e. 2D plane structure)
horizontally or vertically for input into the following CNN
architecture [12, 31], and the Cartesian coordinates are
converted to pixels, which determine the location of each
feature in pixel frame.

Finally, the expression values of each sample within
vector xi are mapped to these pixel locations as detailed
pixel values. The color shade of a single layer of an image
ranges from 0 to 1. In this work, the pixel frame size is
set to 120 × 120 by default, and the default value of each
pixel is set to 1. Each xi is normalized by the following
manner:

step1 : xi = log
(

xi +
∣∣∣∣ min
samples

xi

∣∣∣∣ + 1
)

step 2 : xi = xi

M

The minimum value min
samples

xi is adjusted for each fea-

ture across samples, and the global maximum value

M = max D of whole training data D is used to further
scale the feature values between 0 and 1. Obviously, this
normalization will retain the association topology of all
features. Of note, if more than one feature acquires the
same location in the pixel frame, then these features
will be placed in the same location, and their average
expression values will be given as the final value of this
pixel. Therefore, unique pseudo image data zi for each
vector xi of one sample i can be generated.

Through this pseudo image generation, n samples can
be measured by the transformed n images, which would
be directly plugged into following CNN architecture.

CNN model configuration of Vec2image
by residual network
The above transformed pseudo image data zi instead of
original vector data xi can be processed by CNN archi-
tecture (Figure 1C). The CNN models were constructed
using a parallel ResNet architecture (Figure 1D). In brief,
this architecture contains six residual building blocks
in parallel. A convolution layers, a batch normalization
layer and a ReLU activation layer in turn followed the
input layer, which have the following implementations.

(1) The convolution layer is applied in the follow-up
operation, where W is the learnable weight and b is a shift
variable.

fC (zi) = Wzi + b

(2) The batch normalization layer is calculated as
below, where μD and σD represent the mean and variance
of each channel data over all observation dimensions; ε is
a constant improving numerical stability when facing a
very small variance and α and β are learnable transform
parameters and are updated in the network training
process. Of note, after training, the training data will
be passed through once more, and the fixed mean and
variance will be determined (i.e. μD and σD) on whole
data for prediction.

fN (zi) = α
zi − μD√
σ 2

D + ε

+ β

(3) The ReLU activation layer is computed as below.

fA (zi) =
{

zi, zi ≥ 0
0, zi < 0

Six building blocks in parallel followed the above
ReLU activation layer, where each block consisted of
two convolution layers, a batch normalization layer
and two ReLU activation layers, and the outputs of the
batch normalization layer of the sixth residual blocks
were combined and fed to a global pooling layer. Finally,
the SoftMax layer following the fully connected layer
gives the final classification output. The architecture
does not have much hyperparameters; in addition, the
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‘MaxEpochs’ is fixed at 100 by default, and the adaptive
moment estimation optimizer (Adam) is used in the
current Vec2image implementation.

Interpretable informative feature ranking of
Vec2image by embedded KNN representation
When classifier training is completed, Vec2image further
uses the KNN algorithm embedding latent space to opti-
mize feature selection. Using KNN, Vec2image resam-
ples the input pseudo images, choosing the K-nearest
features in the latent space for each feature (K = 10 by
default), setting 1 of these features’ shades for each
sample and recomputing the classification error, which
can indicate the impact of each feature on classification
model (Figure 1E). By such a feature mask strategy, the
rank of the importance/impact of each feature can be
inferred dependent on their influence on classification
errors, holding the assumption that the mask of the best
features will cause the highest increase in classification
error. The classification error for each feature reflects
its impact on the overall model predictions, thus the
features would be informative features when its shade
causes the increase of classification error.

We also tested the threshold K of KNN with a range
from 5 to 20 in multiple single-cell datasets and found
that selection of informative features (e.g. informative
feature genes [IFGs]) was consistent for different K values
(Supplementary Figure S2).

Model learning configuration of Vec2image
For each dataset used for method evaluation and com-
parison, we drew a training sample Z from dataset D,
uniformly at random without replacement of each cat-
egory. By default, the size of Z was set to 80% that of
D, and the remaining 20% of the dataset was used as
the test set. And again, the 80% samples of Z were used
for model learning, and 20% samples of Z were used for
model validation. In another word, as a typical strategy
for overcoming the potential overfitting issues in ML
model building, there are training dataset (64% samples),
validation dataset (16% samples) and test datasets (20%)
randomly used in this study.

Comparison and evaluation of Vec2image
To comprehensively evaluate the Vec2image model, we
have compared Vec2image with seven kinds of models,
whose detail model characteristics and parameter set-
tings can be seen in Supplementary Table S1. (i) xGBoost:
the xgboost R package was used with the default
parameters. (ii) DeepInsight: the public MATLAB source
code was used, which is available from http://www.
riken.jp/en/research/labs/ims/med_sci_math/ or http://
www.alok-ai-lab.com. (iii, iv) RUSboost and Adaboost:
The fitcensemble() MATLAB function was used with 50
learners. (v) Random forest: The treebagger() MATLAB
function was used with 20 classification trees. (vi)
SVM (support vector machines): The fitcsvm() MATLAB
function was applied with default parameters. (vii)
scClassify: The scClassify R package was carried out,

which is available from http://github.com/SydneyBioX/
scClassify.

Meanwhile, there were four categories of compu-
tational tasks and benchmark datasets for method
comparison and evaluation. (a) For the binary classi-
fication task, there were five datasets, including one
single-cell dataset (bladder), one vowel dataset (PD), one
mass-spectrometry dataset (Arcene) and two artificial
datasets (Ringnorm-DELVE and Medelon). Here, the
raw data matrices were used as the same inputs to
Vec2image and all other methods, and different methods
would have their own preprocession on the input data
(e.g. pseudo image transformation by Vec2image and
deepInsight, or log normalization by scClassify, as listed
in Supplementary Table S1). The AUC measurements
with 10 times running on resampling data were used to
measure the performance of each binary classification
model and also other kind of models in the following
discussions. (b) For the imbalance classification task, the
proportion of two sample categories in the above binary
class datasets was set to 1/50, 1/20, 1/10, 1/5 and 9/10
to generate multiple imbalanced datasets by random
sampling without replacement. (c) For the multiclass
classification task, 20 organ-specific single-cell datasets
from the Tabula Muris were used, and the accuracy
and kappa measurements were applied to evaluate all
methods. For the Tabula Muris data, we have used the
ROGUE [32] to identify genes that are most relevant
for biological heterogeneity before model training, and
such data after feature selection were used as the same
inputs to Vec2image and all other methods. Noted that,
scClassify is originally a multiscale classification method
for single-cell data, and it is especially used in the
comparison of this multiclass classification of single-
cell data as a key baseline method, where the weighted
KNN + Pearson +DE was set when using scClassify. (d)
For the cross-platform classification task, four human
pancreas datasets (GSE86469, E-MTAB-5061, GSE84133
and GSE83139; Supplementary Table S4) generated from
three platforms (Illumina NextSeq 500, Illumina HiSeq
2000 and Illumina HiSeq 2500) by independent studies
were combined together to assess the Vec2image
performance and further applied in a deep case study,
where all overlapping genes in four datasets were used
to training models.

Assessment of IFGs identified by Vec2image
As a baseline, the Seurat R package [33] and SCCAF (Sin-
gle Cell Clustering Assessment Framework) package [34]
were used to identify the candidate marker genes of cell
clusters/types in each single-cell dataset from the Tabula
Muris. The 1000 top-ranked IFGs selected by Vec2image
were used for consistency evaluation with these candi-
dates. The functional enrichment analysis of candidate
marker genes and IFGs was carried out by hypergeo-
metric test (adjusted P-value: ∗∗0.05/25). To evaluate the
impact of IFGs on CNN performance, several subgroup
datasets of each single-cell dataset were constructed:
namely, a group including IFGs (IFG+), a group including

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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http://www.alok-ai-lab.com
http://www.alok-ai-lab.com
http://github.com/SydneyBioX/scClassify
http://github.com/SydneyBioX/scClassify
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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non-IFGs (IFG−) and a group including randomly selected
genes (shuffle), with gene proportions of 5%, 10%, 15%
and 20%, respectively. The accuracy was calculated to
compare the performance in the classification of IFG+,
IFG− and shuffle for each single-cell dataset, where the
classifier used was the independent xGBoost approach.

In addition, some popular feature selection methods,
such as the S-E model [32], were also used to compare
and evaluate IFGs. S-E model is an entropy-based fea-
ture selection method that can detect variable genes by
hypothesis testing. On the integrated human pancreas
single-cell datasets, the 1000 selected top-ranked IFGs by
Vec2image and the S-E model, respectively, were used to
test their contribution to the following cell clustering per-
formance, where the t-SNE and adjust rand index (ARI)
were used to qualitatively visualize and quantitatively
evaluate the clustering accuracy based on the selected
feature genes by Vec2image and S-E model, respectively.

Case study of T2D by Vec2image
Data preprocessing

The three integrated pancreas single-cell datasets (E-
MTAB-5061, GSE84133, GSE83139) were used to train
classifier by Vec2image. Meanwhile, another pancreas
dataset (GEO (Gene Expression Omnibus) accession
GSE86469) was used for independent validation and
investigation, which includes eight human cadaveric
organ donors, and each islet sample from one donor
was processed to generate scRNA-seq libraries and
paired bulk RNA sequencing (RNA-seq) libraries at three
different stages of islet processing (baseline, intact and
dissociated). Considering the requirement of sample size
and statistical power, three bulk datasets from different
stages were merged for further analysis.

Execution of Vec2image

We trained a Vec2image classifier based on the inte-
grated single-cell dataset to classify cells from the nondi-
abetic (ND) and T2D states, respectively. The proportion
of training and validation was set to 80:20. The dimen-
sional reduction technique t-SNE was used to obtain 2D
plane, the pixel size was set 120×120 and ‘MaxEpochs’
was fixed in 300.

Filtering of IFGs

To increase the statistical power, we used paired three
groups from merged samples with similar age (ND 30 –
T2D 42; ND 53 – T2D 51; ND 56 – T2D 55) to prioritize
IFGs, respectively. The overlapping 373 genes of top 1000
IFGs from three groups are considered as important IFGs
in distinguishing T2D and ND cells/states. The threshold
K of KNN was set 10.

Deconvolution of bulk gene expression data

To evaluate cell-type-specific differences between ND
and T2D individuals, we used the merged bulk RNA-seq
dataset (GEO accession GSE86469) which contains gene

expression profiles of 24 samples, 9 of which are identi-
fied as diabetic and 15 of which are healthy controls. This
resulted in a gene expression matrix of 25,169 genes and
24 samples. Based on single-cell dataset and bulk dataset
of GSE86469, the Bseq-SC [35] was used to estimate the
proportions of cell types for each bulk sample. And the
proportions of alpha and beta cells in each bulk sam-
ple were further used for the cell-type-specific analysis,
which were two main cell types involved in T2D and their
proportion distribution would be most variable between
ND and T2D subjects.

Estimation of cell activity

AUCell [36] was used to estimate the cell activity based
on IFGs in the ND and T2D cells. The input to AUCell
is the single cell expression matrix of gene set with 373
IFGs, and the output is the cell activity matrix (i.e. gene
set ‘activity’) of all ND and T2D cells.

Reconstruction of intercellular communication networks

Cellchat [37] was used to further investigate the potential
role of IFGs in cell–cell communication. The IFGs’
expression matrix and the whole gene expression matrix
from single-cell dataset were used as the input of
CellChat, respectively, which models the probability of
cell–cell communication by integrating gene expression
with prior knowledge of receptors, their cofactors and
the interaction between signaling ligands.

Ligand-target analysis

NicheNet [38] was applied to ligand-target prediction
between alpha and beta cells. As potential active ligands,
we consider all ligands that were expressed in alpha
cells. As the target gene set, we consider the list of
IFGs significantly differentially expressed in beta cells
between nondiabetic sample (NDS) and type 2 diabetes
sample (T2DS), and we consider all genes expressed in
beta cells as background. NicheNet firstly prioritized the
most probable ligands regulating IFGs by ligand activity
prediction, and then assessed the ligands in alpha cell
regulating the IFGs in beta cells.

Statistics analysis
The ROC (receiver operating characteristic) curve was
used to illustrate the overall performances of different
modeling methods. The decision curves analysis (DCA)
was used to test the clinical usefulness of different mod-
els in prediction. About 10-fold cross-validation was per-
formed to calculate the Cohen’s kappa coefficient using
the K-fold cross-validation routine of the R and MAT-
LAB. The functional enrichment analysis between IFGs
and markers was carried out by hypergeometric test
(adjusted P-value: ∗∗ 0.05/25). Generally, statistical sig-
nificance was assessed by unpaired t-test. Significance
levels were set to P = 0.05. Significance for comparisons:
∗P < 0.05; ∗∗P < 0.01.
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Enrichment analysis
Gene Ontology functional analysis was performed by
using g:Profiler [39] and Pathway Commons [40].

Availability of data
The Ringnorm dataset [41] is available from University
of Toronto at https://www.cs.toronto.edu/&#x007E;
delve/data/ringnorm/desc.html. The scRNA-seq data
of bladder are available from the Tabula Muris [42].
Madelon dataset [43] is available at UCI repository
http://archive.ics.uci.edu/ml/datasets/madelon. The
Arcene dataset [43] is available at http://archive.ics.
uci.edu/ml/datasets/Arcene. PD disease [44] is available
at http://archive.ics.uci.edu/ml/datasets/Parkinson%27
s+Disease+Classification. The Tabula Muris mouse
data were downloaded from https://tabula-muris.ds.
czbiohub.org/. The accession numbers for the pancreas
datasets in NCBI GEO are GSE86469 [45], GSE84133 [35],
GSE83139 [46], and that of a dataset in ArrayExpress (EBI)
is E-MTAB-5061 [47].

Results
Accurate and robust performance of Vec2image
in the classification of heterogeneous biological
samples
Evaluation on binary classification

First of all, Vec2image was evaluated on a binary
classification task with a collection of five different
kinds of datasets (Supplementary Table S2), including a
single-cell dataset (bladder), a vowel dataset (Parkinson’s
disease), a mass-spectrometry dataset (Arcene) and
two artificial datasets (Ringnorm-DELVE and Medelon),
which have been widely used in previous studies. As
evaluation controls, six popular supervised classifiers in
binary classification, including Adaboost, DeepInsight,
Random Forest, RUSboost, SVM and xGBoost [9, 12, 48–
51], were used to provide comparable baselines. The
accuracy of each model on each dataset is summarized
in Figure 2A, and the ROC curves and DCA curves were
also compared on the five datasets in Figure 2C and D.
In addition, we also evaluated the efficiency of CNN
models training on image matrix data, and original data
vector, and latent data vector after dimension reduction
for samples, respectively, where the image-based CNN
model still showed better performance than nonimage-
based CNN models (Supplementary Figure S3), indicat-
ing the contribution of feature structures in addition to
feature values in our produced pseudo images. These
results demonstrate that Vec2image robustly led to
higher accuracy and would bring significant benefit to
clinical application than other models on the binary
classification task in most datasets.

Evaluation on unbalanced classification

Next, Vec2image was evaluated in the above datasets
with different sample imbalance settings, where the
same five benchmark datasets were randomly split to

form unbalanced training datasets, and the balance
proportions of the two sample classes were 2%, 5%,10%
20% and 45%. As shown in Figure 2B, Vec2image still
significantly outperformed the other classifiers. In
particular, approaches such as boosting alone, boosting
with undersampling and even extreme gradient boosting
did not achieve the highest performance, and the
most pronounced performance differences among the
different methods were indeed observed when the
training set had a balance proportion of 2% (Figure 2B).
Therefore, Vec2image is able to achieve satisfactory
performance even with imbalanced class labels or rare
biological sample types.

Evaluation on multiclass classification

Then, we evaluated the accuracy and robustness of
Vec2image for cell type classification [5, 52], which
is usually a multiclass classification task, using the
Tabula Muris datasets including 20 well-organized organ-
specific scRNA-seq datasets (Supplementary Table S3).
We have compared the effectiveness of Vec2image with
the six abovementioned methods and an advanced
single-cell-specific supervised learning method (i.e.
scClassifly) [13]. According to performance measure-
ments (i.e. accuracy and kappa coefficient), Vec2image
outperformed many existing methods again during
dissimilar learning tasks with significant performance
promotion (Figure 3A and B). Of note, Vec2image still
has larger average performance than xGBboost in this
condition although it is not significant enough, and thus
the model evaluation on more complicated datasets
would uncover more pros and cons of different methods
in future.

Evaluation on selected features

In addition, we carried out an assessment to compare
the IFGs selected by Vec2image and the marker genes
selected by two popular cell marker identification
methods Seurat (Figure 3C and Supplementary Figure
S4) and SCCAF (Supplementary Figure S5A and B) [33,
34, 53] (see the ‘Materials and Methods’ section), on
above single-cell sequencing samples. Indeed, the IFGs
selected by Vec2image have satisfactory efficiency and
high consistency with those candidate cell marker
genes (Figure 3C and Supplementary Figures S5 and
S6). The significant test (Supplementary Figure S5C)
and hypergeometric test (Supplementary Table S3) are
also performed to verify the effectiveness of feature
selection of Vec2image. These results indicated that
IFGs have significant enrichments in candidate cell
markers. Of note, according to this comparison, different
methods indeed can find a large number of the same cell
markers; in contrast, each method can also detect some
specific makers dependent on their model hypothesis.
For Vec2image, it would identify markers considering
both feature values and associations, and thus it might
select the important features/genes on networks (e.g.

https://www.cs.toronto.edu/&#x007E;delve/data/ringnorm/desc.html
https://www.cs.toronto.edu/&#x007E;delve/data/ringnorm/desc.html
http://archive.ics.uci.edu/ml/datasets/madelon
http://archive.ics.uci.edu/ml/datasets/Arcene
http://archive.ics.uci.edu/ml/datasets/Arcene
http://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
http://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://tabula-muris.ds.czbiohub.org/
https://tabula-muris.ds.czbiohub.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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Figure 2. Performance and robustness evaluations of Vec2image on binary classification tasks. (A) Performance evaluation for Vec2image and six
compared methods on five datasets, according to classification model accuracy. The star indicates the significance of performance promotion of
Vec2image compared with other methods (∗P < 0.05, ∗∗P < 0.01). (B) Performance evaluation for Vec2image and six compared methods on five groups of
datasets with different imbalance ratio, where the dot color indicates the degree of accuracy, and the dot size represents the proportion of the sample size
of two imbalanced class categories. (C) ROC curves of each method on 10 times running on random shuffling data, which indicate the prediction power
of classification models. (D) DCA of each method on 10 times running on random shuffling data, which indicate the clinical usefulness of corresponding
models.

network hubs), which should be deeply explored in future
work in single-cell fields.

Finally, as an independent evaluation to the selected
features/genes on original expressions, we ranked the
impact of IFGs on the corresponding classification model
by comparing the performance of xGBoost classifiers
learned on different groups/alternatives of candidate
feature genes. This comparison included the Vec2image-
selected IFGs+, the randomly selected genes except IFGs
(IFG−) and the same number of randomly selected genes;
each of these three gene groups had proportion 5%,
10%, 15% and 20%, respectively. The results in Figure 3D

show that IFGs are indeed essential for achieving high
performance for cell classification e.g. the detachment
of IFGs from model learning could cause a remarkable
performance decrease. In particular, the distribution
of these IFGs in the feature correlation structure (i.e.
the pseudo image of Vec2image) displays an insightful
visualization that key feature genes are grouped or
clustered in the hidden feature space (Figure 3E); they
are actually automatedly recognized and weighted by
principal component coordinate conversion and the CNN
model integrated in Vec2image. Besides, the confusion
matrix demonstrated (Supplementary Figure S6) again

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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Figure 3. Performance and feature selection evaluations of Vec2image on multiclassification tasks. (A) Classification accuracy was summarized for
Vec2image and 7 compared methods on 20 single-cell datasets from the Tabula Muris Atlas. The star indicates the significance of performance promotion
of Vec2image compared with other methods (∗P < 0.05, ∗∗P < 0.01). (B) Kappa coefficient evaluation was summarized for Vec2image and 7 compared
methods on the same 20 datasets, using 10 times running on random shuffling data. The star indicates the significance of performance promotion of
Vec2image compared with other methods (∗P < 0.05, ∗∗P < 0.01). (C) Overlapping percentage of feature genes identified by Vec2image and cell makers
recognized by Seurat in each dataset. (D) Performance of cell classification on the basis of different feature genes, including different proportions of
IFGs+, IFGs− and shuffle genes. The bar indicates the mean ARI of 20 datasets and the error bar indicates the variance confidence interval (adjust
by std/5), where ARI is applied to evaluate the match of prior-known types and predicted clusters of cells. (E) Distribution of different proportions of
top-ranked IFGs in the latent space as feature association structure displayed in tSNE plot. Each dot represents a gene and the star indicates the P-value
of hypergeometric test between IFGs and cell markers (∗∗P < 0.01).

that Vec2image can acquire high accuracy in identifying
rare cell types (e.g. small cell groups/categories) com-
pared with other methods like DeepInsight and xGBoost.
Of note, we expect here to independently test expressions
of IFGs on distinguishing classes/cell types. And in above
evaluation experimental results, xGBoost was found to
achieve a best performance using original expression
values, thus it was applied as an independent classifier
to validate the IFGs identified by Vec2image. In fact, any
other compared models can also be applied, and they
should obtain the similar conclusion on the same IFGs.

Case study of T2D discrimination on bulk and
single-cell islet transcriptome by Vec2image
Consensus classification of islet cell types

Many deep-sequencing techniques have been developed
[54, 55] in the BT field. Ideally, the classifiers should
be able to accurately and robustly identify sample/cell
types in datasets generated from different platforms i.e.
there should be consensus analysis results, although

some systematic differences exist in sequencing data.
In our collected pancreas datasets related to T2D
(GSE86469 [45], E-MTAB-5061 [47], GSE84133 [35] and
GSE83139 [46]), they have a similar biological context
generated from three sequencing platforms (Methods
and Supplementary Table S4), thus we first evaluated
the classification consensus of Vec2image on cell type
discrimination.

Here, two evaluation strategies were carried out
for Vec2image in a dataset-based cross-validation
manner. The first strategy is to train the classifier
on any three datasets and perform validation on the
remaining dataset. The second strategy is to train the
classifier on any two datasets and perform validation
on the two remaining datasets. The kappa coefficient
was used to qualify the performance accuracy and
robustness of Vec2image and comparable models
(Supplementary Figure S7). Noted that, the four datasets
indeed came from different sequencing platforms and
laboratories, so that, they should have independent

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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Figure 4. Accurate and consensus analysis of cell type classification by Vec2image on T2D-related scRNA-seq datasets generated from different
platforms. (A) Classification accuracies of cross-dataset validation measured for Vec2image and seven compared methods on four pancreas scRNA-seq
datasets (diabetes 1: GSE86469; diabetes 2: E-MTAB-5061; diabetes 3: GSE84133; diabetes 4: GSE83139). In each loop, the training datasets consist of three
or two pancreas datasets of four pancreas scRNA-seq datasets, and the test dataset consists of the remaining datasets. For example, the first experiment
is to train model on three datasets (i.e. diabetes 2, 3 and 4), and test model on remaining dataset (i.e. diabetes 1). (B) Unsupervised cell clustering within
dimensional reduction by tSNE on the basis of informative genes selected by Vec2image (IFGs+), IFG-shaded genes (IFGs−) and genes selected by S-E
model (SE), respectively. (C) Comparison of clustering result and prior-known clusters based on IFGs+, IFGs−, SE, and all genes. Here, the combination
of all four pancreas datasets is used, and the cell clustering is based on tSNE, and the ARI are calculated by running k-means 50 times separately in
each clustering. The significance test of performance comparison is carried out between IFGs+ and other groups of genes (SE, All, IFGs−), ∗∗ P < 0.01.

sample pattern/distribution in data. Such dataset-based
cross-validation might also be an effective form of
external validation to overcome potential overfitting
issue in performance evaluation. These results clearly
illustrated again that Vec2image can provide more
robust performance of cell type identification than the
other methods (Figure 4A), and especially Vec2image
outperforms others in the classification task on such
cross-platform data.

Consensus identification of islet cell-type-specific genes

As an important component of xAI, the identified IFGs of
Vec2image should be constructive for downstream anal-
yses and improve final outcomes, such as (unsupervised)
cell clustering. Thus, the above four scRNA-seq datasets
were combined together, 80% of the samples were used
for selecting IFGs by Vec2image, and the remaining 20%
of the samples were used for cell clustering, whose effi-
ciency was evaluated by the ARI [56] using the previously
known cell types as the gold-standard. As qualitatively
shown in the Sankey plot (Supplementary Figure S8),

Vec2image achieved high accuracy on cell type recovery.
As quantitative measurement and for comparison, the
ARI performance (Figure 4C) strongly indicated the
ability of Vec2image to identify and select consensus
IFGs. Here, the cell clustering was carried out by using
different candidate genes: IFGs selected by Vec2image;
feature genes identified by other state-of-the-art feature
selection methods (S-E) [32] and randomly selected genes
without IFGs (IFG−) as controls (Figure 4B and C).

Therefore, Vec2image achieves consensus perfor-
mance on sample/cell classification and key feature/-
gene selection, which also shows higher accuracy
and sensitivity than the conventional CNN model
(Supplementary Figure S9).

Accurate T2D state prediction of islet cell

Using Vec2image, we constructed a classifier of T2D to
predict ND and T2D cells (states), by learning on integra-
tive scRNA-seq data from three pancreas datasets (i.e. E-
MTAB-5061, GSE84133 and GSE83139; including 9533 ND
cells from 15 ND individuals and 1433 T2D cells from 6

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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diabetic individuals). As a supervised method, Vec2image
acquire high accuracy in identifying cell states com-
pared with SCCAF (Supplementary Figure S10). Next,
we applied this classifier to classify the states of cells
from an independent pancreas scRNA-seq dataset
(GSE86469, including 380 ND cells and 258 T2D cells)
and achieved significantly high accuracy (Accuracy score
(ACC) = 0.9034) (Figure 5A). On the basis of this classifier,
373 IFGs related to T2D were selected (see the ‘Materials
and Methods’ section). According to the accuracy of
the baseline model rebuilt on shuffle datasets, these
IFGs indeed played key roles in cell type classification.
Of note, two strategies were used to produce those
shuffle datasets: one is by removing the expression
information of all IFGs, and the other one is by removing
the expression information of the same number of
randomly selected genes (Figure 5A).

Cell-type-specific IFGs relevant to T2D state

Among the above IFGs, there were four differentially
expressed genes (DEGs, P < 0.01) between the ND and
T2D states detected in acinar cells, 12 DEGs in alpha cells
and 63 DEGs in beta cells (Supplementary Figures S11–
S13), suggesting a stronger signal of dysfunction of T2D-
related beta cells than other cell types. Moreover, we
estimated the average total counts of these IFGs in
all single-cell samples respectively belonging to five
cell types and we found the significant decreases in
alpha and beta cells from T2D (P < 0.05) (Figure 5B)
and no significant proportion differences were detected
in acinar, delta and ductal cells. These results were
consistent with those from the analysis of all genes
and all DEGs (Supplementary Figure S14). In addition,
we applied AUCell [36] to score the activity of IFGs
on ND and T2D cells (Figure 5C–D) and observed that
the activity of IFGs in T2D cells was lower than that
in ND cells (Figure 5C), and the activity of IFGs was
significantly different between the ND and T2D states
for alpha or beta cells (Figure 5D). Overall, the loss
of expression and activity of IFGs could mainly result
in the biological dysfunctions of alpha and beta cells
in T2D.

As key feature genes selected by Vec2image, IFGs
should discriminate cell types and also reveal insightful
biological functions. By functional enrichment analysis
of IFGs (see the ‘Materials and Methods’ section), IFGs are
significantly correlated with metabolic processes (pri-
mary metabolic process: P = 4.35e-5, cellular metabolic
process: P = 8.24e-5, organic substance metabolic pro-
cess: P = 0.008) (Supplementary Table S5) relevant to
abnormal metabolism in T2D. The four DEGs/IFGs
in acinar cells were highly expressed in T2D, among
which the high expression of PTPRF can contribute
to the pathogenesis of insulin resistance [57–59] and
PDCD4 is known to be involved in pancreatic cancer
[60] (Figure 5E, Supplementary Table S6). In contrast, the
most IFGs/DEGs in alpha and beta cells had low expres-
sions in the T2D state (Figure 5E and Supplementary

Figure S13), and the top-ranked IFGs/DEGs, such as REEP3
and NACA, were highly correlated with endoplasmic
reticulum (ER) relevant to functional links between
ER stress and T2D [61–63] (Supplementary Table S6,
Supplementary Figure S15). Some other IFGs have not
been reported to be associated with T2D currently, and
they would be underestimated due to their cell type-
specific dysfunction under T2D states, so they warrant
further research.

T2D-related cell composition involved with IFGs

Based on aforementioned recognized cell type and
marker gene information from single-cell sequencing
data, the cell type proportions and cell type-specific
differential expression can be efficiently estimated
from bulk sequencing data by statistical deconvolution
methods [35, 64], which would aid in the investigation of
individual-specific disease/cellular heterogeneity.

The islet bulk RNA-seq dataset of 24 samples (includ-
ing 15 NDS/individual) and 9 T2DS /individual were ana-
lyzed. We first used a set of discriminative marker genes
(Supplementary Table S7) to estimate the proportion of
each cell type (acinar, alpha, beta, delta and ductal) in
the bulk samples by Bseq-SC (Figure 6A). Significant
proportion increases (P < 0.05) in alpha and ductal cells
were detected in T2DS compared with NDS, whereas
the proportion of beta, acinar and delta cells decreased.
Considering that the proportion variability of different
cells may affect much of the reported differences in bulk
gene expression, we fit two models of gene expression
differences between ND and T2D by using EdgeR to
detect a set of genes that are differentially regulated
at the cell type level. The base model included only the
group variable (sex, age) and then the estimated cell
type proportions (alpha, beta) as additional covariates
formed an extended model. Following the adjustment of
cell type proportion, we identified a set of 252 genes with
differential expression between ND and T2D samples,
among which 69 genes showed significant differences
between NDS and T2DS (67 genes had significant upreg-
ulation in T2DS, P < 0.05) (Supplementary Figure S16).
Next, we used a regression-based method csSAM [65] on
the above subset of adjusted genes and an additional
set of five IFGs related to ER stress (ALDH1A1, NACA,
REEP3, OSTC and REEP5) that were identified in the
previous single-cell data analysis [34], aiming to identify
cell type-specific differential expression and estimate
interaction terms between a group of variables/genes
and the cell proportions of alpha and beta cells. We
observed a strong signal for gene upregulation in alpha
cells and downregulation in beta cells of T2D (false
discovery rate (FDR) < 0.05) (Figure 6B). All five of IFGs
showed cell type-specific differences, upregulated in
alpha cells and downregulated in beta cells. This result
suggests that the beta cell heterogeneity identified in
the single-cell dataset may be smaller in T2D than in
the normal state; in contrast, the alpha cells showed
the opposite effect. These findings indicate that there

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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Figure 5. Efficient classifier for T2D single cells learnt by Vec2image with cell-type-specific diabetes-related genes identification. (A) Classification
accuracy of Vec2image on different feature space e.g. the raw test data, the IFGs− test data (whose IFGs were set 1 for shades) and shuffle data
(whose randomly selected genes were set 1 for shades). Of note, the shuffle groups were randomly selected 10 times, whose average and variance
of accuracies were summarized and illustrated. (B) Summary of average total count of IFGs in ND and T2D cells for five cell types (∗∗ P < 0.01 for
significance test). (C) Quantification of cell activity (AUC score) based on IFGs in ND and T2D cells. The vertical dotted line indicates the threshold
selected by default. (D) Distribution of cell activity of each cell in latent space (e.g. tSNE plot) based on IFGs. The red dots indicate the case cells pass
the threshold (AUC > 0.09286), and the blue dots represent the case cells do not pass the threshold, where the gray dots represent the control cells (e.g.
T2D cells as cases in upper subfigure or ND cells as cases in bottom subfigure). Significant differences of AUC score are detected in alpha and beta cells
between ND and T2D states by unpaired t-test. (E) Detailed expression changes between ND and T2D cells for the most differentially expressed genes
of IFGs in acinar (upper), alpha (median) and beta (under) cells, respectively (∗P < 0.05, ∗∗P < 0.01).

are actually necessary requirements for investigating
the cellular heterogeneity underlying the individual
heterogeneity of T2D for the precise diagnosis and
prognosis of T2D.

T2D-related cell–cell communication involved with IFGs

In addition, the intercellular communication was investi-
gated by CellChat [37], which showed that five cell types
in ND and T2D were enriched in totally different sig-
naling pathways (Figure 6C). We found that ductal cells
dominate the outgoing and incoming signaling in both
the ND and T2D states. Beta cells reduce communication
patterns in the T2D state e.g. turning off signaling such

as WNT (incoming) and FGF. In contrast, alpha cells did
the opposite (Figure 6C) e.g. turning on/increasing signal-
ing such as SEMA3, SEMATOSTATIN, MK and ANGPTL. In
addition, we also studied the detailed changes in the sig-
naling of IFGs (Supplementary Figure S17). Interestingly,
we found that alpha and beta cells changed their major
outgoing and incoming signaling between the ND state
and the T2D state. In the T2D state, beta cells turn on
NEGR signaling, and alpha cells turn off signaling, such
as CDH and CDH5, and turn on the L1CAM signaling. The
results suggested that the IFGs prominently redesigned
their outgoing and incoming signaling in different cell
types between the ND state and the T2D state.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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Figure 6. Functional role of T2D relevant IFGs identified by Vec2image in cell-type-specific expression/composition and cell–cell communications. (A)
Proportion differences of pancreas cell types between ND and T2D (∗P < 0.05, ∗∗P < 0.01). (B) Cell-type specificity analysis based on FDR plot from Bseq-SC.
The x-axis shows the number of upregulated genes and downregulated genes at a given FDR cutoff (y-axis). (C) Comparison of incoming and outgoing
signaling patterns of different cell types between ND and T2D sates. The dot size is proportional to the contribution score computed from pattern
recognition analysis, where a higher contribution score implies the signaling pathway is more enriched in the corresponding type of cells.

In particular, the ligands in alpha cells can regulate
the expression of IFGs/DEGs in beta cells, thus we applied
NicheNet [38] to assess the changes in the ligand-target
association between the ND and T2D states (see the
‘Materials and Methods’ section). We selected the top
20-ranked ligands and found that the five top-ranked
ligands already dominate the regulation of IFGs in both
the ND and T2D states. On the one hand, the top-ranked
ligands in the two states are different e.g. one of the
top-ranked ligands, SLIT2, which encodes a member of
the slit family of secreted glycoproteins and is related to
pancreatic cancer [66, 67], exist in only the T2D state. On
the other hand, the top-ranked ligands regulated more
IFGs in beta cells in the T2D state than in those in the ND
state (Supplementary Figure S18). These results suggest
that many IFGs indeed play important roles in T2D by
being involved in the dysfunctional communication from
alpha cells to beta cells.

Discussion
In the era of biological big data, a critical and basic
problem is to capture the small variations in genomic
data that differentiates phenotypes. To benefit from deep
learning technologies for analyzing high-dimensional
biological data, a necessary way of xAI model would
bridge nonimage information and image-based learning.
With that in mind, we proposed Vec2image to realize

classification of biological samples on transformed
pseudo image data in a qualitative and quantitative
manner. Vec2image addresses several limitations of
conventional ML architecture by two techniques: one
is to transform the vector information to pseudo images
by similarity embedding with feature abundance, and
the other one is to unlock the black box by adapting
KNN search in latent space. By evaluation on many
benchmark datasets, Vec2image showed higher accuracy
and sensitivity than competing approaches, and it
was also able to rank and select informative features
related to sample discrimination and feature association
simultaneously. In a deep case study of bulk and
single-cell integrated pancreas RNA-seq data for T2D,
we learned a disease classifier at both the cell and
tissue levels, selected 373 IFGs to distinguishing ND
and T2D states and detected significant cell proportion
differences and IFGs activity changes in alpha and
beta cells. Dissimilar to traditional analysis, Vec2image
automatically represented, quantified and detected such
informative features (e.g. IFGs including DEGs), which
might regulate the cell state, affect cell activity related
to ER stress, further have an influence on the cell–
cell communication and finally lead to relevant T2D
dysfunctions such as cell-type-specific insulin resistance
and glucagon imbalance. Thus, these new findings from
Vec2image analysis should provide an understanding of
pancreatic dysfunction and potential therapeutics for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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T2D from a joint viewpoint from individuals and their
organism cells, and the IFGs identified by Vec2image
are explainable and constructive candidates for follow-
up wet-experiments at both the molecular and cellular
levels.

In this work, the structure of feature associations was
actually holding the same as a shape description in
pseudo image, and the pixel values corresponding to fea-
ture values of each sample could be different. Indeed, the
nonlinear dimensionality reduction algorithm we used
(e.g. tSNE) has the ability to map high dimensional data
to a low dimensional data (i.e. 2D plane) and can preserve
the local relationships among features (genes). Thus, the
shape in pseudo image contains both feature abundance
and correlation information, which is benefit for feature
extraction of feature values and associations simultane-
ously by using CNN or similar algorithm. And another
advantage is to further rank features by embedding KNN
algorithm, which can also consider the influence of fea-
ture values and associations. Indeed, the usage of differ-
ent shapes (e.g. different feature structures generated by
different dimensionality reduction algorithms) can also
be considered (e.g. using multichannel image for CNN
where one channel includes one structure), which would
be deeply investigated in future work by diverse external
validations.

To evaluate the performance of Vec2image, we have
compared seven typical supervised learning methods. To
the best of our knowledge, Adaboost, random forest and
SVM are general ML methods in classification with differ-
ent theoretical and computational technologies, which
can be used as general baseline methods. RUSboost is
able to combine data sampling and boosting, which can
be used to further assess the ability of Vec2image in
dealing with imbalanced datasets. xGBoost has shown
better performance and computation cost in previous
studies. And scClassify has been compared with many
popular single-cell focused supervised methods (espe-
cially including scVI using deep neural networks [68],
and ACTINN using a neural network with three hidden
layers [69]) and shows high accuracy in single-cell clas-
sification. Thus, this work adopted the wide comparison
with these well-known methods, and the combination or
integration with other models in Vec2image would pro-
vide improved accurate and robust xAI model in diverse
application scenarios. For example, the identification of
unassigned cells and follow-up cell clustering is also a
problem in the application of single-cell data analysis.
Motivated by scClassify on the basis of tree structure, a
potential expansion of Vec2image would be able to iden-
tify the weak-evidence supported samples/cells in CNN
classification model (e.g. with small prediction weights
for all classes) as candidate unassigned cells, and then
using any CNN-based or alternative single-cell clustering
methods to cluster these cell candidates for new cell
types, which can be further understand and analyzed by
biostatisticians or cytologists.

In technical terms, the unsupervised learning methods
would be easily influenced by various confounding
factors in the data e.g. it is difficult to differenti-
ate disease and normal cells in single-cell datasets,
which tend to give priority to clustering cell types
(Supplementary Figure S19). Meanwhile, supervised
learning methods help directly detect the discrimination
of different target phenotypes; however, they usually
ignore the relationships between features, so as to
enlarge the side effects of black-box computing in
biological and biomedical applications. To benefit the
computational analysis of biological big data with
advanced AI technologies, Vec2image was developed
on a highly applicable and interpretable CNN-based
framework. It realizes the construction and deployment
of accurate and robust classification/prediction for
nonimage biological omics datasets. In Vec2image,
nonimage sample data can be transformed into a pseudo
image sample data with feature structure and state
simultaneous embedding, which should be conveniently
processed by CNN or similar approaches. Vec2image also
tries to interpret the results of the original CNN black box
algorithms by supplying additional feature extraction
and selection approaches e.g. ranking features based
in their impact on CNN performance during network
disturbance and screening features through its manifold
structure distribution in latent space embedded in image
structure. To the best of our knowledge, this is the first
xAI model and algorithm for the deep mining of a variety
of biological sequencing datasets that has great potential
to be applied in biological and biomedical fields.

Of note, Vec2image uses CNN for supervised learning,
considering that CNN or related image-intuitive meth-
ods can help automatic feature extraction and reduce
the need for neurons and sharing weights in large-scale
computation even with GPU (graphics processing unit)
utilization. In particular, the ResNet framework enables
a much deeper level of model training and promises high
accuracy in classification; thus, it is utilized for pseudo
image classification in Vec2image. The choice of evalu-
ation metric is also important for comparing the perfor-
mance of Vec2image and other state-of-the-art methods.
This work has carried out a wide benchmark assess-
ment on multiple computational tasks, including binary
classification, multiclass classification, sample imbal-
anced classification, cross-platform classification and
cross-sample classification. In particular, class imbal-
ance occurs in many biological sequencing datasets, due
to the easy collection of normal/control samples rather
than disease/case samples. Deep neural network archi-
tectures encompass the advantages of upsampling, and
SMOTE sampling can be easily incorporated in the CNN
framework to correct the class imbalance, which is crit-
ical for Vec2image to achieve optimal performance in
imbalanced datasets.

In addition, there are already some interpretable ML
models have already been proposed recently. For exam-

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab584#supplementary-data
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ple, CellBox is an interpretable ML tool for perturbation
biology [70], and another work used an interpretable
ML framework to identify T2D-related gut microbiome
features [71]. These works indicate that deep learning
is becoming an effective data-driven framework capable
of generating predictions for complex biological systems.
However, these models and applications are still limited
to specific biological contexts, far short of the emerging
demands of xAI [72, 73]. Our developed Vec2image aims
to provide a general ML architecture for xAI applica-
tions in the biological and biomedicine fields. Vec2image
enables the CNN framework to classify nonimage sam-
ples by converting the expressions data of each sample
to pixel data, with low sensitivity on the format and
distribution of input data; and it also enlarges features
interpretability by quantifying its impact and tracing its
relationship within feature communities in latent fea-
ture space. Considering that Vec2image can deal with
pseudo image data and also native image data, it has
immense potential to be applied to clinical diagnosis
where conventional biomedical images and new omics
data are provided adequately.

Vec2image is implemented using the CNN-based
framework so that it can make full use of various
advanced ML techniques, such as dropout, mini-batching
and Bayesian optimization techniques, to further improve
the learning efficiency and accuracy and reveal pre-
viously nonobserved informative features and their
associations. The current framework of Vec2image
employs grayscale or the 2D layer of pseudo images for
classification, thus further extension can consider the
more complicated structure of pseudo image data.

Vec2image would be scalable when its computational
components can be further enhanced. For the imbalance
sampling, the time complexity is already linear with data
size (e.g. the calculation of SMOTE in Methods). For the
nonlinear dimensionality reduction (e.g. tSNE), the time
complexity would be O(N2); however, many approach can
reduce it to O(N(log(N)) [74], where N is the size of sam-
ples. For the CNN, its general computational complexity
of each layer could be O(M2∗K2∗Cin

∗Cout), where M is the
(edge) size of feature map, K is the (edge) size of Kernel,
Cin and Cout are the number of input and output channels
of Kernel. As well-known, the CNN with ResNet can be
easily speed-up by GPU in actual applications, which
have been implemented well in MATLAB and Python
environments. And the implementation of Vec2image on
web server or cloud computing will be an important
future work for users in different fields.

With the rapid development of biological sequencing
technology, the whole genomic sequence information
of numerous organisms has become publicly available,
and different kinds of omics data (e.g. gene expres-
sion, methylation, ATAC-seq (Assay for Transposase
Accessible Chromatin using sequencing)) need to be
jointly analyzed for downstream analysis and prediction.
Vec2image has the potential to integrate and analyze
bulk and single-cell sequencing data. However, it is still
necessary to consider further algorithm extension to

incorporate multiple data layers into pseudo images
to realize the integration of multiomics datasets. One
potential direction of future work could integrate
multiomics datasets by reducing multiomics feature to
medium dimensions with enough variations and extract-
ing the regulatory network map of different molecules
(e.g. RNA-MicroRNA) [75, 76], which combines with ML-
related methods (e.g. graph neural network) can realize
phenotype predictions, key feature selection and key sub-
regulatory network reconstruction simultaneously.

Collectively, Vec2image can provide a comprehensive
and widely applicable xAI model and approaches for
analyzing high-dimensional biological data.

Key Points

• The Vec2image model is an explainable CNN framework
for characterizing the feature engineering, feature selec-
tion, classifier learning and topic recommendation, by
considering the feature values and feature correlation
structure in an integrative image manner.

• Vec2image has shown better performance than other
compared methods on different binary classification and
multiclass classification tasks, especially dealing well
with imbalance datasets and cross-platform datasets.

• Vec2image is also efficient on feature selection as cell
marker identification from tissue-specific single-cell
datasets.

• Vec2image provides accurate and robust T2D classifier
to recognize cell state in disease or normal individu-
als, and further recommends feature genes relevant to
T2D cellular pathogenesis including cell activity change,
cell composition imbalance and cell–cell communica-
tion dysfunction.
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Supplementary data are available online at https://
academic.oup.com/bib.
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Data availability
An open-source implementation of Vec2image in MAT-
LAB and alternative python script for ResNet are
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available at GitHub: https://github.com/ztpub/Vec2
image. This package has been tested on Linux and
Windows platforms based on MATLAB2020 version and
python with example datasets, which is default to use
multi-GPU in Linux system.
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